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Abstract
In this paper, we consider the existence of positive solutions for a second-order
discrete boundary value problem �(g(k – 1)�u(k – 1)) +w(k)f (k,u(k)) = 0 subject to
the boundary conditions: au(0) – bg(0)�u(0) =

∑n–1
i=1 h(i)u(i),

au(n) + bg(n – 1)�u(n – 1) =
∑n–1

i=1 h(i)u(i), where a,b > 0, �u(k) = u(k + 1) – u(k) for
k ∈ {0, 1, . . . ,n – 1}, g(k) > 0 is symmetric on {0, 1, . . . ,n – 1}, w(k) is symmetric on
{0, 1, . . . ,n}, f : {0, 1, . . . ,n} × [0, +∞) is continuous, f (k,u) = f (n – k,u) for all
(k,u) ∈ {0, 1, . . . ,n} × [0, +∞), and h(i) is nonnegative and symmetric on {0, 1, . . . ,n}. By
the fixed point theorem and the Hölder inequality, we study the existence of
symmetric positive solutions for the above difference equation with sum form
boundary conditions.

Keywords: difference equation; sum form boundary conditions; symmetric positive
solutions

1 Introduction
A class of boundary value problems (BVPs) with integral boundary conditions arise in
thermal conduction problems, semiconductor problems, and hydrodynamic problems
[–]. Recently, such problems have been investigated by many authors [–]. The equa-
tion (g(t)u′(t))′ +w(t)f (t,u(t)) = ,  < t < , describes many phenomena in the fields of gas
dynamics, nuclear physics, chemically reacting systems and atomic structures [–]. In
[], Feng considered the following differential equation BVP with integral boundary con-
ditions:

(
g(t)u′(t)

)′ +w(t)f
(
t,u(t)

)
= ,  < t < , (.)

au() – b lim
t→+

g(t)u′(t) =
∫ 


h(s)u(s) ds, (.)

au() + b lim
t→–

g(t)u′(t) =
∫ 


h(s)u(s) ds. (.)

Applying the fixed point index theorem and the Hölder inequality, the author studied the
existence of symmetric positive solutions for BVP (.)-(.).

©2014 Guo et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

http://www.advancesindifferenceequations.com/content/2014/1/237
mailto:jiyude-1980@163.com
http://creativecommons.org/licenses/by/2.0


Guo et al. Advances in Difference Equations 2014, 2014:237 Page 2 of 12
http://www.advancesindifferenceequations.com/content/2014/1/237

Motivated by the aboveworks, wewill study the following BVPwith sum form boundary
conditions:

�
(
g(k – )�u(k – )

)
+w(k)f

(
k,u(k)

)
= , k ∈ {, . . . ,n – }, (.)

au() – bg()�u() =
n–∑
i=

h(i)u(i), (.)

au(n) + bg(n – )�u(n – ) =
n–∑
i=

h(i)u(i). (.)

Throughout this paper, the following conditions are assumed:

(A) a,b > , w(k) is symmetric on {, , . . . ,n}, and there exists m >  such that w(k) ≥
m
n– on {, , . . . ,n}, g(k) >  for k ∈ {, , . . . ,n}, and g(k) is symmetric on {, , . . . ,n –
}, h is nonnegative, symmetric on {, , . . . ,n}, and  ≤ s < a, where s =

∑n–
i= h(i),

f : {, , . . . ,n} × [, +∞) is continuous and f (·,u) is symmetric on {, , . . . ,n} for all
u ≥ .

Remark  The conditions that g and h are symmetric on the different sets, which can
guarantee the symmetry of associated kernel function for BVP (.)-(.). The kernel func-
tions are then used to obtain the existence of symmetric positive solutions for BVP (.)-
(.) by constructing a suitable operator.

In order to study the existence of symmetric positive solutions of problem (.)-(.),
we need the following lemmas.

Lemma . [] Let P be a cone of the real Banach space E and� be a bounded open subset
of E and θ ∈ �. Assume A : P ∩ � → P is a completely continuous operator and satisfies
Au = μu, u ∈ P ∩ ∂�, μ < . Then i(A,P ∩ �,P) = .

Lemma . [] Suppose A : P∩� → P is a completely continuous operator, and satisfies
() infu∈P∩∂� ‖Au‖ > ;
() Au = μu, u ∈ P ∩ ∂�, μ /∈ (, ].

Then i(A,P ∩ �,P) = .

Lemma . (Hölder) Suppose u = {u,u, . . . ,un} is a real-valued column, let

‖u‖p =
{
(
∑n

k= |uk|p)/p,  < p < ∞,
supk∈{,,...,n} |uk|, p =∞,

where p, q satisfy the condition 
p +


q = , which are called conjugate exponents, and q =∞

for p = . If ≤ p ≤ ∞, then

‖uv‖ ≤ ‖u‖p‖v‖q,

http://www.advancesindifferenceequations.com/content/2014/1/237


Guo et al. Advances in Difference Equations 2014, 2014:237 Page 3 of 12
http://www.advancesindifferenceequations.com/content/2014/1/237

which can be denoted as

n∑
k=

|ukvk| ≤

⎧⎪⎨
⎪⎩
(
∑n

k= |uk|p)/p(
∑n

k= |vk|q)/q,  < p < ∞,
(
∑n

k= |uk|)(supk∈{,,...,n} |vk|), p = ,
(supk∈{,,...,n} |uk|)(

∑n
k= |vk|), p =∞.

2 Preliminaries
Let E = {u(k) : {, , . . . ,n} → R}. It is well known that E is a real Banach space with the
norm ‖ · ‖ defined by ‖u‖ =maxk∈{,,...,n} |u(k)|. Let K be a cone of E,

Kr =
{
u ∈ K : ‖u‖ ≤ r

}
, ∂Kr =

{
u ∈ K : ‖u‖ = r

}
,

where r > .
In our main results, we will use the following lemmas.

Lemma . Assume that (A) holds. Then for any y ∈ E, the BVP

–�
(
g(k – )�u(k – )

)
= y(k), k ∈ {, . . . ,n – }, (.)

au() – bg()�u() =
n–∑
i=

h(i)u(i), (.)

au(n) + bg(n – )�u(n – ) =
n–∑
i=

h(i)u(i) (.)

has a unique solution u given by

u(k) =
n–∑
i=

H(k, i)y(i),

where

H(k, i) =G(k, i) +


a – s

n–∑
τ=

G(τ , i)h(τ ), (.)

G(k, i) =

�

⎧⎨
⎩
(b + a

∑n–
j=k


g(j) )(b + a

∑i–
j=


g(j) ),  ≤ i < k,

(b + a
∑n–

j=i

g(j) )(b + a

∑k–
j=


g(j) ), k ≤ i≤ n,

(.)

and � = ab + a
∑n–

j=

g(j) , s =

∑n–
i= h(i).

Proof From the properties of the difference operator, it is easy to see that

–g(k)�u(k) + g(k – )�u(k – ) = y(k),

then we have

–g()�u() + g()�u() = y(),
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–g()�u() + g()�u() = y(),

· · ·
–g(k)�u(k) + g(k – )�u(k – ) = y(k).

From the above equalities, we can obtain

–g(k)�u(k) + g()�u() =
k∑
i=

y(i).

Let g()�u() = A, then

�u(k) =


g(k)
A –


g(k)

k∑
i=

y(i),

that is,

u(k + ) – u(k) =


g(k)
A –


g(k)

k∑
i=

y(i).

So,

u() – u() =


g()
A,

u() – u() =


g()
A –


g()

∑
i=

y(i),

u() – u() =


g()
A –


g()

∑
i=

y(i),

· · ·

u(k) – u(k – ) =


g(k – )
A –


g(k – )

k–∑
i=

y(i).

It follows that

u(k) = u() +A
k–∑
j=


g(j)

–
k–∑
j=


g(j)

j∑
i=

y(i).

By the boundary conditions, we get

au() – bA =
n–∑
i=

h(i)u(i),

au() +

(
b + a

n–∑
j=


g(j)

)
A =

n–∑
i=

h(i)u(i) + a
n–∑
j=


g(j)

j∑
i=

y(i) + b
n–∑
i=

y(i).
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Then

A =


b + a
∑n–

j=

g(j)

(
a

n–∑
j=


g(j)

j∑
i=

y(i) + b
n–∑
i=

y(i)

)
,

u() =
b

ab + a
∑n–

j=

g(j)

(
a

n–∑
j=


g(j)

j∑
i=

y(i) + b
n–∑
i=

y(i)

)
+

a

n–∑
i=

h(i)u(i).

Thus,

u(k) =

a

n–∑
i=

h(i)u(i) +
b

ab + a
∑n–

j=

g(j)

(
a

n–∑
j=


g(j)

j∑
i=

y(i) + b
n–∑
i=

y(i)

)

+
k–∑
j=


g(j)

· 
b + a

∑n–
j=


g(j)

(
a

n–∑
j=


g(j)

j∑
i=

y(i) + b
n–∑
i=

y(i)

)

–
k–∑
j=


g(j)

j∑
i=

y(i)

=

a

n–∑
i=

h(i)u(i) +
n–∑
i=

G(k, i)y(i),

where G(k, i) is defined by (.). Multiplying the above equation with h(k), and summing
from  to n – , we can get

n–∑
i=

h(i)u(i) =
a

a –
∑n–

k= h(k)

n–∑
k=

h(k)
n–∑
i=

G(k, i)y(i).

One deduces that

u(k) =
n–∑
i=

G(k, i)y(i) +


a –
∑n–

k= h(k)

n–∑
k=

h(k)
n–∑
i=

G(k, i)y(i)

=
n–∑
i=

H(k, i)y(i),

where H(k, i) is defined by (.). The proof is complete. �

From the above work, we can prove thatH(k, i) andG(k, i) have the following properties.

Proposition . If (A) holds, then we have

H(k, i) > , G(k, i) > , for k, i ∈ {, , . . . ,n}; (.)

G(n – k,n – i) =G(k, i), H(n – k,n – i) =H(k, i), for k, i ∈ {, , . . . ,n}; (.)


�
b ≤G(k, i) ≤G(i, i) ≤ 

�
D,


�
abγ ≤H(k, i)≤H(i, i) ≤ 

�
aγD, (.)

where D = (b + a
∑n

j=

g(j) )

, γ = 
a–s , k, i ∈ {, , . . . ,n}.
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Proof It is clear that (.) holds. Now we prove (.) holds.
If i ∈ {, , . . . ,k – }, then n – i ≥ n – k, from (.) and (A) we get

G(n – k,n – i) =

�

(
b + a

n–∑
j=n–i


g(j)

)(
b + a

n–k–∑
j=


g(j)

)

=

�

(
b + a

n–∑
j=n–i


g(n –  – j)

)(
b + a

n–k–∑
j=


g(n –  – j)

)

=

�

(
b + a

i–∑
j=


g(j)

)(
b + a

n–∑
j=k


g(j)

)

= G(k, i), i ∈ {, , . . . ,k – }.

Similarly, we can prove that G(n– k,n– i) =G(k, i), i ∈ {k, . . . ,n}. So we have G(n– k,n–
i) =G(k, i), for k, i ∈ {, , . . . ,n}. From (.) and (A), we have

H(n – k,n – i) = G(n – k,n – i) +


a – s

n–∑
τ=

G(τ ,n – i)h(τ )

= G(k, i) +


a – s

n–∑
τ=

G(n – τ , i)h(n – τ )

= G(k, i) +


a – s

n–∑
τ=

G(τ , i)h(τ )

= H(k, i).

So, (.) is established. Next we prove (.) holds. In fact, for k, i ∈ {, , . . . ,n}, if i ∈
{, , . . . ,k – }, then

G(k, i) =

�

(
b + a

n–∑
j=k


g(j)

)(
b + a

i–∑
j=


g(j)

)

≤ 
�

(
b + a

n–∑
j=i


g(j)

)(
b + a

i–∑
j=


g(j)

)

= G(i, i)

≤ 
�

(
b + a

n∑
j=


g(j)

)(
b + a

n∑
j=


g(j)

)

≤ 
�

(
b + a

n∑
j=


g(j)

)

=

�
D.

Similarly, we can prove that G(k, i) ≤ G(i, i) ≤ 
�
D, for i ∈ {k,k + , . . . ,n}. Therefore

G(k, i) ≤G(i, i) ≤ 
�
D. For k, i ∈ {, , . . . ,n}, we can get

http://www.advancesindifferenceequations.com/content/2014/1/237
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H(k, i) = G(k, i) +


a – s

n–∑
τ=

G(τ , i)h(τ )

≤ G(i, i) +


a – s

n–∑
τ=

G(τ , i)h(τ )

= H(i, i)

≤ G(i, i) +


a – s

n–∑
τ=

G(τ , τ )h(τ )

≤ 
�
D +


�
D


a – s

n–∑
τ=

h(τ )

=

�

(
 +


a – s

n–∑
τ=

h(τ )

)
D

=
a

�(a – s)
D =


�
aγD.

On the other hand, from (.), we have

G(k, i) ≥ 
�

(
b + a

n–∑
j=n


g(j)

)(
b + a

–∑
j=


g(j)

)
=


�
b.

So, by (.), for k, i ∈ {, , . . . ,n}, we can obtain

H(k, i) = G(k, i) +


a – s

n–∑
τ=

G(τ , i)h(τ )

≥ 
�
b +

b

(a – s)�

n–∑
τ=

h(τ )

≥ 
�
b

(
 +


a – s

n–∑
τ=

h(τ )

)

=

�
b

a
a – s

=

�
baγ .

Thus,


�
b ≤G(k, i) ≤G(i, i) ≤ 

�
D,


�
baγ ≤H(k, i) ≤H(i, i) ≤ 

�
Daγ .

The proof is completed. �

Remark  The symmetry of g(k) on {, , . . . ,n–} can guarantee thatG(k, i) is symmetric
for k, i ∈ {, , . . . ,n}, and the symmetry of h(k) on {, , . . . ,n} can guarantee that H(k, i) is
symmetric for k, i ∈ {, , . . . ,n}.

http://www.advancesindifferenceequations.com/content/2014/1/237
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Next, we can construct a cone in E by

K =
{
u ∈ E : u≥ ,u(k) is symmetric on {, , . . . ,n},�(

g(k)�u(k)
) ≤ ,

k ∈ {, , . . . ,n – }, and min
k∈{,,...,n}

u(k) ≥ δ∗‖u‖
}
,

where δ∗ = 
Db

. Then we define an operator

(Tu)(k) =
n–∑
i=

H(k, i)w(i)f
(
i,u(i)

)
. (.)

It can be observed that u is a solution of problem (.)-(.) if and only if u is a fixed
point of operator T .
We can get the following lemma from Lemma ..

Lemma . Suppose (A) holds. If u is a solution of the equation

u(k) = Tu(k) =
n–∑
i=

H(k, i)w(i)f
(
i,u(i)

)
,

then u is a solution of BVP (.)-(.).

Lemma . Assume (A) holds. Then T(K ) ⊂ K and T : K → K is completely continuous.

Proof For u ∈ K , from (.), we obtain �(g(k – )�Tu(k – )) = –w(k)f (k,u(k)) ≤ . By
Proposition ., it is to see that (Tu)(k) ≥ , for k ∈ {, , . . . ,n}. Using the fact that w, u,
f (k,u) are symmetric on {, , . . . ,n}, we have

(Tu)(n – k) =
n–∑
i=

H(n – k, i)w(i)f
(
i,u(i)

)

=
n–∑
i=

H(k,n – i)w(n – i)f
(
n – i,u(n – i)

)

=
n–∑
i=

H(k, i)w(i)f
(
i,u(i)

)
= (Tu)(k),

then Tu is symmetric on {, , . . . ,n} for k ∈ {, , . . . ,n}. And from (.) we can see

(Tu)(k) =
n–∑
i=

H(k, i)w(i)f
(
i,u(i)

) ≤ 
�
aγD

n–∑
i=

w(i)f
(
i,u(i)

)
.

Thus,

‖Tu‖ ≤ 
�
aγD

n–∑
i=

w(i)f
(
i,u(i)

)
.

http://www.advancesindifferenceequations.com/content/2014/1/237
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Similarly, by (.) we obtain

(Tu)(k) =
n–∑
i=

H(k, i)w(i)f
(
i,u(i)

)

≥ 
�
abγ

n–∑
i=

w(i)f
(
i,u(i)

)

=

�
aδ∗Dγ

n–∑
i=

w(i)f
(
i,u(i)

)
≥ δ∗‖Tu‖.

Thus, Tu ∈ K and T(K )⊂ K . It is clear that T : K → K is completely continuous. �

Remark  The symmetry of the kernel functionH(k, i) for k, i ∈ {, , . . . ,n} can guarantee
that Tu is symmetric on {, , . . . ,n} for u ∈ K .

3 Main results
In this section, we will establish that problem (.)-(.) has at least one positive solution
with Lemma . and Lemma .. We need consider the following situations: p > , p = ,
p =∞. Next, we will prove a theorem for p > . At first, we define

‖H‖ = sup
i∈{,,...,n–}

∣∣H(i, i)
∣∣, ‖H‖p =

( n–∑
i=

∣∣H(i, i)
∣∣p)/p

.

Let

Fβ = lim
u→β

sup max
k∈{,,...,n}

f (k,u)
u

, Fβ = lim
u→β

inf min
k∈{,,...,n}

f (k,u)
u

,

where β denotes  or ∞, and

N– = max

{
‖H‖p

( n–∑
i=

∣∣w(i)∣∣q
)/q

,

( n–∑
i=

∣∣H(i, i)
∣∣)(

sup
i∈{,,...,n–}

∣∣w(i)∣∣),‖H‖
( n–∑

i=

∣∣w(i)∣∣
)}

,

L– =

�

δ∗aγmb.

Theorem . Assume that conditions (A) hold. In addition, suppose that

(A)  < F <N , and L < F∞ <∞, or
(A)  < F∞ <N , and L < F < ∞
are satisfied. Then problem (.)-(.) has at least one symmetric positive solution.

Proof We only consider (A) case, (A) is similar to (A). If  < F < N , then there exist
r > , ε >  such that N – ε >  and for all  < u≤ r, we have

f (k,u)≤ (N – ε)u≤ (N – ε)r, k ∈ {, , . . . ,n}. (.)

http://www.advancesindifferenceequations.com/content/2014/1/237
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For all u ∈ ∂Kr , from Lemma . we obtain

(Tu)(k) =
n–∑
i=

H(k, i)w(i)f
(
i,u(i)

)

≤
n–∑
i=

H(k, i)w(i)(N – ε)r

≤
n–∑
i=

H(i, i)w(i)(N – ε)r

≤
( n–∑

i=

∣∣H(i, i)
∣∣p)/p( n–∑

i=

∣∣w(i)∣∣q
)/q

(N – ε)r

≤ N–(N – ε)r

≤ r.

SoTu �= λu, for ∀u ∈ ∂Kr , λ ≥ . FromLemma ., we can get i(T ,Kr ,K ) = . Next, we prove
it satisfies Lemma .. Because L < F∞ < ∞, there exist R > δ∗r > , ε >  such that

f (k,u)≥ (L + ε)u, ∀u≥ R,k ∈ {, , . . . ,n}.

Let r∗ = δ–∗ R, then r∗ > r, and

min
k∈{,,...,n}

u(k) ≥ δ∗‖u‖ = R, ∀u ∈ ∂Kr .

Now we prove that Tu �= λu, ∀u ∈ ∂Kr ,  < λ ≤ . If not, then there exist u ∈ ∂Kr∗ and
 < λ ≤  such that Tu = λu; thus we have

r∗ ≥ u(k) = λ–
 (Tu)(k)

= λ–


n–∑
i=

H(k, i)w(i)f
(
i,u(i)

)

≥ 
�
abγ (L + ε)

n–∑
i=

w(i)u(i)

≥ 
�
abγ (L + ε)R

n–∑
i=

w(i)

=

�
abγ (L + ε)δ∗r∗

n–∑
i=

w(i)

≥ 
�
abγ (L + ε)δ∗r∗m

= L–(L + ε)r∗

= r∗
(
 +

ε

L

)
> r∗,

http://www.advancesindifferenceequations.com/content/2014/1/237
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i.e., r∗ > r∗, which is a contradiction. In addition, because (Tu)(k) ≥ r∗( + ε
L ) > r∗, so

infu∈∂Kr∗ ‖Tu‖ ≥ r∗ > , from Lemma . we have i(T ,Kr∗ ,K ) = . On the other hand, from
the above work with the additivity of the fixed point index, we get

i(T ,Kr∗ –Kr ,K ) = i(T ,Kr∗ ,K ) – i(T ,Kr ,K ) =  –  = –.

So, T has at least one fixed point u∗ on Kr∗ – Kr . Then it follows that problem (.)-(.)
has a symmetric positive solution u∗. The proof is complete. �

Remark  From the proof of Theorem ., we can establish that problem (.)-(.) has
another nonnegative solution u∗∗, u∗∗ ∈ Kr .

The following corollary deals with the case p = .

Corollary . Suppose that (A), (A) hold. Then problem (.)-(.) has at least one sym-
metric positive solution.

Proof It is similar to the proof of Theorem .. Let (
∑n–

i= |H(i, i)|)(supi∈{,...,n–} |w(i)|) re-
place (

∑n–
i= |H(i, i)|p)/p(∑n–

i= |w(i)|q)/q and repeat the argument of Theorem .. �

Finally, we consider the case of p =∞.

Corollary . Assume that (A), (A) hold. Then problem (.)-(.) has at least one sym-
metric positive solution.

Proof It is similar to the proof of Theorem .. For all u ∈ ∂Kr , we have

(Tu)(k) =
n–∑
i=

H(k, i)w(i)f
(
i,u(i)

)

≤
n–∑
i=

H(i, i)w(i)(N – ε)r

≤
(

sup
i∈{,,...,n–}

∣∣H(i, i)
∣∣)( n–∑

i=

∣∣w(i)∣∣
)
(N – ε)r

≤ N–(N – ε)r

< r.

So Tu �= λu, u ∈ ∂Kr , λ ≥ . By Lemma ., we can get i(T ,Kr ,K ) = . This together with
i(T ,Kr∗ ,K ) =  in the proof of Theorem . completes the proof. �

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to the manuscript and read and approved the final draft.

http://www.advancesindifferenceequations.com/content/2014/1/237


Guo et al. Advances in Difference Equations 2014, 2014:237 Page 12 of 12
http://www.advancesindifferenceequations.com/content/2014/1/237

Author details
1School of Electrical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, P.R. China.
2College of Sciences, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, P.R. China.

Acknowledgements
The authors express their sincere thanks to the referees for the careful and details reading of the manuscript and very
helpful suggestions. The project was supported by the Natural Science Foundation of China (11371120), the Natural
Science Foundation of Hebei Province (A2013208147) and the Education Department of Hebei Province Science and
Technology Research Project (Z2014095).

Received: 23 March 2014 Accepted: 25 August 2014 Published: 09 Sep 2014

References
1. Cannon, JR: The solution of the heat equation subject to the specification of energy. Q. Appl. Math. 21, 155-160

(1963)
2. Ionkin, NI: Solution of boundary value problem in heat conduction theory with nonlocal boundary conditions. Differ.

Equ. 13, 294-304 (1977)
3. Chegis, RY: Numerical solution of heat conduction problem with an integral boundary condition. Liet. Mat. Rink. 24,

209-215 (1984)
4. Boucherif, A: Second-order boundary value problems with integral boundary conditions. Nonlinear Anal. 70, 364-371

(2009)
5. Infante, G: Eigenvalues and positive solutions of ODEs involving integral boundary conditions. Discrete Contin. Dyn.

Syst. suppl., 436-442 (2005)
6. Yang, Z: Positive solutions of a second order integral boundary value problem. J. Math. Anal. Appl. 321, 751-765

(2006)
7. Ahmad, B, Alsaedi, A, Alghamdi, BS: Analytic approximation of solutions of the forced Duffing equation with integral

boundary conditions. Nonlinear Anal., Real World Appl. 9, 1727-1740 (2008)
8. Ahmad, B, Alsaedi, A: Existence of approximate solutions of the forced Duffing equation with discontinuous type

integral boundary conditions. Nonlinear Anal., Real World Appl. 10, 358-367 (2009)
9. Feng, M, Zhang, X, Ge, W: New existence results for higher-order nonlinear fractional differential equation with

integral boundary conditions. Bound. Value Probl. 2011, 720702 (2011)
10. Feng, M: Existence of symmetric positive solutions for a boundary value problem with integral boundary conditions.

Appl. Math. Lett. 24, 1419-1427 (2011)
11. Csavinszky, P: Universal approximate solution of the Thomas-Fermi equation for ions. Phys. Rev. A 8, 1688-1701 (1973)
12. Granas, A, Guenther, RB, Lee, JW: Nonlinear boundary value problems for ordinary differential equations. Diss. Math.

244, 128 pp. (1985)
13. Granas, A, Guenther, RB, Lee, JW: A note on the Thomas-Fermi equations. Z. Angew. Math. Mech. 61, 240-241 (1981)
14. Luning, CD, Perry, WL: Positive solutions of negative exponent generalized Emden-Fowler boundary value problems.

SIAM J. Math. Anal. 12, 874-879 (1981)
15. Wong, JSW: On the generalized Emden-Fowler equations. SIAM Rev. 17, 339-360 (1975)
16. Guo, D, Lakshmikantham, V: Nonlinear Problems in Abstract Cones. Academic Press, New York (1988)

10.1186/1687-1847-2014-237
Cite this article as: Guo et al.: The existence of symmetric positive solutions for a seconder-order difference equation
with sum form boundary conditions. Advances in Difference Equations 2014, 2014:237

http://www.advancesindifferenceequations.com/content/2014/1/237

	The existence of symmetric positive solutions for a seconder-order difference equation with sum form boundary conditions
	Abstract
	Keywords

	Introduction
	Preliminaries
	Main results
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


