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Abstract
In this paper, by considering Barnes’ multiple Bernoulli polynomials as well as
generalized Barnes’ multiple Frobenius-Euler polynomials, we define and investigate
the mixed-type polynomials of these polynomials. From the properties of Sheffer
sequences of these polynomials arising from umbral calculus, we derive new and
interesting identities.
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1 Introduction
In this paper, we consider the polynomials

BHn(x) = BHn(x|a;b;λ;μ) = BHn(x|a, . . . ,ar ;b, . . . ,bs;λ, . . . ,λs;μ, . . . ,μs)

called Barnes’ multiple Bernoulli and generalized Barnes’ multiple Frobenius-Euler
mixed-type polynomials, whose generating function is given by
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where a, . . . ,ar ,b, . . . ,bs,λ, . . . ,λs,μ, . . . ,μs ∈ C with a, . . . ,ar ,b, . . . ,bs �= , λ, . . . ,λs �=
. When x = ,

BHn = BHn() = BHn(;a, . . . ,ar ;b, . . . ,bs;λ, . . . ,λr ;μ, . . . ,μr)

are called Barnes’ multiple Bernoulli and generalized Barnes’ multiple Frobenius-Euler
mixed-type numbers.
Recall that Barnes’ multiple Bernoulli polynomials, denoted by Bn(x|a, . . . ,ar), are given

by the generating function as

r∏
i=

(
t

eait – 

)
ext =

∞∑
n=

Bn(x|a, . . . ,ar) t
n

n!
, ()

©2014 Kim et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

http://www.advancesindifferenceequations.com/content/2014/1/238
mailto:tkkim@kw.ac.kr
http://creativecommons.org/licenses/by/2.0


Kim et al. Advances in Difference Equations 2014, 2014:238 Page 2 of 16
http://www.advancesindifferenceequations.com/content/2014/1/238

where a, . . . ,ar �=  [, ]. In addition, the generalized Barnes’ multiple Frobenius-Euler
polynomials, denoted by Hn(x|b;λ;μ) = Hn(x|b, . . . ,bs;λ, . . . ,λs;μ, . . . ,μs), are given by
the generating function as

s∏
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ext =
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Hn(x|b;λ;μ) t
n
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()

(see e.g. [–]). If μ = · · · = μs = , then

Hn(x|b, . . . ,bs;λ, . . . ,λs) =Hn(x|b, . . . ,bs;λ, . . . ,λs; , . . . , )

are called Barnes-type Frobenius-Euler polynomials. If further λ = · · · = λs = λ and b =
· · · = bs = , then H (s)

n (x|λ) =Hn(x|, . . . , ;λ, . . . ,λ; , . . . , ) are called Frobenius-Euler poly-
nomials of order s (see e.g. [, ]). If λ = · · · = λs = –, then En(x|b, . . . ,bs;μ, . . . ,μs) =
Hn(x|b, . . . ,bs; , . . . , ;μ, . . . ,μs) are called generalized Barnes-type Euler polynomials.
These polynomials arise naturally in connectionwith the study of Barnes-type Peters poly-
nomials. Peters polynomials were mentioned in [, p.] and were investigated in e.g.
[].
In this paper, by considering Barnes’ multiple Bernoulli polynomials as well as general-

ized Barnes’ multiple Frobenius-Euler polynomials, we define and investigate the mixed-
type polynomials of these polynomials. From the properties of Sheffer sequences of these
polynomials arising from umbral calculus, we derive new and interesting identities.

2 Umbral calculus
Let C be a complex number field and let F be the set of all formal power series in the
variable t:

F =

{
f (t) =

∞∑
k=

ak
k!
tk

∣∣∣∣ak ∈C

}
. ()

Let P = C[x] and let P∗ be the vector space of all linear functionals on P. 〈L|p(x)〉 is the
action of the linear functional L on the polynomial p(x), and we recall that the vector space
operations on P

∗ are defined by 〈L +M|p(x)〉 = 〈L|p(x)〉 + 〈M|p(x)〉, 〈cL|p(x)〉 = c〈L|p(x)〉,
where c is a complex constant in C. For f (t) ∈ F , let us define the linear functional on P

by setting

〈
f (t)|xn〉 = an (n≥ ). ()

In particular,

〈
tk|xn〉 = n!δn,k (n,k ≥ ), ()

where δn,k is the Kronecker symbol.
For fL(t) =

∑∞
k=

〈L|xk 〉
k! tk , we have 〈fL(t)|xn〉 = 〈L|xn〉. That is, L = fL(t). The map L 	→ fL(t)

is a vector space isomorphism from P
∗ onto F . Henceforth, F denotes both the algebra

of formal power series in t and the vector space of all linear functionals on P, and so an
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element f (t) of F will be thought of as both a formal power series and a linear functional.
We call F umbral algebra, and umbral calculus is the study of umbral algebra. The order
O(f (t)) of a power series f (t) ( �= ) is the smallest integer k for which the coefficient of tk

does not vanish. If O(f (t)) = , then f (t) is called a delta series; if O(f (t)) = , then f (t) is
called an invertible series. For f (t), g(t) ∈ F with O(f (t)) =  and O(g(t)) = , there exists
a unique sequence sn(x) (deg sn(x) = n) such that 〈g(t)f (t)k|sn(x)〉 = n!δn,k for n,k ≥  [,
Theorem ..]. Such a sequence sn(x) is called the Sheffer sequence for (g(t), f (t)) which is
denoted by sn(x) ∼ (g(t), f (t)).
For f (t), g(t) ∈ F and p(x) ∈ P, we have

〈
f (t)g(t)|p(x)〉 = 〈

f (t)|g(t)p(x)〉 = 〈
g(t)|f (t)p(x)〉, ()

and

f (t) =
∞∑
k=

〈
f (t)|xk 〉 tk

k!
, p(x) =

∞∑
k=

〈
tk|p(x)〉xk

k!
, ()

[, Theorem ..]. Thus, by (), we get

tkp(x) = p(x) =
dkp(x)
dxk

and eytp(x) = p(x + y). ()

Sheffer sequences are characterized in the generating function [, Theorem ..].

Lemma  The sequence sn(x) is Sheffer for (g(t), f (t)) if and only if


g(f̄ (t))

eyf̄ (t) =
∞∑
k=

sk(y)
k!

tk (y ∈C),

where f̄ (t) is the compositional inverse of f (t).

For sn(x) ∼ (g(t), f (t)), we have the following equations [, Theorem .., Theo-
rem .., Theorem ..]:

f (t)sn(x) = nsn–(x) (n≥ ), ()

sn(x) =
n∑
j=


j!
〈
g
(
f̄ (t)

)– f̄ (t)j|xn〉xj, ()

sn(x + y) =
n∑
j=

(
n
j

)
sj(x)pn–j(y), ()

where pn(x) = g(t)sn(x).
Assume that pn(x) ∼ (, f (t)) and qn(x) ∼ (, g(t)). Then the transfer formula [, Corol-

lary ..] is given by

qn(x) = x
(
f (t)
g(t)

)n

x–pn(x) (n≥ ).
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For sn(x)∼ (g(t), f (t)) and rn(x)∼ (h(t), l(t)), assume that

sn(x) =
n∑

m=

Cn,mrm(x) (n≥ ).

Then we have [, p.]

Cn,m =

m!

〈
h(f̄ (t))
g(f̄ (t))

l
(
f̄ (t)

)m∣∣∣xn〉. ()

3 Main results
From definitions (), () and (), Bn(x|a, . . . ,ar), Hn(x|b, . . . ,bs;λ, . . . ,λs;μ, . . . ,μs) and
BHn(x|a, . . . ,ar ;b, . . . ,bs;λ, . . . ,λs;μ, . . . ,μs) are the Appell sequences for
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Hn(x|b, . . . ,bs;λ, . . . ,λs;μ, . . . ,μs) ∼
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j=

(
ebjt – λj

 – λj

)μj

, t

)
. ()

In particular,

tBn(x|a) = d
dx

Bn(x|a) = nBn–(x|a),

tHn(x|b;λ;μ) = d
dx

Hn(x|b;λ;μ) = nHn–(x|b;λ;μ),

tBHn(x|a;b;λ;μ) = d
dx

BHn(x|a;b;λ;μ) = nBHn–(x|a;b;λ;μ),

where a = (a, . . . ,ar), b = (b, . . . ,bs), λ = (λ, . . . ,λs) and μ = (μ, . . . ,μs).

3.1 Explicit expressions
Let (n)j = n(n – ) · · · (n – j + ) (j ≥ ) with (n) = . The (signed) Stirling numbers of the
first kind S(n,m) are defined by

(x)n =
n∑

m=

S(n,m)xm.
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Notice that

(x)n ∼ (
, et – 

)
. ()

Theorem  We have
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3.2 The Sheffer identity
Theorem 
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3.3 Recurrence
Theorem 
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 –

r
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BHn+(x|a;b;λ;μ)

= xBHn(x|a;b;λ;μ) – 
n + 

r∑
i=

aiBHn+(x + ai|a,ai;b;λ;μ)

–
s∑
j=

μjbj
 – λj

BHn(x + bj|a;b;λ;μ + ej). ()
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is a series with order at least one, we have
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Here (a,ai) = (a, . . . ,ar ,ai) and ei = (, . . . , ︸ ︷︷ ︸
i–

, , , . . . , ︸ ︷︷ ︸
r–i

) (i = , , . . . , r). Therefore, we obtain
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 –
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)
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3.4 More relations
Theorem  For n ≥ , we have

BHn(x|a;b;λ;μ) = xBHn–(x|a;b;λ;μ) –
s∑
j=

μjbj
 – λj

BHn–(x + bj|a;b;λ;μ + ej)

+
n∑

m=

(–)m–(n–
m–

)
Bm

m
BHn–m(x|a;b;λ;μ)

r∑
i=

ami . ()

Proof For n≥ , we have

BHn(y|a;b;λ;μ) =
〈 ∞∑
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BHl(y|a;b;λ;μ) t
l

l!

∣∣∣∣xn
〉
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(
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〉
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=
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i=

(
t

eait – 

) s∏
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〉
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)
eyt

∣∣∣∣xn–
〉

+

〈 r∏
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(
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) s∏
j=

(
 – λj

ebjt – λj

)μj(
∂teyt
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〉
.

The third term is

y

〈 r∏
i=

(
t

eait – 

) s∏
j=

(
 – λj

ebjt – λj

)μj

eyt
∣∣∣∣xn–

〉
= yBHn–(y|a;b;λ;μ).

Since

∂t

r∏
i=

(
t

eait – 

)
=

r∑
i=

(
t

eait – 

)′ ∏
ν �=i

t
eaν t – 

=
tr–∏r
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(
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r∑
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aiteait
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)

=
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(
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=
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(
r –

r∑
i=

∞∑
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(–ai)mBmtm

m!

)

=
tr–∏r

ν=(eaν t – )

(
r –

∞∑
m=

r∑
i=

(–ai)m
Bmtm

m!

)

=
tr∏r

ν=(eaν t – )

∞∑
m=

r∑
i=
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(–)m–Bm

m!
tm–,

the first term is

〈 r∏
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(
t
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) s∏
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 – λj
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)μj

eyt
∣∣∣∣ ∞∑
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(–)m–Bm

m!
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〉

=
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m
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〈 r∏
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(
t
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 – λj
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)μj

eyt
∣∣∣∣xn–m

〉
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)
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m
BHn–m(y|a;b;λ;μ)

r∑
i=

ami .

http://www.advancesindifferenceequations.com/content/2014/1/238


Kim et al. Advances in Difference Equations 2014, 2014:238 Page 10 of 16
http://www.advancesindifferenceequations.com/content/2014/1/238

Since

∂t

s∏
j=

(
 – λj

ebjt – λj

)μj

=
s∑
j=

((
 – λj

ebjt – λj

)μj)′ ∏
ν �=j

(
 – λν

ebν t – λν

)μν

= –
s∏
j=

(
 – λj

ebjt – λj

)μj s∑
ν=

μνbνebν t

 – λν

 – λν

ebν t – λν

,

the second term is

–
s∑

ν=

μνbν

 – λν

〈 r∏
i=

(
t

eait – 

)
 – λν

ebν t – λν

s∏
j=

(
 – λj

ebjt – λj

)μj

e(y+bν )t
∣∣∣∣xn–

〉

= –
s∑

ν=

μνbν

 – λν

BHn–(y + bν |a;b;λ;μ + eν).

Therefore, we obtain

BHn(x|a;b;λ;μ) = xBHn–(x|a;b;λ;μ) –
s∑
j=

μjbj
 – λj

BHn–(x + bj|a;b;λ;μ + ej)

+
n∑

m=

(–)m–(n–
m–

)
Bm

m
BHn–m(x|a;b;λ;μ)

r∑
i=

ami ,

which is identity (). �

3.5 A relation including Bernoulli numbers
Theorem  For n –  ≥m ≥ , we have

(n –m)BHn–m(a;b;λ;μ)

= –(n –m)
s∑
j=

μjbj
 – λj

BHn–m–(bi|a;b;λ;μ + ej)

+
n–m∑
l=

(–)l–
(
n –m

l

)
BlBHn–m–l(a;b;λ;μ)

r∑
i=

ali. ()

Proof We shall compute〈 r∏
i=

(
t

eait – 

) s∏
j=

(
 – λj

ebjt – λj

)μj

tm
∣∣∣∣xn

〉

in two different ways. On the one hand, it is equal to〈 r∏
i=

(
t

eait – 

) s∏
j=

(
 – λj

ebjt – λj

)μj
∣∣∣∣tmxn

〉

= (n)m

〈 r∏
i=

(
t

eait – 

) s∏
j=

(
 – λj

ebjt – λj

)μj
∣∣∣∣xn–m

〉

= (n)mBHn–m(a;b;λ;μ).
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On the other hand, it is equal to

〈
∂t

( r∏
i=

(
t

eait – 

) s∏
j=

(
 – λj

ebjt – λj

)μj

tm
)∣∣∣∣xn–

〉

=

〈(
∂t

r∏
i=

(
t

eait – 

)) s∏
j=

(
 – λj

ebjt – λj

)μj

tm
∣∣∣∣xn–

〉

+

〈 r∏
i=

(
t

eait – 

)(
∂t

s∏
j=

(
 – λj

ebjt – λj

)μj
)
tm

∣∣∣∣xn–
〉

+

〈 r∏
i=

(
t

eait – 

) s∏
j=

(
 – λj

ebjt – λj

)μj(
∂ttm

)∣∣∣∣xn–
〉
. ()

The third term of () is equal to

m

〈 r∏
i=

(
t

eait – 

) s∏
j=

(
 – λj

ebjt – λj

)μj

tm–
∣∣∣∣xn–

〉

=m(n – )m–BHn–m(a;b;λ;μ).

The second term of () is equal to

–
s∑
l=

μlbl
 – λl

〈 r∏
i=

(
t

eait – 

)
 – λl

eblt – λl

s∏
j=

(
 – λj

ebjt – λj

)μj

eblt
∣∣∣∣tmxn–

〉

= –(n – )m
s∑
l=

μlbl
 – λl

〈 r∏
i=

(
t

eait – 

)
 – λl

eblt – λl

s∏
j=

(
 – λj

ebjt – λj

)μj

eblt
∣∣∣∣xn–m–

〉

= –(n – )m
s∑
l=

μlbl
 – λl

BHn–m–(bl|a;b;λ;μ + el).

Since

(n – )l–(n – l)m = (n – )l+m– = (n – )m–(n –m)l,

the first term of () is equal to

〈 r∏
i=

(
t

eait – 

) s∏
j=

(
 – λj

ebjt – λj

)μj

tm
∣∣∣∣ ∞∑

l=

( r∑
ν=

alν

)
(–)l–Bl

l!
tl–xn–

〉

=
n–m∑
l=

( r∑
ν=

alν

)
(–)l–Bl

l!
(n – )l–

〈 r∏
i=

(
t

eait – 

) s∏
j=

(
 – λj

ebjt – λj

)μj

tm
∣∣∣∣xn–l

〉

=
n–m∑
l=

( r∑
ν=

alν

)
(–)l–Bl

l!
(n – )l–(n – l)mBHn–m–l(a;b;λ;μ)

= (n – )m–

n–m∑
l=

(–)l–
(
n –m

l

)
BlBHn–m–l(a;b;λ;μ)

r∑
ν=

alν .
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Therefore, we get, for n –  ≥m ≥ ,

(n)mBHn–m(a;b;λ;μ)

=m(n – )m–BHn–m(a;b;λ;μ)

– (n – )m
s∑
j=

μjbj
 – λj

BHn–m–(bj|a;b;λ;μ + ej)

+ (n – )m–

n–m∑
l=

(–)l–
(
n –m

l

)
BlBHn–m–l(a;b;λ;μ)

r∑
i=

ali.

Dividing both sides by (n – )m–, we obtain, for n –  ≥m ≥ ,

(n –m)BHn–m(a;b;λ;μ)

= –(n –m)
s∑
j=

μjbj
 – λj

BHn–m–(bj|a;b;λ;μ + ej)

+
n–m∑
l=

(–)l–
(
n –m

l

)
BlBHn–m–l(a;b;λ;μ)

r∑
i=

ali.

Thus, we get (). �

3.6 A relation with Stirling numbers
The Stirling numbers of the second kind S(n,m) are defined by

(et – )m

m!
=

∞∑
n=m

S(n,m)
tn

n!
.

Then

φn(x) :=
n∑

m=

S(n,m)xm ∼ (
, ln( + t)

)
. ()

Theorem 

BHn(x|a;b;λ;μ) =
n∑

m=

n∑
l=m

(
n
l

)
S(l,m)BHn–lφm(x). ()

Proof For () and (), assume that BHn(x|a;b;λ;μ) = ∑n
m=Cn,mφm(x). By (), we have

Cn,m =

m!

〈
∏r

i=(
eait–

t )
∏s

j=(
ebjt–λj
–λj

)μj

(
ln( + t)

)m∣∣∣xn〉

=

〈 r∏
i=

(
t

eait – 

) s∏
j=

(
 – λj

ebjt – λj

)μj
∣∣∣∣ 
m!

(
ln( + t)

)mxn
〉

=

〈 r∏
i=

(
t

eait – 

) s∏
j=

(
 – λj

ebjt – λj

)μj
∣∣∣∣ ∞∑
l=m

S(l,m)
tl

l!
xn

〉
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=
n∑

l=m

(
n
l

)
S(l,m)

〈 r∏
i=

(
t

eait – 

) s∏
j=

(
 – λj

ebjt – λj

)μj
∣∣∣∣xn–l

〉

=
n∑

l=m

(
n
l

)
S(l,m)BHn–l.

Thus, we get identity (). �

3.7 A relation with falling factorials
Theorem 

BHn(x|a;b;λ;μ) =
n∑

m=

n∑
l=m

(
n
l

)
S(l,m)BHn–l(x)m. ()

Proof For () and (), assume that BHn(x|a;b;λ;μ) =∑n
m=Cn,m(x)m. By (), we have

Cn,m =

m!

〈
∏r

i=(
eait–

t )
∏s

j=(
ebjt–λj
–λj

)μj

(
et – 

)m∣∣∣xn〉

=

〈 r∏
i=

(
t

eait – 

) s∏
j=

(
 – λj

ebjt – λj

)μj
∣∣∣∣ 
m!

(
et – 

)mxn
〉

=

〈 r∏
i=

(
t

eait – 

) s∏
j=

(
 – λj

ebjt – λj

)μj
∣∣∣∣ ∞∑
l=m

S(l,m)
tl

l!
xn

〉

=
n∑

l=m

(
n
l

)
S(l,m)

〈 r∏
i=

(
t

eait – 

) s∏
j=

(
 – λj

ebjt – λj

)μj
∣∣∣∣xn–l

〉

=
n∑

l=m

(
n
l

)
S(l,m)BHn–l.

Thus, we get identity (). �

3.8 A relation with higher-order Frobenius-Euler polynomials
Theorem 

BHn(x|a;b;λ;μ)

=


( – α)p

n∑
m=

(
n
m

)( p∑
l=

n–m∑
ν=

(
p
l

)(
n –m

ν

)
(–α)p–llνBHn–m–ν

)
H (p)

m (x|α). ()

Proof For () and

H (p)
n (x|α)∼

((
et – α

 – α

)p

, t
)
, ()
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assume that BHn(x|a;b;λ;μ) = ∑n
m=Cn,mH (s)

m (x|α). By (), similarly to the proof of (),
we have

Cn,m =

m!

〈 ( et–α
–α

)p∏r
i=(

eait–
t )

∏s
j=(

ebjt–λj
–λj

)μj

tm
∣∣∣xn〉

=
(n
m
)

( – α)p

〈 r∏
i=

(
t

eait – 

) s∏
j=

(
 – λj

ebjt – λj

)μj
∣∣∣∣(et – α

)pxn–m
〉

=
(n
m
)

( – α)p

〈 r∏
i=

(
t

eait – 

) s∏
j=

(
 – λj

ebjt – λj

)μj
∣∣∣∣

p∑
l=

(
p
l

)
(–α)p–leltxn–m

〉

=
(n
m
)

( – α)p

p∑
l=

(
p
l

)
(–α)p–l

〈
elt

∣∣∣∣ r∏
i=

(
t

eait – 

) s∏
j=

(
 – λj

ebjt – λj

)μj

xn–m
〉

=
(n
m
)

( – α)p

p∑
l=

(
p
l

)
(–α)p–l

〈
elt

∣∣∣∣ ∞∑
ν=

BHν

tν

ν!
xn–m

〉

=
(n
m
)

( – α)p

p∑
l=

(
p
l

)
(–α)p–l

n–m∑
ν=

(
n –m

ν

)
BHν

〈
elt|xn–m–ν

〉

=
(n
m
)

( – α)p

p∑
l=

(
p
l

)
(–α)p–l

n–m∑
ν=

(
n –m

ν

)
BHν ln–m–ν

=
(n
m
)

( – α)p

p∑
l=

(
p
l

)
(–α)p–l

n–m∑
ν=

(
n –m

ν

)
BHn–m–ν lν .

Thus, we get identity (). �

3.9 A relation with higher-order Bernoulli polynomials
Bernoulli polynomialsB(p)

n (x) of order p are defined by

(
t

et – 

)p

ext =
∞∑
n=

B
(p)
n (x)
n!

tn

(see e.g. [, Section .]).

Theorem 

BHn(x|a;b;λ;μ) =
n∑

m=

(
n
m

)(n–m∑
l=

(n–m
l

)
(n–m–l+p

p
)S(n –m – l + p,p)BHl

)
B

(p)
m (x). ()

Proof For () and

B
(p)
n (x)∼

((
et – 
t

)p

, t
)
, ()
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assume that BHn(x|a;b;λ;μ) = ∑n
m=Cn,mB

(p)
m (x). By (), similarly to the proof of (), we

have

Cn,m =

m!

〈 ( et–t )p∏r
i=(

eait–
t )

∏s
j=(

ebjt–λj
–λj

)μj

tm
∣∣∣xn〉

=
(
n
m

)〈 r∏
i=

(
t

eait – 

) s∏
j=

(
 – λj

ebjt – λj

)μj
∣∣∣∣
(
et – 
t

)p

xn–m
〉

=
(
n
m

)〈 r∏
i=

(
t

eait – 

) s∏
j=

(
 – λj

ebjt – λj

)μj
∣∣∣∣p! ∞∑

l=

S(l + p,p)
tl

(l + p)!
xn–m

〉

=
(
n
m

)
p!

n–m∑
l=

(n –m)l
(l + p)!

S(l + p,p)

〈 r∏
i=

(
t

eait – 

) s∏
j=

(
 – λj

ebjt – λj

)μj
∣∣∣∣xn–m–l

〉

=
(
n
m

) n–m∑
l=

(n–m
l

)
(l+p

p
) S(l + p,p)BHn–m–l

=
(
n
m

) n–m∑
l=

(n–m
l

)
(n–m–l+p

p
)S(n –m – l + p,p)BHl.

Thus, we get identity (). �
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