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Abstract
In this paper, an analytical study of a toxin-producing phytoplankton-zooplankton
model with stochastic perturbation is performed. By constructing suitable Lyapunov
functions, we investigate the global stability of a positive equilibrium and give the
condition of the existence of Hopf bifurcation for the deterministic plankton model.
Under the perturbation of environmental noise, there is a globally positive solution to
the stochastic model and it is stochastically ultimately bounded. In addition, the
stochastic model is stochastically permanent under some conditions. A series of
numerical simulations to illustrate these mathematical findings are presented.
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1 Introduction
Phytoplankton are primary producers as the base of the aquatic food web, floating freely
near the surfaces of all aquatic environments. Zooplankton are the animals in the plank-
ton community and feed on other phytoplankton []. Phytoplankton and zooplankton are
subject to water movements to a large extent. They act as the basis of all food chains and
webs in aquatic systems and play an important role in the ecology of the ocean [, ].
In the last two decades, there has been a global increase in harmful plankton blooms in
aquatic ecosystem [–]. Bandyopadhyay et al. [] pointed out that a broad classification
of harmful plankton species distinguishes two groups: one is the toxin producers, which
can contaminate seafood or kill fish, and the other is the high-biomass producers, which
can cause anoxia and indiscriminate mortalities of marine life after reaching dense con-
centrations. The toxin-producing phytoplankton play an important role on the growth of
the zooplanktonpopulation.Andbecause of phytoplankton and zooplanktonuniversal ex-
istence and importance, understanding of the dynamical behaviors of interacting species
will continue to be a predominant topic. In recent years, a great deal of attention has been
paid towards in toxin-producing plankton blooms and a lot of its extensions from several
researchers [, , –].
In the real world, population dynamics is inevitably subjected to environmental noise,

which is an important component in an ecosystem. Most natural phenomena do not fol-
low strictly deterministic laws, but rather oscillate randomly about some average val-
ues. So that the population density never attains a fixed value with the advancement of
time [, ]. The basic mechanism and factors of population growth like resources and
vital rates - birth, death, immigration, and emigration - change non-deterministically due
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to continuous fluctuations in the environment (e.g. variation in intensity of sunlight, tem-
perature, water level, etc.) []. Recent advances in stochastic differential equations en-
able a lot of authors to introduce randomness into a deterministic model of physical phe-
nomena to reveal the effect of environmental variability, whether it is a random noise
in the system of differential equations or environmental fluctuations in parameters, see,
e.g. [–]. Of them, Beddington andMay [] studied harvesting natural populations in
a randomly fluctuating environment. In [], Mao showed that the noise cannot only have
a destabilising effect but can also have a stabilising effect in the control theory. The growth
of populations in a random environment subjected to variable effort fishing policies was
studied in []. Braumann [] generalized the previous results [] to density-dependent
positive noise intensities of general form so that they also become independent from the
way environmental fluctuations affect population growth rates. Liu et al. [] presented
a spatial version of the phytoplankton-zooplankton model that includes some important
factors such as external periodic forces, noise and diffusion processes. These important
results reveal the significant effects of the environmental noise on some models.
To our knowledge, a toxin-producing phytoplankton-zooplanktonmodel with a Holling

type-II functional response has deserved a lot of attention, but mainly in deterministic
case. The research on the dynamical behavior of the toxic-phytoplankton-zooplankton
model with Holling type-II functional response under environmental noise seems rare.
Based on the discussion above, in this paper, we focus on dynamical properties of a toxin-
producing planktonmodel with Holling type-II functional response under stochastic per-
turbation. The organization of this paper is as follows. In the next section, a stochastic
toxic-phytoplankton-zooplankton model is established. Firstly, we give a general survey
of the stability analysis of a positive equilibrium of the model without noise. Then, we
concentrate our attention on the stochastic version of the toxin producing phytoplankton-
zooplanktonmodel and discuss the existence of global positive solution, stochastic bound-
edness, and the global asymptotic stability of the stochastic model. In Section , we give
some numerical examples and make a comparative analysis of the stability of the model
system within deterministic and stochastic environments. Finally, we give a concluding
remark section.

2 Model and dynamical analysis
Referring to the work of [, , ], they introduced and analyzed toxin producing phyto-
plankton-zooplankton systems. Chattopadhayay et al. [] observed the effect of toxin-
producing plankton on zooplankton from the field-collected samples and mathematical
modeling. In [], Saha and Bandyopadhyay considered a toxin producing phytoplankton-
zooplankton model in which the toxic liberation by phytoplankton species follows a dis-
crete time variation. Lv et al. [] proposed and investigated a phytoplankton-zooplankton
model with harvesting. Based on their studies, in this paper, we consider a stochastic form
of toxin-producing plankton model and intend to analyze the model with the assumption
that f (P) and g(P) are described by same type of function, namely, Holling type-II func-
tion.With this Holling type-II functional response and logistic phytoplankton growth, the
deterministic toxin producing phytoplankton-zooplankton model is

⎧⎨
⎩

dP
dt = r(P( – P

K ) – af (P)Z) = rP( – P
K – aZ

m+P ),
dZ
dt = bZ(f (P) – d – cg(P)) = bZ( (–c)Pm+P – d).

()
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In the above model, P = P(t) is the density of toxin producing phytoplankton population
and Z = Z(t) is the density of zooplankton population at any instant of time t. f (P) repre-
sents the functional response for the grazing of phytoplankton by zooplankton and g(P)
descries the distribution of toxin substance which ultimately contributes to the death of
zooplankton populations.
Based on model (), we assume that random fluctuations in the environment would dis-

play themselves mainly as fluctuations in the intrinsic growth rates of the toxin producing
phytoplankton and the zooplankton, then replace parameters r and b by

r → r + σḂ(t), b → b + σḂ(t).

Hence, we are mainly interested in the dynamics of the stochastic model which takes the
following form:

⎧⎨
⎩dP = P( – P

K – aZ
m+P )(r dt + σ dB(t)),

dZ = Z( (–c)Pm+P – d)(bdt + σ dB(t)),
()

where σ 
 and σ 

 are known as the intensities of environmental noise. Ḃi(t) (i = , ) is
a standard white noise, that is, Bi(t) (i = , ) independent Brownian motion defined in
a complete probability space (�,F ,P) with a filtration {Ft}t∈R+ satisfying the usual con-
ditions (i.e., it is right continuous and increasing while F contains all P-null sets) [].
Parameters K ,m, a, c, d are positive constants, where K is the environmental carrying ca-
pacity of toxin-producing phytoplankton population,m the half saturation constant for a
Holling type-II functional response, a the maximum uptake rate for zooplankton species,
c the rate of toxic substances produced by per unit biomass of phytoplankton and d the
natural death rate of zooplankton.

2.1 Dynamical analysis of model (1)
Model () has three equilibria in the positive quadrant:

(i) E = (, ) (total extinct) is a saddle point.
(ii) E = (K , ) (extinct of the zooplankton, or phytoplankton-only) is a stable node if

K ( – c – d) <md and a saddle point if K ( – c – d) >md.
(iii) E∗ = (P∗,Z∗) (coexistence of the phytoplankton and zooplankton) is a positive

interior equilibrium, where

P∗ =
md

 – c – d
, Z∗ =

m( – c)(K( – c – d) –md)
aK( – c – d)

,

with c + d <  and K ( – c – d) >md.
From the biological point of view, studying the stability behavior of positive equilib-

rium E∗ = (P∗,Z∗) is of real interest. The Jacobian matrix corresponding to E∗ = (P∗,Z∗)
of model () is

J = J
(
E∗) =

(
dr(K (–c–d)–m(–c+d))

K (–c)(–c–d) – adr
–c

b(K (–c–d)–md)
aK 

)

=

(
J J
J J

)
.
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The characteristic equation is given by

λ – tr(J)λ + det(J) = ,

where

tr(J) =
dr(K ( – c – d) –m( – c + d))

K ( – c)( – c – d)
,

det(J) =
bdr(K ( – c – d) –md)

K ( – c)
.

By the Roth-Hurwitz criterion, we have a sufficient condition for the local stability of E∗ =
(P∗,Z∗) of model ().

Theorem . If md < K ( – c – d) <m( – c + d) holds, then the positive equilibrium E∗ =
(P∗,Z∗) of model () is locally asymptotically stable.

Theorem . If K <m(m+P∗)/(aZ∗) and bm(– c)/(ar(m+P∗)) < P/Z hold, then the pos-
itive equilibrium E∗ = (P∗,Z∗) of model () is globally asymptotically stable in the interior
of the first octant.

Proof Define a Lyapunov function

V (P,Z) =
(
P – P∗) + (

Z – Z∗), ()

which is nonnegative and V (P,Z) =  if and only if (P,Z) = (P∗,Z∗). The function satis-
fies ∂V /∂P = (P – P∗), ∂V /∂Z = (Z – Z∗) and it is easy to see that (P∗,Z∗) is the only
extremum and the global minimum of the function in the positive octant R

+. The time
derivative of V along the solutions of model () is

dV
dt

= 
(
P – P∗)dP

dt
+ 

(
Z – Z∗)dZ

dt
.

Substituting the expressions of dP/dt and dZ/dt from model (), we obtain

dV
dt

= r
(
P – P∗)P(

 –
P
K

–
aZ

m + P

)
+ b

(
Z – Z∗)Z(

( – c)P
m + P

– d
)
. ()

Using the fact that

 –
P∗

K
–

aZ∗

m + P∗ = ,
( – c)P∗

m + P∗ – d = ,

equation () can be re-written as

dV
dt

= –rP
(

K

–
aZ∗

(m + P)(m + P∗)

)(
P – P∗)

–
(
arP
m + P

–
bm( – c)Z

(m + P)(m + P∗)

)(
P – P∗)(Z – Z∗).
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Figure 1 Phase portrait of model (1) with K = 0.6, r
= 4,m = 0.5, a = 0.9, b = 0.7, c = 0.1, d = 0.2. The
horizontal axis is the phytoplankton population P and
the vertical axis is the zooplankton population Z .
E0 = (0, 0) and E1 = (0.6, 0) are saddle points, the
equilibrium point E∗ = (0.1429, 0.5442) is globally
asymptotically stable.

If the conditionsm(m+P∗)/(aZ∗) > K and P/Z > bm(–c)/(ar(m+P∗)) hold, then dV /dt ≤
 in R

+, where the equality holds only at the equilibrium point (P∗,Z∗). Hence the equi-
librium E∗ = (P∗,Z∗) is globally asymptotically stable. �

When choosing the values of parameters K = ., r = ,m = ., a = ., b = ., c = .,
d = . for model (), E = (, ) and E = (., ) are saddle points, the positive equi-
librium point (P∗,Z∗) = (., .) exists. By Theorem ., E∗ = (P∗,Z∗) is globally
asymptotically stable. The trajectory of the phytoplankton and zooplankton population of
model () is shown in Figure , which shows E∗ = (., .) is stable.
Referring to [], we study the Hopf bifurcation of model (), which is space-independ-

ent. It breaks the temporal symmetry of a system and gives rise to oscillations that are
uniform in space and periodic in time. Here, taking K as the bifurcation parameter, we
have the following theorem.

Theorem . If c + d <  holds, then model () undergoes Hopf bifurcation around the
positive equilibrium point E∗ = (P∗,Z∗). The Hopf bifurcation occurs at its critical value
K = KH =m( – c + d)/( – c – d).

Proof The Hopf bifurcation occurs if and only if there exists a K = KH such that
(i) [tr(J)]K=KH = ;
(ii) [det(J)]K=KH = bdr(–c–d)

–c+d > ;
(iii) when E∗ = (P∗,Z∗) exists, the characteristic equation is λ + [det(J)]K=KH = , whose

roots are purely imaginary;
(iv) d

dK [tr(J)]K=KH = dr(–c–d)
m(–c)(–c+d) �= .

Therefore, all the conditions of Hopf bifurcation theorem are satisfied, thus there exists
a small amplitude periodic solution near E∗ = (P∗,Z∗). This completes the proof. �

Figure  depicts time-series plots and phase portraits for model () under different
carrying capacity K values and other parameters are the same as in Figure . In Fig-
ure (A), choosing K = . < KH = ., one can see that the positive equilibrium
(P∗,Z∗) = (., .) is asymptotically stable point. In Figure (B), increasing K to
KH = ., a stable limit cycle occurs which indicates that toxin-producing phytoplank-
ton coexists with zooplankton with oscillator balance behavior. As K is further increased,
in Figure (C) with K = . > KH , the interior equilibrium (P∗,Z∗) = (., .) is
unstable and loses its stability as K passes through its critical value KH = ..
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Figure 2 (Left) Time-series plots; (Right) phase portraits for model (1) with r = 4,m = 0.5, a = 0.9,
b = 0.7, c = 0.1, d = 0.2 and initial condition (P0,Z0) = (0.1, 0.6). (A) K = 0.7 < KH = 0.7857; (B) K = KH , a limit
cycle occurs; (C) K = 1.0 > KH .

2.2 Dynamical analysis of model (2)
In this subsection, we consider the stochastic model () as an Itô stochastic differential
system of the type

dU(t) = F
(
U(t)

)
dt +G

(
U(t)

)
dB(t), Ut =U, ()

where

U(t) =

(
P(t)
Z(t)

)
, B(t) =

(
B(t)
B(t)

)
, F =

(
rP( – P

K – aZ
m+P )

bZ( (–c)Pm+P – d)

)
,

G =

(
σP( – P

K – aZ
m+P ) 

 σZ( (–c)Pm+P – d)

)
,

and the solution U(t) (t > ) is an Itô process.
Here we give the following auxiliary statements which are introduced in []. Denote by

C,([t,∞]× R;R+) the family of all nonnegative functions V (t,U) defined on [t,∞]×
R such that they are continuously once differentiable in t and twice in U . The diffusion
operator L of the above equation () is defined by the formula

L =
∂

∂t
+

∑
i=

Fi(t,U)
∂

∂Ui
+



∑
i,j=

[
GT (t,U)G(t,U)

]
ij

∂

∂Ui ∂Ui
.

If L acts on a function V ∈ C,([t,∞]× R;R+), then

LV (t,U) = Vt(t,U) +VU (t,U)F(t,U) +


tr
[
GT (t,U)VUU (t,U)G(t,U)

]
.

For a stochastic differential equation, in order to have a unique global solution (that is,
no explosion in a finite time) for any given initial value, the coefficients of the equation are
generally required to satisfy the linear growth condition and local Lipschitz condition [].

http://www.advancesindifferenceequations.com/content/2014/1/22
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To show that model () has a positive global solution, let us firstly prove that the model
has a positive local solution by making a change of variables.

Theorem . There is a unique local solution (P(t),Z(t)) for t ∈ [, τe) to model () almost
surely for the initial value P > , Z > , where τe is the explosion time.

Proof Set u(t) = lnP(t), v(t) = lnZ(t); we consider the equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

du = [r( – eu
K – aev

m+eu ) –
σ

 ( – eu

K – aev
m+eu )

] dt

+ σ( – eu
K – aev

m+eu ) dB(t),

dv = [b( (–c)e
u

m+eu – d) – σ

 ( (–c)e

u

m+eu – d)] dt

+ σ( (–c)e
u

m+eu – d) dB(t),

u() = lnP, v() = lnZ,

()

on t ≥ . The coefficients of () satisfy the local Lipschitz condition and there is a unique
local solution (u(t), v(t)) on [, τe). By Itô’s formula, we can see that P(t) = eu(t), Z(t) = ev(t)

is the unique positive local solution to model () with initial value P > , Z > . �

In the following, we show this solution is global, i.e., τe =∞.

Theorem . For model () and any given initial value (P,Z) ∈ R
+, there is a unique

solution (P(t),Z(t)) on t ≥  and the solution will remain in R
+ almost surely.

Proof Let n >  be sufficiently large for P and Z lying within the interval [/n,n]. For
each integer n≥ n, define the stopping times

τn = inf

{
t ∈ [, τe] : P(t) /∈

(

n
,n

)
or Z(t) /∈

(

n
,n

)}
,

where we set inf∅ =∞ (∅ represents the empty set). τn is increasing as n→ ∞.
Let

τ∞ = lim
n→∞ τn,

then τ∞ ≤ τe a.s. Now, we need to show τ∞ = ∞ a.s. If this statement is violated, there
exist constants T >  and ε ∈ (, ) such that

P{τ∞ ≤ T} > ε.

Then, there is an integer n ≥ n such that

P{τn ≤ T} ≥ ε, n≥ n. ()

Define a C-function V : R
+ → R+ by

V (P,Z) =
√
P +

√
Z – (ln

√
P + ln

√
Z) – , ()

http://www.advancesindifferenceequations.com/content/2014/1/22
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which is a nonnegative function. If (P(t),Z(t)) ∈ R
+, by using Itô’s formula, we compute

dV (P,Z) =
[
r

(
√
P – )

(
 –

P
K

–
aZ

m + P

)
+
b

(
√
Z – )

(
( – c)P
m + P

– d
)

+
σ 


( –

√
P)

(
 –

P
K

–
aZ

m + P

)

+
σ 


( –

√
Z)

(
( – c)P
m + P

– d
)]

dt

+
σ


(
√
P – )

(
 –

P
K

–
aZ

m + P

)
dB

+
σ


(
√
Z – )

(
( – c)P
m + P

– d
)
dB

≤
[
r


(√
P +

P
K

–
√
P

K

)
+

bcP
(m + P)

+
σ 
 ( – c)P

(m + P)

+
σ 



(
 +

P

K +

√
P

K
–

√
P

K

)]
dt

+
[
arZ
m

+
bd

( –

√
Z) +

σ 



(
aZ
K

+
aZ

m +
aZ√
m

)

+
σ 



(
d + d( – c)

√
Z – d

√
Z
)]

dt

+
σ


(
√
P – )

(
 –

P
K

–
aZ

m + P

)
dB

+
σ


(
√
Z – )

(
( – c)P
m + P

– d
)
dB

≤ (M +M) dt +
σ


(
√
P – )

(
 –

P
K

–
aZ

m + P

)
dB

+
σ


(
√
Z – )

(
( – c)P
m + P

– d
)
dB,

where M, M are positive constants. Integrating both sides of the above inequality from
 to τn ∧ T and then taking the expectations lead to

EV
(
P(τn ∧ T),Z(τn ∧ T)

) ≤ V (P,Z) + (M +M)T . ()

Set �n = {τn ≤ T} and by inequality (), we get P(�n) ≥ ε. For every ω ∈ �n, there is
some i such that xi(τn,ω) equals either n or /n for i = , , hence V (P(τn,ω),Z(τn,ω)) is no
less than min{(√n – ln

√
n – ), (/

√
n + ln

√
n – )}. Then we obtain

V (P,Z) + (M +M)T ≥ E
[
�n (ω)V

(
P(τn),Z(τn)

)]
≥ εmin

{
(
√
n – ln

√
n – ),

(
√
n
+ ln

√
n – 

)}
,

where �n is the indicator function of �n. Letting n → ∞ leads to the contradiction ∞ =
V (P,Z) + (M +M)T < ∞. This completes the proof. �

http://www.advancesindifferenceequations.com/content/2014/1/22
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From Theorem ., model () has a positive global solution. By constructing some Lya-
punov functions, we analyze the stability of the positive equilibrium of the stochastic
model.

Theorem . When 	 = –bmK( – c)/(a(σ 
 P∗ – rK)(m+P∗)) and the conditions rK/P∗ <

σ 
 , and

aσ 
Z

∗( – c)
(
σ 
 P

∗ – rK
)

< bmK
(
m + P∗)(aZ∗(mr(m + P∗) + aσ 

 P∗Z∗)
m(m + P∗)

+
σ 
 P∗ – rK

K

)

hold, then for any initial value (P,Z) the equilibrium point (P∗,Z∗) of model () has the
property

lim
t→∞P(t) = P∗, lim

t→∞Z(t) = Z∗

almost surely.

Proof By the stability theory of stochastic differential equations [], we only need to es-
tablish a Lyapunov function V (U) satisfying LV (U) ≤  and the identity holds if and only
ifU =U∗, whereU =U(t) is the solution of the stochastic differential equation () andU∗

is the equilibrium position of ().
Define Lyapunov functions

V(P) = P – P∗ – P∗ ln
P
P∗ , V(Z) = Z – Z∗ – Z∗ ln

Z
Z∗ . ()

Referring to the work of Mao et al. [], the nonnegativity of these functions can be seen
from that x –  – logx≥  on x > . If (P(t),Z(t)) ∈ R

+, applying Itô’s formula leads to

LV = r
(
P – P∗)( – P

K
–

aZ
m + P

)
+

σ 
 P∗



(
 –

P
K

–
aZ

m + P

)

≤
(

arZ∗

m(m + P∗)
–

r
K

+
aσ 

 P∗Z∗

m(m + P∗)
+

σ 
 P∗

K

)(
P – P∗)

+
aσ 

 P∗

m

(
Z – Z∗) + a(σ 

 P∗ – rK)
K (m + P)

(
P – P∗)(Z – Z∗)

+
aσ 

 P∗Z∗

m(m + P∗)
∣∣P – P∗∣∣∣∣Z – Z∗∣∣,

LV = b
(
Z – Z∗)( ( – c)P

m + P
– d

)
+

σ 
Z∗



(
( – c)P
m + P

– d
)

≤ bm( – c)
(m + P)(m + P∗)

(
P – P∗)(Z – Z∗) + σ 

Z∗( – c)

(m + P∗)
(
P – P∗).

Let V (P,Z) = 	V(P) +V(Z); when we choose

	 = –
bmK( – c)

a(σ 
 P∗ – rK)(m + P∗)

,

http://www.advancesindifferenceequations.com/content/2014/1/22
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then

LV (P,Z) = LV(P) + LV(Z)

=
{
	

[
r
(

aZ∗

(m + P∗)(m + P)
–


K

)

+
σ 
 P∗



(
aZ∗

(m + P∗)(m + P)
–


K

)]

+
mσ 

Z∗( – c)

(m + P)(m + P∗)

}(
P – P∗) + 	aσ 

 P∗

(m + P)
(
Z – Z∗)

–
{
	

[
ar

m + P
+
aσ 

 P∗

m + P

(
aZ∗

(m + P∗)(m + P)
–


K

)]

–
bm( – c)

(m + P)(m + P∗)

}(
P – P∗)(Z – Z∗)

≤
[
–

bmK( – c)
a(σ 

 P∗ – rK)(m + P∗)

(
armZ∗(m + P∗) + aσ 

 P∗Z∗

m(m + P∗)

+
σ 
 P∗ – rK
K

)
+

σ 
Z∗( – c)

(m + P∗)

](
P – P∗)

–
bKaσ 

 ( – c)P∗

am(σ 
 P∗ – rK)(m + P∗)

(
Z – Z∗)

–
bKaσ 

 ( – c)P∗Z∗

am(σ 
 P∗ – rK)(m + P∗)

∣∣P – P∗∣∣∣∣Z – Z∗∣∣.
When rK/P∗ < σ 

 and

bmK
(
m + P∗)(aZ∗(mr(m + P∗) + aσ 

 P∗Z∗)
m(m + P∗)

+
σ 
 P∗ – rK

K

)

> aσ 
Z

∗( – c)
(
σ 
 P

∗ – rK
)
,

then we see that the above inequality implies LV (P,Z) <  along all trajectories in the first
quadrant except E∗ = (P∗,Z∗). Hence, the theorem holds. �

This theorem shows that when environmental noises satisfy some conditions, the
unique solution of model () in R

+ is a stochastically asymptotically stable. That’s to say,
both species under the effect of noises can coexist in stable conditions and eventually tend
to the equilibrium sate.
Theorem . shows that the solution to model () will remain in R

+. The property lets
us continue to discuss how the solution varies in R

+ in more detail. We first present the
definition of stochastic ultimate boundedness [, ], one of the important topics in pop-
ulation dynamics and defined as follows.

Definition . The solution (P(t),Z(t)) of model () is said to be stochastically ultimately
bounded, if, for any ε ∈ (, ), there is a positive constant δ = δ(ε), such that for any initial
value (P,Z) ∈ R

+, the solution (P(t),Z(t)) to model () has the property that

lim sup
t→∞

P
{∣∣(P(t),Z(t))∣∣ > δ

}
< ε.
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Theorem. The solution of model () is stochastically ultimately bounded for any initial
value (P,Z) ∈ R

+.

Proof From Theorem ., the solution will remain in R
+ for all t ≥  almost surely. Set a

function V = etPθ for (P,Z) ∈ R
+ and θ > . By Itô’s formula we obtain

dV = etPθ

[
 + rθ

(
 –

P
K

–
aZ

m + P

)
+

σ 
 θ (θ – )



(
 –

P
K

–
aZ

m + P

)]
dt

+ σθetPθ

(
 –

P
K

–
aZ

m + P

)
dB

≤ Cet dt + σθetPθ

(
 –

P
K

–
aZ

m + P

)
dB,

then etEPθ – EPθ
 ≤ Cet . So we get

lim sup
t→∞

EPθ ≤ C < +∞.

Define V = etZθ , then

dV = etZθ

[
 + bθ

(
( – c)P
m + P

– d
)
+

σ 
 θ (θ – )



(
( – c)P
m + P

– d
)]

dt

+ σθetZθ

(
( – c)P
m + P

– d
)
dB

≤ Cet dt + σθetZθ

(
( – c)P
m + P

– d
)
dB,

and we also have

lim sup
t→∞

EZθ ≤ C < +∞.

Therefore, we obtain

lim sup
t→∞

E
(
P(t) + Z(t)

) θ
 ≤ 

θ
 (C +C) < +∞,

and we have the required assertion by taking the Chebyshev inequality. �

Generally speaking, the non-explosion property, the existence and the uniqueness of
the solution are not enough, but the property of permanence is more desirable since it
means long time survival in a population dynamics. Now, the definition of stochastic per-
manence [–] will be given below.

Definition . The solution (P(t),Z(t)) of model () is said to be stochastically perma-
nent, if, for any ε ∈ (, ), there exists a pair of positive constants δ = δ(ε) and χ = χ (ε)
such that for any initial value (P,Z) ∈ R

+, the solution (P(t),Z(t)) to model () has the
properties that

lim inf
t→∞ P

{∣∣(P(t),Z(t))∣∣ ≥ δ
} ≥  – ε, lim inf

t→∞ P
{∣∣(P(t),Z(t))∣∣ ≤ χ

} ≥  – ε.

http://www.advancesindifferenceequations.com/content/2014/1/22


Rao Advances in Difference Equations 2014, 2014:22 Page 12 of 18
http://www.advancesindifferenceequations.com/content/2014/1/22

Theorem . For any initial value (P,Z) ∈ R
+, the solution (P(t),Z(t)) satisfies

lim sup
t→∞

E
[(
P + Z)– θ


] ≤ θC

k
,

where C is a positive constant and θ , k are arbitrary positive constants satisfying

θ min
{
r,b( – c)

}
>

θ (θ + )


max
{
σ 
 ,σ



}
+ k. ()

Proof Set a function

V (P,Z) =


P + Z
, ()

for (P(t),Z(t)) ∈ R
+, by Itô’s formula, we have

dV = –V 
[
rP

(
 –

P
K

–
aZ

m + P

)
+ bZ

(
( – c)P
m + P

– d
)]

dt

+V 
[
σ 
 P


(
 –

P
K

–
aZ

m + P

)

+ σ 
Z


(
( – c)P
m + P

– d
)]

dt

–V 
[
σP

(
 –

P
K

–
aZ

m + P

)
dB + σZ

(
( – c)P
m + P

– d
)
dB

]
.

Then choosing a positive constant θ and using Itô’s formula, we can get

L( +V )θ

= θ ( +V )θ–
{
–V 

[
rP

(
 –

P
K

–
aZ

m + P

)
+ bZ

(
( – c)P
m + P

– d
)]

+V 
[
σ 
 P


(
 –

P
K

–
aZ

m + P

)

+ σ 
Z


(
( – c)P
m + P

– d
)]}

+
θ (θ – )


V ( +V )θ–

[
σ 
 P


(
 –

P
K

–
aZ

m + P

)

+ σ 
Z


(
( – c)P
m + P

– d
)]

.

Let k >  be sufficiently small, so that it satisfies (), then

Lekt( +V )θ

= ekt( +V )θ–
{
k( +V ) – θV ( +V )

[
rP

(
 –

P
K

–
aZ

m + P

)
+ bZ

(
( – c)P
m + P

– d
)]

+ θ ( +V )V 
[
σ 
 P


(
 –

P
K

–
aZ

m + P

)

+ σ 
Z


(
( – c)P
m + P

– d
)]

+
θ (θ – )


V 

[
σ 
 P


(
 –

P
K

–
aZ

m + P

)

+ σ 
Z


(
( – c)P
m + P

– d
)]}

.

We are motivated by reference [] and the following inequalities:

V (σ 
 P

 + σ 
Z

) ≤max
{
σ 
 ,σ



}
V .
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Therefore, we obtain

Lekt( +V )θ ≤ ekt( +V )θ–
[
k + θ max

{
r
K
,ar + bd

}

+
(
k + θ max

{
r
K
,ar + bd

}
– θ min

{
r,b( – c)

}
+ θ max

{
σ 
 ,σ



})

V

–
(

θ min
{
r,b( – c)

}
–

θ (θ + )


max
{
σ 
 ,σ



}
– k

)
V 

]
.

There exists a positive constant C such that Lekt( +V )θ ≤ Cekt ; then

E
[
ekt( +V )θ

] ≤ (
 +V ()

)θ +
C
k

(
ekt – 

)
.

So we can get

lim sup
t→∞

EV θ (t) ≤ lim sup
t→∞

E
(
 +V (t)

)θ ≤ C
k
.

In addition, we know that (P + Z)θ ≤ θ (P + Z) θ
 , consequently,

lim sup
t→∞

E
[


(P + Z) θ



]
≤ θ lim sup

t→∞
EV θ (t)≤ θC

k
.

The proof is complete. �

Based on the results of Theorems ., . and the Chebyshev inequality, we can obtain
the following theorem.

Theorem . Assume that max{σ 
 ,σ 

 } < min{r,b( – c)}, the solution of model () is
stochastically permanent.

In the above discussion, we show that under certain conditions, the stochastic model ()
is ultimately bounded and stochastically permanent. Here, we will show that if the noise is
sufficiently large, the solution to the stochastic model will become extinct. In other words,
the following theorem reveals the important fact that the environmental noise may make
the population extinct.

Theorem . The solution (P(t),Z(t)) of model () with initial value (P,Z) ∈ R
+ has

the following properties:

lim sup
t→∞

lnP
t

≤ r –
σ 


, lim sup

t→∞
lnZ
t

≤ b – bd –
σ 



a.s.

Proof It follows from model () that

⎧⎨
⎩dP ≤ rP( – P

K – aZ
m+P ) dt + σPdB(t),

dZ ≤ bZ( (–c)Pm+P – d) dt + σZ dB(t).
()
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Set
⎧⎨
⎩dP̄ = rP̄( – P̄

K – aZ̄
m+P̄ ) dt + σP̄ dB(t),

dZ̄ = bZ̄( (–c)P̄m+P̄ – d) dt + σZ̄ dB(t),
()

where (P̄(t), Z̄(t)) is a solution of model () with initial value P̄ >  and Z̄ > . By the
comparison theorem for stochastic differential equations, it is easy to find

P(t) ≤ P̄(t), Z(t)≤ Z̄(t), a.s. t ∈ [,∞]. ()

For model (), define the Lyapunov functions ln P̄ and ln Z̄, respectively, then by the Itô
formula, we have

ln P̄ = ln P̄ +
(
r –

σ 



)
t –

r
K

∫ t


P̄(s) ds – ar

∫ t



Z̄(s)
m + P̄(s)

ds + σB(t),

ln Z̄ = ln Z̄ +
(
–bd –

σ 



)
t + b( – c)

∫ t



P̄(s)
m + P̄(s)

ds + σB(t).

Hence, we can derive

ln P̄ ≤ ln P̄ +
(
r –

σ 



)
t + σB(t),

ln Z̄ ≤ ln Z̄ +
(
b – bd –

σ 



)
t + σB(t).

()

Dividing t on the both sides of () and letting t → ∞, we obtain

lim sup
t→∞

lnP
t

≤ lim sup
t→∞

ln P̄
t

≤ r –
σ 


,

lim sup
t→∞

lnZ
t

≤ lim sup
t→∞

ln Z̄
t

≤ b – bd –
σ 



a.s.

as required. �

Corollary . Assume r – σ 
 / <  and b – bd – σ 

 / <  hold, then for any initial value
(P,Z) ∈ R

+, the solution (P(t),Z(t)) to model () will be extinct.

3 Numerical analysis
In order to facilitate the interpretation of our mathematical results in the stochastic
model (), we proceed to investigate them by numerical simulations.
When choosing the environmental carrying capacity K = ., under different noise

intensities σ 
 and σ 

 , Figure  shows time-series plots of the toxin-producing phyto-
plankton population P and zooplankton population Z of model () with initial value
(P,Z) = (., .) and the other parameters values are

r = , m = ., a = ., b = ., c = ., d = .. ()

http://www.advancesindifferenceequations.com/content/2014/1/22


Rao Advances in Difference Equations 2014, 2014:22 Page 15 of 18
http://www.advancesindifferenceequations.com/content/2014/1/22

Figure 3 Time-series plots of model (2) with initial value (P0,Z0) = (0.45, 0.6) and different noise
intensities σ 2

1 and σ 2
2 . Here K = 0.7 and other parameters values are taken as (17). (A) σ 2

1 = σ 2
2 = 0;

(B) σ 2
1 = 0.1, σ 2

2 = 0.25; (C) σ 2
1 = 0.96, σ 2

2 = 1.05; (D) σ 2
1 = 8.45, σ 2

2 = 4.5.

In Figure (A), without noise (i.e., σ 
 = σ 

 = ), the equilibrium point (P∗,Z∗) = (.,
.) of model () is globally asymptotically stable, which illustrates the stable pop-
ulation distribution of both species. In Figure (B), with noise intensities σ 

 = . and
σ 
 = . satisfying the conditions of Theorem ., one can see that the random white

noise leads to a slight oscillations, and the later random noise makes the oscillations
decay, the model ending with the time-independent stability. Comparing Figures (A)
and (B), one can realize that, if the white noise is not strong, the equilibrium E∗ = (P∗,Z∗)
is stochastic asymptotically stable and the stochastic perturbation does not cause sharp
changes of the dynamics of model (). In this case, we get a stable population distribution.
In Figure (C), choosing σ 

 = . and σ 
 = ., one can see that as the intensities of the

noise are increasing, the phytoplankton and zooplankton population give rise to drasti-
cally ruleless oscillations with time. In Figure (D), increasing σ 

 and σ 
 to . and .,

respectively, which satisfy the conditions r < σ 
 / and b – bd < σ 

 / in Corollary ., we
find that model () is not permanent and the toxic-phytoplankton population P and zoo-
plankton population Z will go to extinction. In other words, if the conditions r – σ 

 / < 
and b – bd – σ 

 / <  hold in Corollary ., the positive equilibrium (P∗,Z∗) is no longer
globally stable. This shows that large white noise will force the population to become ex-
tinct while the population may be persistent under relatively small white noise.
Increasing K to K = ., we take the other parameters the same as in Figure  for

model () with different noise intensities σ 
 and σ 

 . Figure  illustrates time-series plots
and phase portraits of the two species of model (). In Figure (A), without noise (i.e.,
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Figure 4 Dynamical behavior of model (2) with different noise intensities σ 2
1 and σ 2

2 . Here K = 1.2 and
the other parameters are the same as for Figure 3. (A) σ 2

1 = σ 2
2 = 0; (B) σ 2

1 = 0.05, σ 2
2 = 0.1; (C) σ 2

1 = 1.0,
σ 2
2 = 0.5.

σ 
 = σ 

 = ), a Hopf bifurcation takes place, and a Hopf-bifurcating periodic solution
(P∗,Z∗) = (., .) exists and is showed in it. In Figure (B) and (C), as the en-
vironmental noise intensities σ 

 and σ 
 are increased, there is a drastic influence on the

dynamical behavior of model (). In Figure (B), σ 
 = ., σ 

 = ., and Figure (C),
σ 
 = ., σ 

 = ., which all satisfy the conditions of Theorem ., one can see that with
the perturbation of environmental noise the periodic solution occurs with random peri-
odic variance for model (). This means that under some conditions and the noise not
being strong, stochastic perturbation does not change the permanence of the determinis-
tic plankton model.
We note that, if a positive equilibrium of the deterministic model is globally stable, then

the stochastic model preserves the property of the stochastic asymptotical stability when
noise is not sufficiently large. In this case, we can ignore the noise and use the determin-
istic model to describe the population dynamics. However, when the intensity of noise is
sufficiently large, the noise can force the population to give rise to drastically ruleless os-
cillations and to become extinct. In this case, we cannot ignore the effect of noise and only
use the stochastic model to describe the population dynamics.

4 Conclusions and remarks
In reality, the varying environment is always fraught with all kinds of randomness, but
the knowledge as regards the effects of environmental noise on the toxin-producing phy-
toplankton population and zooplankton population is limited. In this paper, we consider
a stochastic toxic-phytoplankton-zooplankton model with Holling type-II functional re-
sponse. The value of this study lies in two aspects. First, stability criteria of model () are
analyzed both from a local and a global point of view. The existence of a Hopf bifurcation
around an interior equilibrium is established. Second, it presents the complex dynamics
of the plankton model () with the effect of environmental noise.
For the toxin-producing phytoplankton-zooplankton model (), by analyzing the cor-

responding characteristic equation and constructing a Lyapunov function, we study both
the local and the global stability of a positive equilibrium. Taking the carrying capacity K

http://www.advancesindifferenceequations.com/content/2014/1/22


Rao Advances in Difference Equations 2014, 2014:22 Page 17 of 18
http://www.advancesindifferenceequations.com/content/2014/1/22

as the bifurcation parameter, when K crosses a threshold value KH =m(– c+d)/(– c–d)
the toxin-producing plankton model enters into a Hopf bifurcation and has a periodic or-
bit around the coexisting equilibrium E∗ = (P∗,Z∗).
In order to study the stochastic model (), we perturb the deterministic planktonmodel

with respect to environmental noise around the growth rates of toxic-phytoplankton and
zooplankton. Applying a Lyapunov function, we show that there is a unique positive so-
lution to the model for any positive initial value. By Itô’s formula, we derive that the solu-
tion is stochastically bounded and stochastically permanent under some conditions. These
conditions depend on the intensities of noise, σ 

 and σ 
 .When the intensities of noise sat-

isfy some conditions and are not sufficiently large, the population of the stochastic model
may be stochastically permanent. Our complete analysis of the model will give some sug-
gestions for the studies on the population dynamics of other models.
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