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Abstract
In this paper, we consider a class of boundary value problems for third-order
p-Laplacian functional dynamic equations on time scales, some existence criteria of at
least three positive solutions are established. The main tool used in this paper is the
fixed point theorem due to Avery and Peterson (Comput. Math. Appl. 42:313-322,
2001).
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1 Introduction
Recently, some authors have paid much attention to the existence of positive solutions for
functional dynamic equations on time scales [–], especially for the p-Laplacian func-
tional dynamic equations on time scales [, –]. For convenience, throughout this pa-
per we denote by �p(s) the p-Laplacian operator, i.e., �p(s) = |s|p–s, p > , (�p)– = �q,

p +


q = .

In [], Kaufmann and Raffoul considered a nonlinear functional dynamic equation on
time scales and obtained sufficient conditions for the existence of positive solutions. In [],
by using a double fixed point theorem due to Avery et al. [], Song and Gao considered
the existence of at least twin positive solutions to the following p-Laplacian functional
dynamic equations on time scales:

⎧⎪⎪⎨
⎪⎪⎩
[�p(u��(t))]� + a(t)f (u(t),u(μ(t))) = , t ∈ (,T)T,

u(t) = ϕ(t), t ∈ [–r, ]T,

u�() = u��(T) = , u(T) + B(u�(η)) = ,

(.)

where η ∈ (,ρ(T))T, –r, , T ∈ T.
In [], Wang and Guan considered the existence of positive solutions to problem (.)

by applying the well-known Leggett-Williams fixed point theorem [].
Motivated by [, ] and [], we shall show that problem (.) has at least three positive

solutions by means of the fixed point theorem due to Avery and Peterson [].
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In this article, we always assume that:

(C) f : [, +∞)  → (, +∞) is continuous;
(C) a : T→ (, +∞) is left dense continuous (i.e., a ∈ Cld(T, (, +∞))) and does not vanish

identically on any closed subinterval of [,T]T, where Cld(T, (, +∞)) denotes the set
of all left dense continuous functions from T to (, +∞);

(C) ϕ : [–r, ]T → [, +∞) is continuous and r > ;
(C) μ : [,T]T → [–r,T]T is continuous, μ(t) ≤ t for all t;
(C) B(v) is a continuous function defined on R and satisfies that there exist B ≥  and

A ≥  such that

Bx≤ B(x)≤ Ax for all R.

Remark . Although the Banach space in this paper is the same as that of [], i.e.,
E = C�

ld([,T]T,R) with ‖u‖ = max{maxt∈[,T]T |u(t)|,maxt∈[,T]Tk |u�(t)|}, the hypotheses
utilized in the existence theorem in this paper differ from those of [] where the effect of
a(t) was imposed.

Throughout this work, we assume the knowledge of time scales and time-scale notation,
first introduced by Hilger []. For more on time scales, please see the texts by Bohner and
Peterson [, ].
In the remainder of this section, we state the following theorem which is crucial to our

proof.
Let γ and θ be nonnegative continuous convex functions on P, α be a nonnegative con-

tinuous concave function on P, and ψ be a nonnegative continuous function on P. Then,
for positive real numbers a, b, c and d, we define the following convex sets:

P(γ ,d) =
{
x ∈ P : γ (x) < d

}
,

P(γ ,α,b,d) =
{
x ∈ P : b≤ α(x),γ (x)≤ d

}
,

P(γ , θ ,α,b, c,d) =
{
x ∈ P : b ≤ α(x), θ (x)≤ c,γ (x) ≤ d

}
,

and a closed set

R(γ ,ψ ,a,d) =
{
x ∈ P : a ≤ ψ(x),γ (x)≤ d

}
.

To prove our main results, we need the following fixed point theorem due to Avery and
Peterson in [].

Theorem . Let P be a cone in a real Banach space E. Let γ and θ be nonnegative con-
tinuous convex functionals on P, α be a nonnegative continuous concave functional on P
andψ be a nonnegative continuous functional on P satisfyingψ(λx)≤ λψ(x) for  ≤ λ ≤ ,
such that for some positive numbers h and d,

α(x)≤ ψ(x) and ‖x‖ ≤ hγ (x)

for all x ∈ P(γ ,d). Suppose that

F : P(γ ,d) → P(γ ,d)

http://www.advancesindifferenceequations.com/content/2014/1/242
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is completely continuous and there exist positive numbers a, b and c with a < b such that:
(i) {x ∈ P(γ , θ ,α,b, c,d) : α(x) > b} 	= φ and α(Fx) > b for x ∈ P(γ , θ ,α,b, c,d);
(ii) α(Fx) > b for x ∈ P(γ ,α,b,d) with θ (Fx) > c;
(iii)  /∈ R(γ ,ψ ,a,d) and ψ(Fx) < a for x ∈ R(γ ,ψ ,a,d) with ψ(x) = a.
Then F has at least three fixed points x,x,x ∈ P(γ ,d) such that

γ (xi) ≤ d for i = , , ,b < α(x),

a <ψ(x) with α(x) < b and ψ(x) < a.

2 Main result
In this section we consider the existence of three positive solutions for problem (.).
We say that u is concave on [,T]T if u��(t) ≤  for t ∈ [,T]Tk∩Tk

.
We note that u(t) is a solution of problem (.) if and only if

u(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫ T
 (T – s)�q(

∫ s
 a(r)f (u(r),u(μ(r)))∇r)∇s

– B(
∫ η

 �q(
∫ s
 –a(r)f (u(r),u(μ(r)))∇r)∇s)

+
∫ t
 (t – s)�q(

∫ s
 –a(r)f (u(r),u(μ(r)))∇r)∇s, t ∈ [,T]T,

ϕ(t), t ∈ [–r, ]T.

Let E = C�
ld([,T]T,R) with ‖u‖ = max{maxt∈[,T]T |u(t)|,maxt∈[,T]Tk |u�(t)|}, P = {u ∈

E : u is nonnegative, decreasing and concave on [,T]T}. So E is a Banach space with the
norm ‖u‖ and P is a cone in E. For each u ∈ E, extend u(t) to [–r,T]T with u(t) = ϕ(t) for
t ∈ [–r, ]T.
Define F : P → E by

(Fu)(t) =
∫ T


(T – s)�q

(∫ s


a(r)f

(
u(r),u

(
μ(r)

))∇r
)

∇s

– B

(∫ η


�q

(∫ s


–a(r)f

(
u(r),u

(
μ(r)

))∇r
)

∇s
)

+
∫ t


(t – s)�q

(∫ s


–a(r)f

(
u(r),u

(
μ(r)

))∇r
)

∇s, t ∈ [,T]T.

It is well known that this operator F is completely continuous.
We seek a fixed point u of F in the cone P. Define

u(t) =

⎧⎨
⎩

ϕ(t), t ∈ [–r, ]T,

u(t), t ∈ [,T]T.

Then u(t) denotes a positive solution of problem (.).

Lemma . If u ∈ P, then
(i) Fu ∈ P, i.e., F : P → P.
(ii) u(t)≥ T–t

T maxt∈[,T]T |u(t)|, t ∈ [,T]T.
(iii) u(t) is decreasing on t ∈ [,T]T.
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Proof This is easy, so we omit it here. �

Let l ∈ T be fixed such that  < l < η < T , and set

Y =
{
t ∈ [,T]T : μ(t) ≤ 

}
; Y =

{
t ∈ [,T]T : μ(t) > 

}
; Y = Y ∩ [,η]T.

Throughout this paper, we assume Y 	= φ and
∫
Y
a(r)∇r > .

Define the nonnegative continuous concave functional α, the nonnegative continuous
convex functionals θ , γ , and the nonnegative continuous functional ψ on the cone P,
respectively, as

γ (u) = ‖u‖, θ (u) = max
t∈[,l]Tk

∣∣u�(t)
∣∣,

α(u) = min
t∈[l,η]T

u(t), ψ(u) = min
t∈[,η]T

u(t).

In addition, by Lemma ., we have α(u) =ψ(u) = u(η) for each u ∈ P.
For convenience, we define

ρ = T(B + T)�q

(∫ T


a(r)∇r

)
, δ = A

∫
Y

�q

(∫ s


a(r)∇s

)
∇s,

λ = T(B + T + η)�q

(∫ T


a(r)∇r

)
.

We now state growth conditions on f so that BVP (.) has at least three positive solu-
tions.

Theorem . Let  < T
η
a < b < d, ρb < δd, and suppose that f satisfies the following condi-

tions:

(H) f (u,ϕ(s))≤ �p( dρ ) if  ≤ u≤ d uniformly in s ∈ [–r, ]T; f (u,u)≤ �p( dρ ) if  ≤ ui ≤
d, i = , ,

(H) f (u,ϕ(s)) > �p( bδ ) if b≤ u ≤ d uniformly in s ∈ [–r, ]T,
(H) f (u,ϕ(s)) < �p( aλ ) if ≤ u ≤ T

η
a uniformly in s ∈ [–r, ]T; f (u,u) <�p( aλ ) if  ≤ ui ≤

T
η
a, i = , .

Then BVP (.) has at least three positive solutions of the form

u(t) =

⎧⎨
⎩
ui(t), t ∈ [,T]T, i = , , ,

ϕ(t), t ∈ [–r, ]T,

where γ (ui) ≤ d for i = , , , b < α(u), a < ψ(u) with α(u) < b and ψ(u) < a.

Proof We first assert that F : P(γ ,d) → P(γ ,d).
Let u ∈ P(γ ,d), then γ (u) = ‖u‖ ≤ d, consequently,  ≤ u(t) ≤ d for t ∈ [,T]T.

http://www.advancesindifferenceequations.com/content/2014/1/242
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From (H), we have

∣∣Fu(t)∣∣ =
∫ T


(T – s)�q

(∫ s


a(r)f

(
u(r),u

(
μ(r)

))∇r
)

∇s

– B

(∫ η


�q

(∫ s


–a(r)f

(
u(r),u

(
μ(r)

))∇r
)

∇s
)

+
∫ t


(t – s)�q

(∫ s


–a(r)f

(
u(r),u

(
μ(r)

))∇r
)

∇s

<
∫ T


T�q

(∫ T


a(r)f

(
u(r),u

(
μ(r)

))∇r
)

∇s

+ B
∫ T


�q

(∫ T


a(r)f

(
u(r),u

(
μ(r)

))∇r
)

∇s

+
∫ T


T�q

(∫ T


a(r)f

(
u(r),u

(
μ(r)

))∇r
)

∇s

= T(B + T)�q

(∫
Y
a(r)f

(
u(r),ϕ

(
μ(r)

))∇r +
∫
Y
a(r)f

(
u(r),u

(
μ(r)

))∇r
)

≤ T(B + T)�q

(∫ T


a(r)∇r

)
d
ρ

= d,

∣∣(Fu)�(t)∣∣ =
∣∣∣∣
∫ t


�q

(∫ s


a(r)f

(
u(r),u

(
μ(r)

))∇r
)

∇s
∣∣∣∣

≤
∫ T


�q

(∫ T


a(r)f

(
u(r),u

(
μ(r)

))∇r
)

∇s

= T�q

(∫
Y
a(r)f

(
u(r),ϕ

(
μ(r)

))∇r +
∫
Y
a(r)f

(
u(r),u

(
μ(r)

))∇r
)

≤ T�q

(∫ T


a(r)∇r

)
d
ρ

=
d

B + T

≤ d.

Therefore F(u) ∈ P(γ ,d), i.e., F : P(γ ,d) → P(γ ,d).
Secondly, we assert that {u ∈ P(γ , θ ,α,b, c,d) : α(u) > b} 	= φ and α(Fu) > b for u ∈

P(γ , θ ,α,b, c,d).
Let u(t) = kb with k = ρ

δ
> , then u(t) = kb > b and θ (u) =  < b. Furthermore, by ρb < δd

we have γ (u) ≤ d. Let c = kb, then {u ∈ P(γ , θ ,α,b, c,d) : α(u) > b} 	= φ.
Moreover, ∀u ∈ P(γ , θ ,α,b,kb,d), we have b ≤ u(t) ≤ d, t ∈ [,η]T.
From (H), we see that

α(Fu) = (Fu)(η)

=
∫ T


(T – s)�q

(∫ s


a(r)f

(
u(r),u

(
μ(r)

))∇r
)

∇s
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– B

(∫ η


�q

(∫ s


–a(r)f

(
u(r),u

(
μ(r)

))∇r
)

∇s
)

+
∫ η


(t – s)�q

(∫ s


–a(r)f

(
u(r),u

(
μ(r)

))∇r
)

∇s

≥ –B

(∫ η


�q

(∫ s


–a(r)f

(
u(r),u

(
μ(r)

))∇r
)

∇s
)

≥ A
(∫ η


�q

(∫ s


a(r)f

(
u(r),u

(
μ(r)

))∇r
)

∇s
)

≥ A
(∫

Y
�q

(∫ s


a(r)f

(
u(r),ϕ

(
μ(r)

))∇r
)

∇s
)

> A
∫
Y

�q

(∫ s


a(r)∇s

)
∇s

b
δ

= b,

as required.
Thirdly, we assert that α(Fu) > b for u ∈ P(γ ,α,b,d) with θ (Fu) > c.
∀u ∈ P(γ ,α,b,d) with θ (Fu) > kb, from Lemma . we have

θ (Fu) =
∣∣(Fu)�(l)∣∣

=
∫ l


�q

(∫ s


a(r)f

(
u(r),u

(
μ(r)

))∇r
)

∇s > kb.

So,

α(Fu) = (Fu)(η)

=
∫ T


(T – s)�q

(∫ s


a(r)f

(
u(r),u

(
μ(r)

))∇r
)

∇s

– B

(∫ η


�q

(∫ s


–a(r)f

(
u(r),u

(
μ(r)

))∇r
)

∇s
)

+
∫ η


(t – s)�q

(∫ s


–a(r)f

(
u(r),u

(
μ(r)

))∇r
)

∇s

≥ –B

(∫ η


�q

(∫ s


–a(r)f

(
u(r),u

(
μ(r)

))∇r
)

∇s
)

≥ A
(∫ η


�q

(∫ s


a(r)f

(
u(r),u

(
μ(r)

))∇r
)

∇s
)

≥ A
(∫ l


�q

(∫ s


a(r)f

(
u(r),u

(
μ(r)

))∇r
)

∇s
)

> Akb = A
ρ

δ
b ≥ (A + T)b > b.

This implies that α(Fu) > b for u ∈ P(γ ,α,b,d) with θ (Fu) > c.
Finally, we assert that  /∈ R(γ ,ψ ,a,d) and ψ(Fu) < a for u ∈ R(γ ,ψ ,a,d) with ψ(u) = a.
Asψ() =  < a, we have  /∈ R(γ ,ψ ,a,d). ∀u ∈ R(γ ,ψ ,a,d) withψ(u) =mint∈[,η]T u(t) =

u(η) = a, by Lemma . we have ≤ u(t) ≤ T
T–η

a for t ∈ [,T]T.
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From (H), we have

ψ(Fu) = (Fu)(η)

=
∫ T


(T – s)�q

(∫ s


a(r)f

(
u(r),u

(
μ(r)

))∇r
)

∇s

– B

(∫ η


�q

(∫ s


–a(r)f

(
u(r),u

(
μ(r)

))∇r
)

∇s
)

+
∫ η


(t – s)�q

(∫ s


–a(r)f

(
u(r),u

(
μ(r)

))∇r
)

∇s

<
∫ T


T�q

(∫ T


a(r)f

(
u(r),u

(
μ(r)

))∇r
)

∇s

+ B
∫ T


�q

(∫ T


a(r)f

(
u(r),u

(
μ(r)

))∇r
)

∇s

+
∫ T


η�q

(∫ T


a(r)f

(
u(r),u

(
μ(r)

))∇r
)

∇s

= T(B + T + η)�q

(∫
Y
a(r)f

(
u(r),ϕ

(
μ(r)

))∇r +
∫
Y
a(r)f

(
u(r),u

(
μ(r)

))∇r
)

≤ T(B + T + η)�q

(∫ T


a(r)∇r

)
a
λ

= a,

which shows that condition (iii) of Theorem . is fulfilled.
Thus, all the conditions of Theorem . are satisfied. Hence, F has at least three fixed

points u, u, u satisfying

γ (ui) ≤ d for i = , , ,b < α(u),a < ψ(u) with α(u) < b and ψ(u) < a.

Let

u(t) =

⎧⎨
⎩
ui(t), t ∈ [,T]T, i = , , ,

ϕ(t), t ∈ [–r, ]T,

which are three positive solutions of BVP (.) �
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