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Abstract
In this paper we mainly study the weakly mixing sets and transitive sets of
non-autonomous discrete systems. Some basic concepts are introduced for
non-autonomous discrete systems, including a weakly mixing set and a transitive set.
We discuss the basic properties of weakly mixing sets and transitive sets of
non-autonomous discrete systems. Also, we investigate the relationship between two
conjugated non-autonomous discrete systems on weakly mixing sets and transitive
sets.
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1 Introduction
Throughout this paper N denotes the set of all positive integers, and let Z+ =N∪ {}. Let
X be a topological space, let fn : X → X for each n ∈ N be a continuous map, and let f,∞
denote the sequence (f, f, . . . , fn, . . .). The pair (X, f,∞) is referred to as a non-autonomous
discrete system []. Define

f n (x) := fn ◦ fn– ◦ · · · ◦ f ◦ f, n ∈ N,

and f  := idX , the identity on X. In particular, when f,∞ is a constant sequence (f , f , . . . ,
f , . . .), the pair (X, f,∞) is just a classical discrete dynamical system (autonomous discrete
dynamical system) (X, f ). The orbit initiated from x ∈ X under f,∞ is defined by the set

γ (x, f,∞) =
{
x, f(x), f  (x), . . . , f

n
 (x), . . .

}
.

Its long-term behaviors are determined by its limit sets.
Topological transitivity, weakmixing and sensitive dependence on initial conditions (see

[–]) are global characteristics of topological dynamical systems. Let (X, f ) be a topolog-
ical dynamical system. (X, f ) is topologically transitive if for any nonempty open subsetsU
and V of X there exists n ∈N such that f n(U)∩V �= ∅. (X, f ) is (topologically)mixing if for
any nonempty open subsets U and V of X, there exists N ∈N such that f n(U)∩V �= ∅ for
all n ∈N with n≥N . (X, f ) is (topologically) weakly mixing if for any nonempty open sub-
setsU,U,V andV ofX, there exists n ∈N such that f n(U)∩V �= ∅ and f n(U)∩V �= ∅.
It follows from these definitions that mixing implies weak mixing which in turn implies
transitivity.
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Blanchard introduced overall properties and partial properties in []. For example, sen-
sitive dependence on initial conditions, Devaney chaos (see []), weakmixing, mixing and
more belong to overall properties; Li-Yorke chaos (see []) and positive entropy (see [, ])
belong to partial properties. Weak mixing is an overall property, it is stable under semi-
conjugate maps and implies Li-Yorke chaos. By [], we know that a weakly mixing system
always contains a dense uncountable scrambled set. In [], Blanchard and Huang intro-
duced the concepts of weakly mixing set and partial weak mixing, derived from a result
given by Xiong and Yang [] and showed that ‘partial weakmixing implies Li-Yorke chaos’
and ‘Li-Yorke chaos cannot imply partial weak mixing’. Let A be a closed subset of X but
not a singleton. Then A is a weakly mixing set of X if and only if for any k ∈N, any choice
of nonempty open subsets V,V, . . . ,Vk ofA and nonempty open subsetsU,U, . . . ,Uk of
X with A∩Ui �= ∅, i = , , . . . ,k, there existsm ∈N such that f m(Vi)∩Ui �= ∅ for  ≤ i≤ k.
(X, f ) is called partial weak mixing if X contains a weakly mixing subset. Next, Oprocha
and Zhang [] extended the notion of weakly mixing set and gave the concept of ‘transi-
tive set’ and discussed its basic properties. Let A be a nonempty subset of X. A is called a
transitive set of (X, f ) if for any choice of a nonempty open subset VA ofA and a nonempty
open subset U of X with A∩U �= ∅, there exists n ∈N such that f n(VA)∩U �= ∅.
In past ten years, a large number of papers have been devoted to dynamical properties in

non-autonomous discrete systems. Kolyada and Snoha [] gave the definition of topologi-
cal entropy in non-autonomous discrete systems; Kolyada et al. [] discussed minimality
of non-autonomous discrete systems; Kempf [] and Canovas [] studied ω-limit sets
in non-autonomous discrete systems. Krabs [] discussed stability in non-autonomous
discrete systems; Huang et al. [, ] studied topological pressure and pre-image entropy
of non-autonomous discrete systems. Shi and Chen [] and Oprocha and Wilczynski
[] and Canovas [] discussed chaos in non-autonomous discrete systems, respectively.
Kuang and Cheng [] studied fractal entropy of non-autonomous systems. In this paper,
we extend the notions of weakly mixing set and transitive set and give the definitions of
transitive set and weakly mixing set for a non-autonomous discrete system. We discuss
the basic properties of weakly mixing sets and transitive sets for non-autonomous dis-
crete systems. Moreover, we investigate the weakly mixing sets and transitive sets for the
conjugated non-autonomous discrete systems and obtain that if a system has a transitive
set (a weakly mixing set), then the conjugated system has a transitive set (a weakly mixing
set).

2 Preliminaries
In the present paper, A and int(A) denote the closure and interior of the setA, respectively.
f n denotes fn ◦ fn– ◦ · · · ◦ f ◦ f, i.e., f n = fn ◦ fn– ◦ · · · ◦ f ◦ f for any n ∈ N. We define

(fk)n = fk ◦ fk ◦ · · · ◦ fk︸ ︷︷ ︸
n

for any k,n ∈N.
A non-autonomous discrete dynamical system (X, f,∞) is said to be point transitive if

there exists a point x ∈ X, the orbit of x is dense in X, i.e., γ (x, f,∞) = X, and x is called
a transitive point of (X, f,∞). (X, f,∞) is said to be topologically transitive if for any two
nonempty open sets U and V of X, there exists k ∈ N such that f k (U)∩V �= ∅. (X, f,∞) is
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said to be weakly mixing if for any nonempty open sets Ui and Vi of X for i = , , there
exists k ∈N such that f k (Ui)∩Vi �= ∅ for i = , .

Definition . [] Let (X, f,∞) be a non-autonomous discrete system. The set A ⊆ X is
said to be invariant if f n (A) ⊆ A for any n ∈N.

Definition . Let (X, f,∞) be a non-autonomous discrete system and A be a nonempty
closed subset of X. A is called a transitive set of (X, f,∞) if for any choice of a nonempty
open set VA of A and a nonempty open set U of X with A∩U �= ∅, there exists n ∈N such
that f n (VA)∩U �= ∅.

Remark If (X, f,∞) is topologically transitive, then X is a transitive set of (X, f,∞).

Definition . Let (X, f,∞) be a non-autonomous discrete system and A be a nonempty
closed subset of X but not a singleton. A is called a weakly mixing set of (X, f,∞) if for any
k ∈ N, any choice of nonempty open subsets VA

 ,VA
 , . . . ,VA

k of A and nonempty open
subsets U,U, . . . ,Uk of X with A ∩ Ui �= ∅, i = , , . . . ,k, there exists n ∈ N such that
f n (VA

i )∩Ui �= ∅ for each  ≤ i≤ k.

According to the definitions of transitive set andweaklymixing set of a non-autonomous
discrete system, we have the following results.
Result . If A is a weakly mixing set of (X, f,∞), then A is a transitive set of (X, f,∞).
Result . If a ∈ X is a transitive point of (X, f,∞), then {a} is a transitive set of (X, f,∞).

Example . Let

fn(x) =

⎧⎪⎨
⎪⎩

n
n–x if ≤ x ≤ n–

n ,
 if n–

n ≤ x≤ n+
n ,

n
n– ( – x) if n+

n ≤ x ≤ ,
n = ,, . . .

and f = f = id, the identity on [, ].
Observe that the given sequence converges uniformly to the tent map

f (x) =

{
x if  ≤ x ≤ 

 ,
( – x) if 

 ≤ x ≤ ,

which is known to be topologically transitive on I = [, ] from [, ]. We can easily prove
that [,  ] is a transitive set of (X, f,∞).

Figure  and Figure  denote the tent map f and the nd iterate f  of the tent map f ,
respectively.

Definition . [] Let (X, τ ) be a topological space and A be a nonempty set of X. A is a
regular closed set of X if A = int(A).

We easily prove that A is a regular closed set if and only if int(VA) �= ∅ for any nonempty
set VA of A.
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Figure 1 The tent map f .

Figure 2 The 2nd iterate f2 of the tent map f .

Definition . [] Let (X, τ ) be a topological space. A and B are two nonempty subsets
of X. B is dense in A if A⊆ A∩ B.

In fact, we easily prove that B is dense in A if and only if VA ∩ B �= ∅ for any nonempty
open set VA of A.

3 Main results
In this section, we discuss the properties of transitive sets and weakly mixing sets for non-
autonomous discrete systems.

Proposition . Let (X, f,∞) be a non-autonomous discrete system and A be a nonempty
closed set of X. Then the following conditions are equivalent.
() A is a transitive set of (X, f,∞).
() Let VA be a nonempty open subset of A and U be a nonempty open subset of X with

A∩U �= ∅. Then there exists n ∈N such that VA ∩ (f n )–(U) �= ∅.
() LetU be a nonempty open set of X withU ∩A �= ∅. Then ⋃

n∈N(f n )–(U) is dense in A.

Proof () ⇒ () Let A be a transitive set of (X, f,∞). Then, for any choice of a nonempty
open set VA of A and a nonempty open set U of X with A ∩ U �= ∅, there exists n ∈
N such that f n (VA) ∩ U �= ∅. Since f n (VA ∩ (f n )–(U)) = f n (VA) ∩ U , it follows that
VA ∩ (f n )–(U) �= ∅.
() ⇒ () Let VA be any nonempty open set of A and U be a nonempty open set of X

with A ∩ U �= ∅. By the assumption of (), there exists n ∈ N such that VA ∩ (f n )–U �= ∅.
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Furthermore, we have

VA ∩
⋃
n∈N

(
f n

)–U =
⋃
n∈N

(
VA ∩ (

f n
)–(U)

) �= ∅.

Therefore,
⋃

n∈N(f n )–(U) is dense in A.
() ⇒ () Let VA be any nonempty open set of A and U be a nonempty open set of X

with A∩U �= ∅. Since⋃
n∈N(f n )–(U) is dense in A, it follows that VA ∩⋃

n∈N(f n )–(U) �= ∅.
Furthermore, there exists n ∈ N such that VA ∩ (f n )–(U) �= ∅. As f n (VA ∩ (f n )–(U)) =
f n (VA)∩U , we have f n (VA)∩U �= ∅. Therefore, A is a transitive set of (X, f,∞). �

Corollary . Let (X, f ) be a classical dynamical system and A be a nonempty closed set
of X. Then the following conditions are equivalent.
() A is a transitive set of (X, f ).
() Let VA be a nonempty open subset of A and U be a nonempty open subset of X with

A∩U �= ∅. Then there exists n ∈N such that VA ∩ f –n(U) �= ∅.
() Let U be a nonempty open set of X with A∩U �= ∅. Then ⋃

n∈N f –n(U) is dense in A.

Proposition. Let (X, f,∞) be a non-autonomous discrete system,where (X,d) is ametric
space and A is a nonempty closed subset of X.Then the following conditions are equivalent.
() A is a transitive set of (X, f,∞).
() Let a,x ∈ A and ε, δ > . Then there exists n ∈N such that

(A∩ B(a, ε))∩ (f n )–(B(x, ε)) �= ∅.
() Let a,x ∈ A and ε > . Then there exists n ∈N such that

(A∩ B(a, ε))∩ (f n )–(B(x, ε)) �= ∅.

Proof () ⇒ () By the definition of transitive set, () is obtained easily.
() ⇒ () Obviously.
()⇒ () LetVA be any nonempty open set ofA andU be a nonempty open set ofX with

A ∩U �= ∅, then there exist a,x ∈ A and ε >  such that A ∩ B(a, ε) ⊆ VA and B(x, ε) ⊆ U .
By the assumption of (), there exists n ∈ N such that (A ∩ B(a, ε)) ∩ (f n )–(B(x, ε)) �= ∅,
further, VA ∩ (f n )–(U) �= ∅. Therefore, A is a transitive set of (X, f,∞). �

Proposition . Let (X, f,∞) be a non-autonomous discrete system and A is a transitive
set of (X, f,∞). Then:

() U is dense in A if U is a nonempty open set of X satisfying A∩U �= ∅ and
(f n )–(U)⊆U for every n ∈N.

() E = A or E is nowhere dense in A if E is a closed invariant subset of X and E ⊆ A.
()

⋃
n∈N f n (A) is dense in A if A is a regular closed set of X .

Proof () Since (f n )–(U) ⊆ U for every n ∈ N, we have
⋃

n∈N(f n )–(U) ⊆ U . By Proposi-
tion ., we have that U is dense in A.
() Let E �= A. Since E is a closed set of X and E ⊆ A, it follows that U = X \ E is an open

set of X and U ∩ A �= ∅. Moreover, E is an invariant subset of X, we have f n (E) ⊆ E for
every n ∈N. Furthermore,

(
f n

)–(U) =
(
f n

)–(X \ E) = (
f n

)–(X) \ (
f n

)–(E)⊆ X \ E =U for every n ∈N.

By the result of (), U is dense in A. Therefore, E is nowhere dense in A.
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() Let VA be a nonempty open set of A. Since A is a regular closed set of X, it follows
that int(VA) �= ∅ and int(A) �= ∅. Moreover,A is a transitive set of (X, f,∞), there exists n ∈N

such that f n (int(A))∩ int(VA) �= ∅. Furthermore, we have f n (A)∩VA �= ∅, which implies that⋃
n∈N f n (A) is dense in A. �

Theorem . Let (X, f,∞) be a non-autonomous discrete system and A be a nonempty
closed invariant set of X . Then A is a transitive set of (X, f,∞) if and only if (A, f,∞) is
topologically transitive.

Proof Necessity. LetVA andUA be two nonempty open subsets ofA. For a nonempty open
subsetUA ofA, there exists an open setU ofX such thatUA =U∩A. SinceA is a transitive
set of (X, f,∞), there exists n ∈ N such that f n (VA) ∩U �= ∅. Moreover, A is invariant, i.e.,
f n (A) ⊆ A for every n ∈N, which implies that f n (VA) ⊆ A. Therefore, f n (VA)∩A∩U �= ∅,
i.e., f n (VA)∩UA �= ∅. This shows that (A, f,∞) is topologically transitive.
Sufficiency. Let VA be a nonempty open set of A and U be a nonempty open set of

X with A ∩ U �= ∅. Since U is an open set of X and A ∩ U �= ∅, it follows that U ∩ A is a
nonempty open set ofA. As (A, f,∞) is topologically transitive, there exists n ∈N such that
f n (VA)∩ (U ∩A) �= ∅, which implies that f n (VA)∩U �= ∅. This shows that A is a transitive
set of (X, f,∞). �

Theorem . Let (X, f,∞) be topologically transitive and A be a regular closed set of X .
Then A is a transitive set of (X, f,∞).

Proof Let VA be a nonempty set of A andU be a nonempty set of X with A∩U �= ∅. Since
A is a regular closed set and (X, f,∞) is topologically transitive, there exists n ∈N such that
f n (int(VA)) ∩U �= ∅, which implies that f n (VA) ∩U �= ∅. Therefore, A is a transitive set of
(X, f,∞). �

Corollary . Let (X, f,∞) be a non-autonomous discrete system. Then (X, f,∞) is topo-
logically transitive if and only if every nonempty regular closed set of X is a transitive set of
(X, f,∞).

Definition . Let (X, f,∞) and (Y , g,∞) be two non-autonomous discrete systems, and
let h : X → Y be a continuous map and

gn
(
h(x)

)
= h

(
fn(x)

)
for any n ∈N,x ∈ X.

() If h : X → Y is a surjective map, then f,∞ and g,∞ are said to be topologically
semi-conjugate.

() If h : X → Y is a homeomorphism, then f,∞ and g,∞ are said to be topologically
conjugate.

Example . Let fn : R → R with fn(x) = nx for all n ∈ N and x ∈ R, where R is a real
line, and gn : S → S with gn(eiθ ) = einθ for all n ∈ N, where S is the unite circle. Define
h : R → S by h(x) = eπ ix. It can be easily verified that h is a continuous surjective map and
h ◦ fn = gn ◦ h. Therefore, (R, f,∞) and (S, g,∞) are topologically semi-conjugate.

http://www.advancesindifferenceequations.com/content/2014/1/217
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Theorem . Let (X, f,∞) and (Y , g,∞) be two non-autonomous discrete systems, and let
h : X → Y be a semi-conjugate map.A is a nonempty closed subset of X and h(A) is a closed
subset of Y . Then:
() If A is a transitive set of (X, f,∞), then h(A) is a transitive set of (Y , g,∞).
() If A is a weakly mixing set of (X, f,∞) and h(A) is not a singleton, then h(A) is a

weakly mixing set of (Y , g,∞).

Proof () Let Vh(A) be a nonempty open set of h(A) and U be a nonempty open set of Y
with h(A)∩U �= ∅. Since h(A) is a subspace of Y , there exists an open set V of Y such that
Vh(A) = V ∩ h(A). Furthermore,

A∩ h–
(
Vh(A)) = A∩ h–

(
V ∩ h(A)

)
= A∩ h–(V ).

Hence, A∩ h–(Vh(A)) is an open subset of A. Since

h
(
A∩ h–

(
Vh(A))) = h(A)∩Vh(A) = Vh(A) �= ∅,

then we have A ∩ h–(Vh(A)) �= ∅. Moreover, U ∩ h(A) �= ∅, which implies that h–(U) ∩
A �= ∅. Since A is a transitive set of (X, f,∞), there exists n ∈ N such that h–(Vh(A)) ∩ A ∩
(f n )–(h–(U)) �= ∅. As h is a semi-conjugate map, i.e., gk(h(x)) = h(fk(x)) for every k ∈ N,
x ∈ X, we have h–(gk)–(x) = (fk)–h–(x) for every k ∈ N, x ∈ X. Therefore, h–(Vh(A) ∩
(gn )–(U)) �= ∅, which implies that Vh(A) ∩ (gn )–U �= ∅. This shows that h(A) is a transitive
set of (Y , g,∞).
() Suppose that A is a weakly mixing set of (X, f,∞) and h(A) is a closed subset of Y but

not a singleton. Fix k ∈N. If Vh(A)
 ,Vh(A)

 , . . . ,Vh(A)
k are nonempty open subsets of h(A) and

U,U, . . . ,Uk are nonempty open subsets of Y with h(A)∩Ui �= ∅, i = , , . . . ,k. Since h(A)
is a subspace of Y , there exists an open subset Vi of Y such that Vh(A)

i = Vi ∩ h(A) for each
i = , , . . . ,k. But

A∩ h–
(
Vh(A)
i

)
= A∩ h–

(
Vi ∩ h(A)

)
= A∩ h–(Vi),

then A∩ h–(Vh(A)
i ) (i = , , . . . ,k) are open subsets of A. Since

h
(
A∩ h–

(
Vh(A)
i

))
= h(A)∩Vh(A)

i = Vh(A)
i �= ∅,

it follows thatA∩h–(Vh(A)
i ) �= ∅ for each i = , , . . . ,k. Furthermore, h–(Ui) is a nonempty

open subset of X with h–(Ui) ∩ A �= ∅ for each i = , , . . . ,k. Since A is a weakly mixing
set of (X, f,∞), there exists n ∈ N such that (h–(Vh(A)

i )∩A)∩ (f n )–(h–(Ui)) �= ∅. As h is a
semi-conjugatemap, i.e., gm(h(x)) = h(fm(x)) for everym ∈N, x ∈ X, we have h–(gm)–(x) =
(fm)–h–(x) for every m ∈ N, x ∈ X. Furthermore, h–(Vh(A)

i ∩ (gn )–Ui) �= ∅ for each i =
, , . . . ,k, which implies that Vh(A)

i ∩ (gn )–Ui �= ∅ for each i = , , . . . ,k. This shows that
h(A) is a weakly mixing set of (Y , g,∞). �

Corollary . Let (X, f,∞) and (Y , g,∞) be two non-autonomous discrete systems, and let
h : X → Y be a conjugate map. Then:
() (X, f,∞) has a transitive set if and only if so is (Y , g,∞).
() (X, f,∞) has a weakly mixing set if and only if so is (Y , g,∞).
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Definition . Let (X, f,∞) be a non-autonomous discrete system. f,∞ is a k-periodic
discrete system if there exists k ∈ Z

+ such that fn+k(x) = fn(x) for any x ∈ X and n ∈ Z
+.

Let (X, f,∞) be a k-periodic discrete system for any k ∈ Z
+. Define g =: fk ◦ fk– ◦· · ·◦ f, we

say that (X, g) is an induced autonomous discrete system by a k-periodic discrete system
(X, f,∞).
From Definition ., we easily obtain the following proposition.

Proposition . Let (X, f,∞) be a k-periodic non-autonomous discrete systemwhere (X,d)
is a metric space, g = fk ◦ fk– ◦ · · · ◦ f, (X, g) is its induced autonomous discrete system.
Then:
() If (X, g) has a transitive set, then so is (X, f,∞).
() If (X, g) has a weakly mixing set, then so is (X, f,∞).

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
LL (the first author) carried out the study of weakly mixing sets and transitive sets for non-autonomous discrete systems
and drafted the manuscript. YS (the second author) helped to draft the manuscript. All authors read and approved the
final manuscript.

Acknowledgements
The authors would like to thank the referees for many valuable and constructive comments and suggestions for
improving this paper. This work was supported by the Education Department Foundation of Henan Province (13A110832,
14B110006), P.R. China.

Received: 15 May 2014 Accepted: 15 July 2014 Published: 04 Aug 2014

References
1. Kolyada, S, Snoha, L: Topological entropy of nonautonomous dynamical systems. Random Comput. Dyn. 4, 205-233

(1996)
2. Block, LS, Coppel, WA: Dynamics in One Dimension. Lecture Notes in Mathematics, vol. 1513. Springer, Berlin (1992)
3. Robinson, C: Dynamical Systems: Stability, Symbolic Dynamics, and Chaos, 2nd edn. CRC Press, Boca Raton (1999)
4. Walters, P: An Introduction to Ergodic Theory. Texts in Math., vol. 79. Springer, New York (1982)
5. Blanchard, F: Topological chaos: what may this mean? J. Differ. Equ. Appl. 15, 23-46 (2009)
6. Devaney, RL: An Introduction to Chaotic Dynamical Systems. Addison-Wesley, Redwood City (1989)
7. Li, TY, Yorke, J: Period three implies chaos. Am. Math. Mon. 82, 985-992 (1975)
8. Ruette, S: Chaos for continuous interval maps: a survey of relationship between the various sorts of chaos.

http://www.math.u-psud.fr/~ruette/
9. Iwanik, A: Independence and scrambled sets for chaotic mapping. In: The Mathematical Heritage of C.F. Gauss,

pp. 372-378. World Scientific, River Edge (1991)
10. Blanchard, F, Huang, W: Entropy sets, weakly mixing sets and entropy capacity. Discrete Contin. Dyn. Syst. 20, 275-311

(2008)
11. Xiong, J, Yang, Z: Chaos caused by a topologically mixing map. In: Dynamical Systems and Related Topics. Advanced

Series in Dynamical Systems, vol. 9, pp. 550-572. World Scientific, Singapore (1991)
12. Oprocha, P, Zhang, G: On local aspects of topological weak mixing in dimension one and beyond. Stud. Math. 202,

261-288 (2011)
13. Kolyada, S, Snoha, L, Trofimchuk, S: On minimality of nonautonomous dynamical systems. Nonlinear Oscil. 7, 83-89

(2004)
14. Kempf, R: On 	-limit sets of discrete-time dynamical systems. J. Differ. Equ. Appl. 8, 1121-1131 (2002)
15. Canovas, JS: On ω-limit sets of non-autonomous discrete systems. J. Differ. Equ. Appl. 12, 95-100 (2006)
16. Krabs, W: Stability and controllability in non-autonomous time-discrete dynamical systems. J. Differ. Equ. Appl. 8,

1107-1118 (2002)
17. Huang, X, Wen, X, Zeng, F: Topological pressure of nonautonomous dynamical systems. Nonlinear Dyn. Syst. Theory

8, 43-48 (2008)
18. Huang, X, Wen, X, Zeng, F: Pre-image entropy of nonautonomous dynamical systems. J. Syst. Sci. Complex. 21,

441-445 (2008)
19. Shi, Y, Chen, G: Chaos of time-varying discrete dynamical systems. J. Differ. Equ. Appl. 15, 429-449 (2009)
20. Oprocha, P, Wilczynski, P: Chaos in nonautonomous dynamical systems. An. Univ. ‘Ovidius’ Constanţa, Ser. Mat. 17,
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