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Abstract
We establish the existence, uniqueness, and global behavior of a positive solution for
the following superlinear fractional boundary value problem: Dαu(x) = u(x)ϕ(x,u(x)),
x ∈ (0, 1), limx→0+ Dα–1u(x) = –a, u(1) = b, where 1 < α ≤ 2, Dα is the standard
Riemann-Liouville fractional derivative, a, b are nonnegative constants such that
a + b > 0 and ϕ(x, t) is a nonnegative continuous function in (0, 1)× [0,∞) that is
required to satisfy some appropriate conditions related to a certain class of
functionsKα . Our approach is based on estimates of the Green’s function and on
perturbation arguments.
MSC: 34A08; 34B18; 34B27
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1 Introduction
Fractional differential equations are gaining much importance and attention since they
can be applied in various fields of science and engineering.Many phenomena in viscoelas-
ticity, electrochemistry, control, porous media, electromagnetic, etc., can be modeled by
fractional differential equations. They also serve as an excellent tool for the description
of hereditary properties of various materials and processes. We refer the reader to [–]
and references therein for details.
In [], the authors considered the following fractional boundary value problem:{

–Dαu(x) + q(x)u(x) = w(x)f (x,u(x)), x ∈ (, ),
u() = u() = ,

(.)

where  < α <  and q is a continuous function on [, ].
Using spectral theory, they derived the Green’s function for the following problem:{

–Dαu(x) + q(x)u(x) = , x ∈ (, ),
u() = u() = ,

(.)

where the function q is required to satisfy the following growth condition: there exists
c >  such that for each x ∈ [, ], we have

∣∣q(x)∣∣ ≤ c < α–�(α), (.)

where � is the Euler gamma function.
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Exploiting this result, they proved the existence and uniqueness of a solution to problem
(.), where the function w is required to be integrable on [, ] and f is continuous on
[, ]×R and Lipschitz with respect to the second variable.
Motivated by the above mentioned work, we study in this paper the existence, unique-

ness, and global behavior of a positive continuous solution for the following superlinear
fractional boundary value problem:

{
Dαu(x) = u(x)ϕ(x,u(x)), x ∈ (, ),
limx→+ Dα–u(x) = –a, u() = b,

(.)

where  < α ≤ , a, b are nonnegative constants such that a + b >  and ϕ(x, t) is a non-
negative continuous function in (, )× [,∞) that is required to satisfy some appropriate
conditions related to the following class Kα .

Definition . Let  < α ≤ . A Borel measurable function q in (, ) belongs to the class
Kα if q satisfies the following condition:

∫ 


rα–( – r)α–

∣∣q(r)∣∣dr < ∞. (.)

More precisely, we will first prove that if q is a nonnegative sufficiently small function in
Kα ∩ (C(, )) and f is positive, then the following problem:

{
–Dαu(x) + q(x)u(x) = f (x),
limx→+ Dα–u(x) = , u() = ,

(.)

has a positive solution. It turns out to prove that problem (.) admits a positive Green’s
function. Here the function q may be singular at x =  and x =  and therefore does not
need to satisfy condition (.).
Based on the construction of thisGreen’s function and by using perturbation arguments,

we will answer the questions of existence, uniqueness and global behavior of a positive
solution u in C–α([, ]) to problem (.), where C–α([, ]) is the set of all functions f
such that x → x–αf (x) is continuous on [, ].
Throughout this paper, we let

h(x) =


�(α)
xα–( – x) and h(x) = xα–, x ∈ (, ]. (.)

Also we shall often refer to ω(x) := ah(x) + bh(x), the unique solution of the problem

{
Dαu(x) = , x ∈ (, ),
limx→+ Dα–u(x) = –a, u() = b.

(.)

We denote by G(x, t) the Green’s function of the operator u → –Dαu, with boundary con-
ditions limx→+ Dα–u(x) = u() = , which can be explicitly given by

G(x, t) =


�(α)
[
xα–( – t)α– –

(
(x – t)+

)α–], (.)

where x+ =max(x, ).
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The outline of the paper is as follows. In Section , we give some sharp estimates on the
Green’s function G(x, t), including the following inequality: for each x, r, t ∈ (, ),

G(x, r)G(r, t)
G(x, t)

≤ 
(α – )�(α)

ρ(r), (.)

where ρ(r) := rα–( – r)α–.
In particular, we deduce from this inequality that for each q ∈Kα ,

αq := sup
x,t∈(,)

∫ 



G(x, r)G(r, t)
G(x, t)

∣∣q(r)∣∣dr < ∞. (.)

In Section , our purpose is to study the superlinear fractional boundary value problem
(.). To this end, as we have mentioned above, we will exploit the inequality (.) to
prove that the inverse of fractional operators that are perturbed by a zero-order term, are
positivity preserving. That is, if the function q is nonnegative and belongs to the class
Kα ∩ (C(, )) with αq ≤ 

 , then problem (.) has a positive solution.
We require a combination of the following assumptions on the term ϕ.

(H) ϕ is a nonnegative continuous function in (, )× [,∞).
(H) There exists a nonnegative function q ∈ Kα ∩ C(, ) with αq ≤ 

 such that for each
x ∈ (, ), the map t → t(q(x) – ϕ(x, tω(x))) is nondecreasing on [, ].

(H) For each x ∈ (, ), the function t → tϕ(x, t) is nondecreasing on [,∞).

Our main results are the following.

Theorem. Assume (H)-(H), then problem (.) has a positive solution u in C–α([, ])
satisfying

cω(x) ≤ u(x) ≤ ω(x), (.)

where c is a constant in (, ).
Moreover, if hypothesis (H) is also satisfied, then the solution u to problem (.) satisfying

(.) is unique.

Corollary . Let f be a nonnegative function in C([,∞)) such that the map t → θ (t) =
tf (t) is nondecreasing on [,∞). Let p be a nonnegative continuous function on (, ) such
that the function x → p(x)max≤ξ≤ω(x) θ

′(ξ ) belongs to the class Kα . Then for sufficiently
small positive constant λ, the following problem:

{
Dαu(x) = λp(x)u(x)f (u(x)), x ∈ (, ),
limx→+ Dα–u(x) = –a, u() = b,

(.)

has a unique positive solution u in C–α([, ]) satisfying

cω(x) ≤ u(x) ≤ ω(x),

where c is a constant in (, ).
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Observe that in Theorem . we obtain a positive u inC–α([, ]) to problem (.) which
its behavior is not affected by the perturbed term. That is, it behaves like the solution ω

of the homogeneous problem (.). Also note that for  < α < , the solution u blows up at
x = .
As typical example of nonlinearity satisfying (H)-(H), we quote

ϕ(x, t) = λp(x)tσ , for σ ≥ , λ is a positive constant sufficiently small and p is a positive
continuous function on (, ) such that

∫ 


r(α–)(+σ )( – r)α–p(r)dr < ∞.

In order to simplify our statements, we introduce some convenient notations.
• B((, )) denotes the set of Borel measurable functions in (, ) and B+((, )) the set
of nonnegative ones.

• For f ∈ B+((, )) and x ∈ (, ], we put

Vf (x) :=
∫ 


G(x, t)f (t)dt.

• For q ∈ B+((, )), the kernel V (q·) is defined on B+((, )) by

V (q·)(f ) = V (qf ).

2 Fractional calculus and estimates on the Green’s function
For the convenience of the reader, we recall in this section some basic definitions on frac-
tional calculus (see [, , ]) and we give some properties of the Green’s functionG(x, t).

Definition . The Riemann-Liouville fractional integral of order β >  of a function h :
(, ]→R is given by

Iβh(x) =


�(β)

∫ x


(x – t)β–h(t)dt,

provided that the right-hand side is pointwise defined on (, ].

Definition . The Riemann-Liouville fractional derivative of order β >  of a function
h : (, ] →R is given by

Dβh(x) =


�(n – β)

(
d
dx

)n ∫ x


(x – t)n–β–h(t)dt,

provided that the right-hand side is pointwise defined on (, ].
Here n = [β] +  and [β] means the integer part of the number β .

So we have the following properties (see [, , ]).

Proposition .
(i) Let β >  and let v ∈ L(, ), then we have

Dβ Iβv(x) = v(x), for a.e. x ∈ [, ].

http://www.advancesindifferenceequations.com/content/2014/1/240
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(ii) Let β > , then

Dβv(x) =  if and only if v(x) =
m∑
j=

cjxβ–j,

where m is the smallest integer greater than or equal to β and (c, c, . . . , cm) ∈ R
m.

Next we give sharp estimates on the Green’s function G(x, t). To this end, we need the
following lemma.

Lemma . For λ,μ ∈ (,∞), and a, t ∈ [, ], we have

min

(
,

μ

λ

)(
 – atλ

) ≤  – atμ ≤max

(
,

μ

λ

)(
 – atλ

)
.

Proposition . (see []) For (x, t) ∈ (, ]× [, ], we have

α – 
�(α)

xα–( – t)α–
(
 –max(x, t)

)

≤G(x, t) ≤ 
�(α)

xα–( – t)α–
(
 –max(x, t)

)
. (.)

In particular

α – 
�(α)

xα–( – x)( – t)α– ≤G(x, t)≤ 
�(α)

xα–( – t)α–min( – t,  – x). (.)

Proof From the explicit expression of the Green’s function (.), we have for x, t ∈ (, )

G(x, t) =
xα–( – t)α–

�(α)

[
 – x

(
(x – t)+

x( – t)

)α–]
.

Since (x–t)+
x(–t) ∈ (, ] for t ∈ [, ), the required result follows from Lemma . with μ = α–

and λ = .
Inequality (.) follows from the fact that for (x, t) ∈ (, ]× [, ],

( – x)( – t) ≤ (
 –max(x, t)

)
=min( – t,  – x). �

Using (.), we deduce the following.

Corollary . Let f ∈ B+((, )), then the function x → Vf (x) is in C–α([, ]) if and only
if the integral

∫ 
 ( – t)α–f (t)dt converges.

Remark . (see []) Let  < α ≤  and f ∈ B+((, )) such that the function t → ( –
t)α–f (t) is continuous and integrable on (, ), thenVf is the unique solution inC–α([, ])
of

{
Dαu(x) = –f (x), x ∈ (, ),
limx→+ Dα–u(x) = , u() = .
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Proposition . For each x, r, t ∈ (, ), we have

G(x, r)G(r, t)
G(x, t)

≤ 
(α – )�(α)

ρ(r), (.)

where ρ(r) = rα–( – r)α–.

Proof Using (.), for each x, r, t ∈ (, ), we have

G(x, r)G(r, t)
G(x, t)

≤ rα–( – r)α–

(α – )�(α)
( –max(x, r))( –max(r, t))

( –max(x, t))
. (.)

We claim that

( –max(x, r))( –max(r, t))
( –max(x, t))

≤  – r. (.)

Indeed, by symmetry, we may assume that x ≤ t. So we have the following three cases.
Case : r ≤ x≤ t.
In this case, we have

( – x)( – t)
( – t)

=  – x≤  – r.

Case : x ≤ r ≤ t.
We obtain

( – r)( – t)
( – t)

=  – r.

Case : x≤ t ≤ r.
We have

( – r)( – r)
( – t)

≤  – r.

This proves (.) and by using (.) we obtain the required result. �

In the sequel, for any q ∈ B((, )), we recall that

αq := sup
x,t∈(,)

∫ 



G(x, r)G(r, t)
G(x, t)

∣∣q(r)∣∣dr
and

h(x) =


�(α)
xα–( – x) and h(x) = xα–, x ∈ (, ]. (.)

Proposition . Let q be a function in Kα , then:
(i)

αq ≤ 
(α – )�(α)

∫ 


ρ(r)

∣∣q(r)∣∣dr <∞. (.)

http://www.advancesindifferenceequations.com/content/2014/1/240
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(ii) For x ∈ (, ], we have

∫ 


G(x, t)h(t)

∣∣q(t)∣∣dt ≤ αqh(x). (.)

(iii) For x ∈ (, ], we have

∫ 


G(x, t)h(t)

∣∣q(t)∣∣dt ≤ αqh(x). (.)

In particular for x ∈ (, ], we have

∫ 


G(x, t)ω(t)

∣∣q(t)∣∣dt ≤ αqω(x). (.)

Proof Let q be a function in Kα .
(i) The inequality (.) follows from (.).
(ii) Since for each x, t ∈ (, ), we have limr→

G(t,r)
G(x,r) =

h(t)
h(x)

, then we deduce by Fatou’s
lemma and (.) that

∫ 


G(x, t)

h(t)
h(x)

∣∣q(t)∣∣dt ≤ lim inf
r→

∫ 


G(x, t)

G(t, r)
G(x, r)

∣∣q(t)∣∣dt ≤ αq,

which implies that for x ∈ (, ],

∫ 


G(x, t)h(t)

∣∣q(t)∣∣dt ≤ αqh(x).

(iii) Similarly, we prove inequality (.) by observing that limr→
G(t,r)
G(x,r) =

h(t)
h(x)

.
Inequality (.) follows from (.), (.), and the fact that ω(x) = ah(x) + bh(x).
This completes the proof. �

3 Proofs of main results
In this section, we aim at proving Theorem . and Corollary .. To this end, we need the
following preliminary results.
For a nonnegative function q in Kα such that αq < , we define the function G(x, t) on

(, ]× [, ], by

G(x, t) =
∞∑
n=

(–)nGn(x, t), (.)

where G(x, t) =G(x, t) and

Gn(x, t) =
∫ 


G(x, r)Gn–(r, t)q(r)dr, n≥ . (.)

Next, we establish some inequalities onGn(x, t). In particular, we deduce that G(x, t) is well
defined.

Lemma . Let q be a nonnegative function in Kα such that αq < , then for each n ≥ 
and (x, t) ∈ (, ]× [, ], we have:

http://www.advancesindifferenceequations.com/content/2014/1/240
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(i) Gn(x, t)≤ αn
qG(x, t).

In particular, G(x, t) is well defined in (, ]× [, ].
(ii)

Lnxα–( – x)( – t)α– ≤Gn(x, t)≤ Rnxα–( – t)α–min( – t,  – x), (.)

where Ln = (α–)n+
(�(α))n+ (

∫ 
 r

α–( – r)αq(r)dr)n and

Rn = 
(�(α))n+ (

∫ 
 r

α–( – r)α–q(r)dr)n.
(iii) Gn+(x, t) =

∫ 
 Gn(x, r)G(r, t)q(r)dr.

(iv)
∫ 
 G(x, r)G(r, t)q(r)dr =

∫ 
 G(x, r)G(r, t)q(r)dr.

Proof (i) The assertion is clear for n = .
Assume that inequality in (i) holds for some n ≥ , then by using (.) and (.), we

obtain

Gn+(x, t)≤ αn
q

∫ 


G(x, r)G(r, t)q(r)dr ≤ αn+

q G(x, t).

Now, since Gn(x, t)≤ αn
qG(x, t), it follows that G(x, t) is well defined in (, ]× [, ].

(ii) Using (.) and (.), we obtain (.) by simple induction.
(iii) The equality is clear for n = .
Assume that for a given integer n≥  and (x, t) ∈ (, ]× [, ], we have

Gn(x, t) =
∫ 


Gn–(x, r)G(r, t)q(r)dr. (.)

Using (.) and Fubini-Tonelli’s theorem, we obtain

Gn+(x, t) =
∫ 


G(x, r)

(∫ 


Gn–(r, ξ )G(ξ , t)q(ξ )dξ

)
q(r)dr

=
∫ 



(∫ 


G(x, r)Gn–(r, ξ )q(r)dr

)
G(ξ , t)q(ξ )dξ

=
∫ 


Gn(x, ξ )G(ξ , t)q(ξ )dξ .

(iv) Let n≥  and x, r, t ∈ (, ]. By Lemma .(i) and (.), we have

 ≤Gn(x, r)G(r, t)q(r)≤ αn
qG(x, r)G(r, t)q(r).

Hence the series
∑

n≥
∫ 
 Gn(x, r)G(r, t)q(r)dr converges.

So we deduce by the dominated convergence theorem and Lemma .(iii) that

∫ 


G(x, r)G(r, t)q(r)dr =

∞∑
n=

∫ 


(–)nGn(x, r)G(r, t)q(r)dr

=
∞∑
n=

∫ 


(–)nG(x, r)Gn(r, t)q(r)dr

=
∫ 


G(x, r)G(r, t)q(r)dr. �

http://www.advancesindifferenceequations.com/content/2014/1/240
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Proposition . Let q be a nonnegative function inKα such that αq < . Then the function
(x, t)→ x–αG(x, t) is continuous on [, ]× [, ].

Proof First, we claim that for n ≥ , the function (x, t) → x–αGn(x, t) is continuous on
[, ]× [, ].
The assertion is clear for n = .
Assume that for a given integer n ≥ , the function (x, t) → x–αGn–(x, t) is continuous

on [, ]× [, ]. By (.), we have

x–αGn(x, t) =
∫ 


x–αG(x, r)Gn–(r, t)q(r)dr. (.)

Note that for each r ∈ (, ), the function (x, t) → x–αG(x, r)Gn–(r, t) is continuous on
[, ]× [, ].
On the other hand, by Lemma .(i) and (.), we have for each (x, t, r) ∈ [, ]× [, ]×

(, ),

x–αG(x, r)Gn–(r, t)q(r) ≤ αn–
q x–αG(x, r)G(r, t)q(r)

≤ 
(�(α))

rα–( – r)α–q(r).

So we deduce by (.) and the dominated convergence theorem that the function (x, t)→
x–αGn(x, t) is continuous on [, ]× [, ]. This proves our claim.
Now by using again Lemma .(i) and (.), we have for each x, t ∈ [, ],

x–αGn(x, t)≤ αn
qx

–αG(x, t) ≤ 
�(α)

αn
q .

This implies that the series
∑

n≥(–)nx–αGn(x, t) is uniformly convergent on [, ]× [, ]
and therefore the function (x, t)→ x–αG(x, t) is continuous on [, ]× [, ]. The proof is
completed. �

Lemma. Let q be a nonnegative function inKα such thatαq ≤ 
 .Then for (x, t) ∈ (, ]×

[, ], we have

( – αq)G(x, t)≤ G(x, t)≤G(x, t). (.)

Proof Since αq ≤ 
 , we deduce from Lemma .(i) that

∣∣G(x, t)∣∣ ≤
∞∑
n=

(αq)nG(x, t) =


 – αq
G(x, t). (.)

On the other hand, from the expression of G , we have

G(x, t) =G(x, t) –
∞∑
n=

(–)nGn+(x, t). (.)

http://www.advancesindifferenceequations.com/content/2014/1/240
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Since the series
∑

n≥
∫ 
 G(x, r)Gn(r, t)q(r)dr is convergent, we deduce by (.) and (.)

that

G(x, t) = G(x, t) –
∞∑
n=

(–)n
∫ 


G(x, r)Gn(r, t)q(r)dr

= G(x, t) –
∫ 


G(x, r)

( ∞∑
n=

(–)nGn(r, t)

)
q(r)dr.

That is

G(x, t) =G(x, t) –V
(
qG(·, t))(x). (.)

Now from (.) and Lemma .(i) (with n = ), we obtain

V
(
qG(·, t))(x) ≤ 

 – αq
V

(
qG(·, t))(x)

=


 – αq
G(x, t)≤ αq

 – αq
G(x, t). (.)

This implies by (.) that

G(x, t)≥G(x, t) –
αq

 – αq
G(x, t) =

 – αq

 – αq
G(x, t)≥ .

So it follows that G(x, t) ≤G(x, t) and by (.) and Lemma . (i) (with n = ), we have

G(x, t)≥G(x, t) –V
(
qG(·, t))(x)≥ ( – αq)G(x, t). �

In the sequel, for a given nonnegative function q ∈ Kα such that αq ≤ 
 , we define the

operator Vq on B+((, )) by

Vqf (x) =
∫ 


G(x, t)f (t)dt, x ∈ (, ].

Using Proposition ., (.), and (.), we obtain the following.

Corollary . Let q be a nonnegative function in Kα such that αq ≤ 
 and f ∈ B+((, )),

then the following statements are equivalent:
(i) The function x → Vqf (x) is in C–α([, ]).
(ii) The integral

∫ 
 ( – t)α–f (t)dt converges.

Next, we will prove that the kernel Vq satisfies the following resolvent equation.

Lemma. Let q be a nonnegative function inKα such that αq ≤ 
 and f ∈ B+((, )), then

Vqf satisfies the following resolvent equation:

Vf = Vqf +Vq(qVf ) = Vqf +V (qVqf ). (.)

http://www.advancesindifferenceequations.com/content/2014/1/240
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In particular, if V (qf ) < ∞, we have

(
I –Vq(q·)

)(
I +V (q·))f = (

I +V (q·))(I –Vq(q·)
)
f = f . (.)

Proof Let (x, t) ∈ (, ]× [, ], then by (.), we have

G(x, t) = G(x, t) +V
(
qG(·, t))(x),

which implies by the Fubini-Tonelli theorem that for f ∈ B+((, )),

Vf (x) =
∫ 



(
G(x, t) +V

(
qG(·, t))(x))f (t)dt

= Vqf (x) +V (qVqf )(x).

On the other hand, by Lemma .(iii) and the Fubini-Tonelli theorem, we obtain for f ∈
B+((, )) and x ∈ (, ]

∫ 



∫ 


G(x, r)G(r, t)q(r)f (t)dr dt =

∫ 



∫ 


G(x, r)G(r, t)q(r)f (t)dr dt,

that is,

Vq(qVf )(x) = V (qVqf )(x).

So we obtain

Vf = Vqf +V (qVqf ) = Vqf +Vq(qVf )(x).

This completes the proof. �

Proposition . Let q be a nonnegative function in Kα ∩ C(, ) such that αq ≤ 
 and

f ∈ B+((, )) such that t → ( – t)α–f (t) is continuous and integrable on (, ). Then Vqf
is the unique nonnegative solution in C–α([, ]) of the perturbed fractional problem (.)
satisfying

( – αq)Vf ≤ Vqf ≤ Vf . (.)

Proof Since by Corollary . the function x → Vqf (x) is in C–α([, ]), it follows that the
function x→ q(x)Vqf (x) is continuous on (, ).
Using (.) and (.), there exists a nonnegative constant c such that

Vqf (x)≤ Vf (x)≤ 
�(α)

∫ 


xα–( – t)α–f (t)dt ≤ cxα– = ch(x). (.)

So we deduce that

∫ 


( – t)α–q(t)Vqf (t)dt ≤ c

∫ 


tα–( – t)α–q(t)dt < ∞.
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Hence by using Remark ., the function u = Vqf = Vf –V (qVqf ) satisfies the equation

{
Dαu(x) = –f (x) + q(x)u(x), x ∈ (, ),
limx→+ Dα–u(x) = , u() = .

and by the integration inequalities (.), we obtain (.).
It remains to prove the uniqueness. Assume that v is another nonnegative solution in

C–α([, ]) of problem (.) satisfying (.).
Since the function t → q(t)v(t) is continuous on (, ) and by (.), (.), the function

t → ( – t)α–q(t)v(t) is integrable on (, ), it follows by Remark . that the function ṽ :=
v +V (qv) satisfies

{
Dα ṽ(x) = –f (x), x ∈ (, ),
limx→+ Dα–ṽ(x) = , ṽ() = .

From the uniqueness in Remark ., we deduce that

ṽ := v +V (qv) = Vf .

Hence

(
I +V (q·))(v – u) = .

Now since by (.), (.), and (.), we have

V
(
q|v – u|) ≤ cV (qh)≤ cαqh < ∞,

then by (.), we deduce that u = v. This completes the proof. �

Proof of Theorem . Let a≥  and b≥  with a + b >  and recall that

ω(x) =
a

�(α)
xα–( – x) + bxα– = ah(x) + bh(x).

Since ϕ satisfies (H), there exists a positive function q in Kα ∩ C(, ) such that αq ≤ 


and for each x ∈ (, ), the map t → t(q(x) – ϕ(x, tω(x))) is nondecreasing on [, ].
Let

� :=
{
u ∈ B+((, )) : ( – αq)ω ≤ u≤ ω

}
and define the operator T on � by

Tu = ω –Vq(qω) +Vq
((
q – ϕ(·,u))u)

.

By (.) and (.), we have

Vq(qω) ≤ V (qω) ≤ αqω ≤ ω (.)

http://www.advancesindifferenceequations.com/content/2014/1/240
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and by (H), we obtain

 ≤ ϕ(·,u) ≤ q, for all u ∈ �. (.)

So we claim that � is invariant under T . Indeed, using (.) and (.), we have for u ∈ �

Tu ≤ ω –Vq(qω) +Vq(qu) ≤ ω

and

Tu ≥ ω –Vq(qω)

≥ ( – αq)ω.

Next, we will prove that the operator T is nondecreasing on�. Indeed, let u, v ∈ � be such
that u≤ v. Since the map t → t(q(x) – ϕ(x, tω(x))) is nondecreasing on [, ], for x ∈ (, ),
we obtain

Tv – Tu = Vq
([
v
(
q – ϕ(·, v)) – u

(
q – ϕ(·,u))]) ≥ .

Now, we consider the sequence {un} defined by u = ( – αq)ω and un+ = Tun, for n ∈ N.
Since � is invariant under T , we have u = Tu ≥ u and by the monotonicity of T , we
deduce that

( – αq)ω = u ≤ u ≤ · · · ≤ un ≤ un+ ≤ ω.

Hence by the dominated convergence theorem and (H)-(H), we conclude that the se-
quence {un} converges to a function u ∈ � satisfying

u =
(
I –Vq(q·)

)
ω +Vq

((
q – ϕ(·,u))u)

.

That is,

(
I –Vq(q·)

)
u =

(
I –Vq(q·)

)
ω –Vq

(
uϕ(·,u)).

On the other hand, since by (.), we have V (qu) ≤ V (qω) ≤ ω < ∞, then by applying
the operator (I +V (q·)) on both sides of the above equality and using (.) and (.), we
conclude that u satisfies

u = ω –V
(
uϕ(·,u)). (.)

It remains to prove that u is the required solution.
To this end, we remark by (.) that

u(t)ϕ
(
t,u(t)

) ≤ q(t)ω(t)≤max

(
a

�(α)
,b

)
tα–q(t). (.)

http://www.advancesindifferenceequations.com/content/2014/1/240
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This implies by Corollary . that the function x → V (uϕ(·,u))(x) is in C–α([, ]) and so
by (.), u is in C–α([, ]).
Now, since by (H) and (.), the function t → ( – t)α–u(t)ϕ(t,u(t)) is continuous and

integrable on (, ), we conclude by Remark . that u is the required solution.
It remains to prove that under condition (H), u is the unique solution to problem (.)

satisfying (.). Assume that v is another nonnegative solution in C–α([, ]) to problem
(.) satisfying (.). Since v ≤ ω, we deduce by (.) that

 ≤ v(t)ϕ
(
t, v(t)

) ≤ q(t)ω(t)≤max

(
a

�(α)
,b

)
tα–q(t).

So the function t → ( – t)α–v(t)ϕ(t, v(t)) is continuous and integrable on (, ) and by
Remark ., we conclude that the function ṽ := v +V (vϕ(·, v)) satisfies

{
Dα ṽ(x) = , x ∈ (, ),
limx→+ Dα–ṽ(x) = –a, ṽ() = b.

From the uniqueness in problem (.), we deduce that

v = ω –V
(
vϕ(·, v)). (.)

Now let h be the function defined on (, ) by

h(x) =

{
v(x)ϕ(x,v(x))–u(x)ϕ(x,u(x))

v(x)–u(x) if v(x) 	= u(x),
 if v(x) = u(x).

Then by (H), h ∈ B+((, )) and by (.) and (.), we have

(
I +V (h·))(v – u) = .

On the other hand, by (H), we remark that h≤ q and by (.) we deduce that

V
(
h|v – u|) ≤ V (qh) ≤ αqh < ∞.

Hence by (.), we conclude that u = v. This completes the proof. �

Proof of Corollary . Let ϕ(x, t) = λp(x)f (t) and θ (t) = tf (t). It is clear that hypotheses (H)
and (H) are satisfied. Since the function q(x) := λp(x)max≤ξ≤ω(x) θ

′(ξ ) belongs to the class
Kα , we have αq ≤ 

 for λ sufficiently small. Moreover, by a simple computation, we obtain
d
dt [t(q(x) – ϕ(x, tω(x)))] = q(x) – λp(x)θ ′(tω(x))≥  for t ∈ [, ] and x ∈ (, ). This implies
that the function ϕ satisfies hypothesis (H). So the result follows by Theorem .. �

Example . Let  < α ≤  and a ≥ , b ≥  with a + b > . Let σ ≥ , and p be a positive
continuous function on (, ) such that

∫ 


r(α–)(+σ )( – r)α–p(r)dr <∞.

http://www.advancesindifferenceequations.com/content/2014/1/240
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Then for sufficiently small positive constant λ, the following problem:

{
Dαu(x) = λp(x)uσ+(x), x ∈ (, ),
limx→+ Dα–u(x) = –a, u() = b,

has a unique positive solution u in C–α([, ]) satisfying

cω(x) ≤ u(x) ≤ ω(x).

Example . Let  < α ≤  and a ≥ , b ≥  with a + b > . Let σ ≥ , γ >  and p be a
positive continuous function on (, ) such that

∫ 


r(α–)(+σ+γ )( – r)α–p(r)dr < ∞.

Then for sufficiently small positive constant λ, the following problem:

{
Dαu(x) = λp(x)uσ+(x) log( + uγ (x)), x ∈ (, ),
limx→+ Dα–u(x) = –a, u() = b,

has a unique positive solution u in C–α([, ]) satisfying

cω(x) ≤ u(x) ≤ ω(x).
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