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Abstract
Under consideration in this paper is a Volterra lattice system. Through symbolic
computation, the Lax pair and conservation laws are derived, an integrable lattice
hierarchy and an N-fold Darboux transformation (DT) are constructed for this system.
Furthermore, N-soliton solutions in terms of determinant are generated with the
resulting N-fold DT. Structures of the one-, two- and three-soliton solutions are shown
graphically. Overtaking inelastic solitonic interactions between/among the two and
three solitons are discussed by figures plotted.
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1 Introduction
Explicit solutions of the nonlinear partial differential equations (NPDEs), in particular the
soliton solutions, describe certain phenomena (see [] and references therein). A soliton
is a localized nonlinear wave which has particle-like properties []. Nonlinear differential-
difference equations (NDDEs), taken as spatially discrete analogues of the NPDEs, have
received certain attention [–]. Studies on the solitons might be divided into two cat-
egories, i.e., the continuous and discrete (lattice) cases []. Dynamical behaviors of the
solitons in the continuous and discrete cases are described by the NPDEs and NDDEs,
respectively []. NDDEs have some applications in science [–]. For example, the Toda
lattice [] is the discrete approximation of the Korteveg-de Vries (KdV) equation in fluids;
the discrete nonlinear Schrödinger equation [] can describe the interaction and propaga-
tion of optical pulses in a nonlinear waveguide array; the Volterra lattice system [, –]
is in connection with the spectrum of Langmuir wave in plasma dynamics.
Explicit solutions might be helpful for understanding some processes described by the

NDDEs, especially the soliton solutions [, ]. Solitons in the discrete systems are some-
times called the lattice solitons []. Methods for constructing the explicit solutions of the
NDDEs, such as the inverse scattering method [–], the Bäcklund transformation [,
], the Hirota method [, ] and the DT [–], have been developed. Among them,
theDT is an algebraic one used to obtain the explicit solutions (especially themulti-soliton
solutions) in a recursive manner []. The key idea of the DTmethod is to keep the linear
eigenvalue problems of the integrable NDDEs invariant.
In this paper, we consider the following Volterra lattice system []:

Mn,t =
(
 +M

n
)
(Mn+ –Mn–), n = ,±,±, . . . , ()
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whereMn =M(n, t) are the functions of the discrete variable n and time variable t,Mn,t =
dMn
dt . Equation () is in connection with the spectrum of Langmuir waves in space and

laboratory plasmas []. References [–] have presented some rational, solitary-wave
and periodic-wave solutions of (). In [], the traveling-wave solution of Volterra lattice
was constructed by the optimal homotopy analysis method. Although many people have
investigated Eq. (), to our knowledge, few people have studied Eq. () via the N-fold DT.
Furthermore, inelastic interaction behaviors of the discrete solitons and conservation laws
for this system have not been reported previously.
Different from the previous studies, in this paper, we make further investigation on Eq.

() via the N-fold DT technique []. By employing the AKNS (Ablowitz-Kaup-Newell-
Segur) procedure [], we construct the new Lax pair in matrix form associated with
Eq. (). Based on the derived Lax representation, we directly construct the N-fold Dar-
boux matrices for Eq. (). Outline of this paper is as follows. In Section , an integrable
lattice hierarchy associated with Eq. () is given from a discrete spectral problem. In Sec-
tion , the Lax pair and N-fold DT of () are constructed by employing the AKNS pro-
cedure. In Section , N-soliton solutions in terms of determinant are derived via the
resulting N-fold DT, the solitonic interaction of those solutions is analyzed graphically.
In Section , conservation laws of () are given. Conclusions are made in the last sec-
tion.

2 An integrable lattice hierarchy associated with Eq. (1)
In this section, we will consider the following discrete spectral problem in the frame of the
AKNS system:

Eϕn =Un(u,λ)ϕn, Un(u,λ) =

(
λ λun
λvn β

)
, ()

where λ is a spectral parameter and λt = , β �=  is an arbitrary constant, ϕn = (ϕ,n,ϕ,n)T

is a vector eigenfunction, u = (un, vn)T is the potential function and E is the shift operator
defined by Ef (n, t) = f (n + , t) ≡ fn+, E–f (n, t) = f (n– , t) ≡ fn–, n ∈ Z, t ∈ R, T denoting
the transpose of the matrix.
To obtain an integrable lattice hierarchy associated with Eq. (), according to a scheme

for generating the integrable lattice hierarchy [], we first solve the stationary discrete
zero-curvature equation

(E�)Un –Un� = , ()

where � =
( An Bn
Cn –An

)
. Equation () becomes

λAn+ – λAn + λvnBn+ – λunCn = ,

λunAn+ + λunAn + βBn+ – λBn = ,

λCn+ – λvnAn+ – λvnAn – βCn = ,

λunCn+ – λvnBn – βAn+ + βAn = .

()
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Substituting An =
∑∞

j=A
(j)
n λ–j and Bn =

∑∞
j= B

(j)
n λ–j+, Cn =

∑∞
j=C

(j)
n λ–j+ into Eq. ()

leads to the initial relations B()
n+ = , C()

n =  and the recursion relations

A(j)
n+ –A(j)

n + vnB
(j)
n+ – unC(j)

n = , j ≥ ,

βB(j)
n+ – B(j+)

n + un
(
A(j)
n+ +A(j)

n
)
= , j ≥ ,

C(j+)
n+ – βC(j)

n – vn
(
A(j)
n+ +A(j)

n
)
= , j ≥ ,

unC
(j+)
n+ – vnB(j+)

n – β
(
A(j)
n+ –A(j)

n
)
= , j ≥ .

()

Now we choose A()
n = –/, and require A(j)

n |[u]= = , B(j)
n |[u]= = , C(j)

n |[u]= =  (j ≥
), the recursion relations () determine A(j)

n , B
(j)
n , C

(j)
n (j ≥ ) uniquely, and the first few

coefficients are given as follows:

B()
n = –un, C()

n+ = –vn, A()
n = unvn–,

B()
n = un(unvn– + un+vn) – βun+,

C()
n+ = vn(unvn– + un+vn) – βvn–, . . . .

Then we define

�
(m)
 = λm� =

( ∑m
j=A

(j)
n λm–j ∑m

j= B
(j)
n λm–j+∑m

j=C
(j)
n λm–j+ –

∑m
j=A

(j)
n λm–j

)
, m ≥ . ()

From relations (), we can derive

(
E�

(m)


)
Un –Un�

(m)
 =

(
 λB(m+)

n

–λC(m+)
n+ –β(A(m)

n+ –A(m)
n )

)
. ()

To present the associated lattice hierarchy, we take a modification

�(m)
n =

(
 
 A(m)

n

)
, ()

and define V (m)
n = �

(m)
 +�

(m)
n form ≥ . Then we get

(
EV (m)

n
)
Un –UnV (m)

n =

(
 λB(m+)

n – λunA(m)
n

–λC(m+)
n+ + λvnA(m)

n+ 

)
. ()

Let the time evolution of the eigenfunction ϕn of Eq. () obey

ϕn,tm = V (m)
n ϕn, m ≥ , ()

and then the compatibility conditions of Eq. () and Eq. () are Eϕn,tm = E(ϕn)tm , which
are equivalent to

Un,tm =
(
EV (m)

n
)
Un –UnV (m)

n , m≥ . ()
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Equation () gives rise to the following positive hierarchy of lattice equations:{
un,tm = B(m+)

n – unA(m)
n ,

vn,tm = –C(m+)
n+ + vnA(m)

n+.
()

To obtain the generalized integrable lattice hierarchy associated with Eq. (), we will
further consider the following auxiliary spectral problem:

ϕn,tm = �
(m)
 ϕn, m ≥ , ()

where

�
(m)
 =

( ∑m
j= a

(j)
n λ–m+j ∑m

j= b
(j)
n λ–m+j–∑m

j= c
(j)
n λ–m+j– –

∑m
j= a

(j)
n λ–m+j

)
+

(
a(m)
n 
 

)
, m ≥ . ()

The discrete zero-curvature equations Un,tm = (E�
(m)
 )Un –Un�

(m)
 lead to the following

negative hierarchy:{
un,tm = –b(m+)

n+ – una(m)
n+,

vn,tm = c(m+)
n + vna(m)

n ,
()

with the recursive relations as follows:

a()n = –/, b()n = , c()n+ = ,

b()n+ = un/β , c()n = vn/β , a()n = vnun–/β ,

b()n+ = –un(unvn– + un–vn)/β + un–/β,

c()n = –vn(unvn+ + un–vn)/β + vn+/β, . . . .

Let P(m)
n = �

(m)
 –V (m)

n , we consider the following auxiliary spectral problem:

ϕn,tm = P(m)
n ϕn, m ≥ . ()

The discrete zero-curvature equations lead to the following generalized combined hierar-
chy: {

un,tm = –(B(m+)
n – unA(m)

n ) – b(m+)
n+ – una(m)

n+,
vn,tm = –(–C(m+)

n+ + vnA(m)
n+) + c(m+)

n + vna(m)
n .

()

Whenm = , system () reduces to{
un,t = –un+(unvn – ) + un–(unvn – )/β,
vn,t = vn–(unvn – ) – vn+(unvn – )/β.

()

Accordingly, whenm = , the time part of the Lax pair of () is given as follows:

P()
n =

(
/λ – /(λ) – unvn– λun + un–/(βλ)

λvn– + vn/(βλ) –/λ + /(λ) – vnun–/β

)
. ()

When β = , un = –vn = –Mn, system () reduces to Eq. ().
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TheHamiltonian structure often guarantees the existence of infinitelymany symmetries
and infinitely many conserved functionals, exhibiting integrability of the equations under
consideration []. For the obtained lattice hierarchies (), () and (), we alsomay con-
struct their Hamiltonian structures. The aim of this paper is to construct N-fold DT and
multi-soliton solutions in terms of determinant of Eq. (). Hence, as to the detailed deriva-
tion process on how to construct Hamiltonian structures of the obtained hierarchies, we
refer the reader to the work of Ma [], here we omit them for simplification.

3 N-Fold DT of Eq. (1)
At present, more research on the Lax integrable NPDEs has been done via the N-fold
DT [–], for the Lax integrable NDDEs, more research has been done by a single DT
(i.e., -fold DT) [–]. However, as far as we know, few studies on the NDDEs have
been done by constructing the N-fold DT. Although the N-fold DT can be interpreted as
a superposition of the -fold DT, comparing with the -fold DT, the biggest advantage of
N-fold DT is that we can obtain the relationships between the newmulti-soliton solutions
and the seed solutions without complicated iterations, so it is meaningful to generalize the
N-fold DT technique from NPDEs to NDDEs.
With the aid of symbolic computation Maple, we can construct the Lax pair for () as

follows:

Eϕn =Unϕn =

(
λ –λMn

λMn 

)
ϕn, ()

ϕn,t = Vnϕn =

(
λ

 – 
λ +MnMn– –λMn – Mn–

λ

λMn– + Mn
λ

– λ

 + 
λ +MnMn–

)
ϕn. ()

The integrability condition between () and () gives rise to (). In what follows, we
proceed to establish the DT of (). In essence, the DT is a special gauge transformation of
the solutions for () and (). We introduce the following gauge transformation:

ϕ̃n = Tnϕn, ()

where ϕ̃n is required to satisfy () and () with Un and Vn replaced respectively by Ũn

and Ṽn, i.e.,

ϕ̃n = Ũnϕ̃n, Ũn = Tn+UnTn
–, ()

ϕ̃n,t = Ṽnϕ̃n, Ṽn = (Tn,t + TnVn)Tn
–. ()

Ũn and Ṽn have the same forms as Un and Vn, respectively, except replacing Mn with
M̃n, then we can obtain a new solution M̃n from the old one Mn of (). It is obvious that
the Darboux matrix Tn is a key step for constructing the DT, a proper Tn will ensure the
correctness of the N-fold DT of (). Hereby, we construct a special Tn as follows:

Tn =

(
an bn
cn dn

)
=

(
λN+ +

∑N–
j=–N– a

(j+)
n λj+ ∑N

j=–N b(j)n λj

–
∑N

j=–N b(–j)n λj λ–N– +
∑N

j=–N a(–j–)n λj+

)
, ()
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where a(j)n , b
(j)
n are the functions of n and t. a(j)n , b

(j)
n can be determined by the following

linear algebraic system:

N–∑
j=–N–

a(j+)n λ
j+
i +

N∑
j=–N

b(j)n λ
j
i δi,n = –λN+

i ,

–
N∑

j=–N

b(–j)n λ
j
i +

N∑
j=–N

a(–j–)n λ
j+
i δi,n = –λ–N–

i δi,n,

()

where

δi,n =
ϕ,n(λi)
ϕ,n(λi)

, ≤ i≤ N + , ()

and ϕn = (ϕ,n,ϕ,n) is a solution of () and (). When the N +  parameters λi (λi �= λj,
i �= j) are suitably chosen so that the determinant of the coefficients for () is nonzero, the
transformation Tn is determined by () uniquely.
Equation () shows that λN+ detTn is the (N + )th order polynomial of λ and

detTn(λi) = an(λi)dn(λi) – bn(λi)cn(λi), ()

from (), () and (), we have

an(λi) = –bn(λi)δi,n, cn(λi) = –dn(λi)δi,n. ()

So we determine that

detTn(λi) = , ()

which means that λi (λi �= ) (i = , , . . . , N + ) are the roots of the λN+ detTn, i.e.,

detTn = λ–N–a(–N–)
n

N+∏
i=

(
λ – λ

i
). ()

By using the above facts, we can prove the following theorem.

Theorem  Matrices Ũn and Ṽn determined by () and () have the same forms as Un

and Vn respectively, where the transformation from the old potential Mn into the new one
M̃n is given by

M̃n =Mna(–N–)
n+ – b(–N)

n+ . ()

The proof of the form invariance for Ũn, Ṽn and Un, Vn can refer to the context in [],
the proof process is similar (for proof details, see the Appendix). According to Theorem ,
the transformations () and () can change the Lax pair () and () into the Lax pair
of the same type () and (). Therefore, both of Lax pairs lead to (). Transformations
() and () are called an N-DT of ().
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4 N-Soliton solutions and inelastic interaction of Eq. (1)
In the following, we will give some explicit solutions of () via transformations () and
(). Substituting a trivial solution Mn =  into () and (), we can give one solution of
the Lax pair () and () with λ = λi (i = , , . . . , N + ) as follows:

φ =

(
λn
i e[λi /–/(λi )]t

e–[λi /–/(λi )]t

)
. ()

According to (), we have

δi,n =


λn
i
e(/λ


i –λi )t , δi,n+ =

δi,n

λ
i
. ()

Solving the linear algebraic system () by use of Cramer’s rule leads to

a(–N–)
n =

�a(–N–)
n

�
, b(–N)

n =
�b(–N)

n

�
, ()

with

� =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λN–
 · · · λ–N–

 λ–N
 δ,n · · · λN

 δ,n

· · · · · · · · · · · · · · · · · ·
λN–
N+ · · · λ–N–

N+ λ–N
N+δN+,n · · · λN

N+δN+,n

λ–N+
 δ,n · · · λN+

 δ,n –λN
 · · · –λ–N



· · · · · · · · · · · · · · · · · ·
λ–N+
N+ δN+,n · · · λN+

N+δN+,n –λN
N+ · · · –λ–N

N+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

and �a(–N–)
n is produced from � by replacing its (N + )th column with (–λN+

 , . . . ,
–λN+

N+, –λ–N–
 δ,n, . . . , –λ–N–

N+ δN+,n)T , �b(–N)
n is produced from � by replacing its

(N + )th column with (–λN+
 , . . . , –λN+

N+, –λ–N–
 δ,n, . . . , –λ–N–

N+ δN+,n)T .
By use of () and (), we derive a new solution as follows:

M̃n = –b(–N)
n+ . ()

From (), we can see that solution () is a solution in terms of determinants [, ].
Here we obtain the solutions in determinant form of NDDEs. However, in [], a set
of coupled conditions consisting of NDDEs is presented for Casorati determinants to
solve the Toda lattice equation. The resulting set of eigenfunctions leads to complexi-
tons through the Casoratian formulation, a feasible way has been presented to construct
a broad class of Casorati determinant solutions including complexitons and generalized
Casorati determinant solutions of the Toda lattice equation. Ma and a co-worker [] also
indicate that integrable equations can have three different kinds of explicit exact tran-
scendental function solutions: negatons, positons and complexitons. Solitons are usually
a specific class of negatons. Roughly speaking, negatons and positons are solutions which
involve exponential functions and trigonometric functions of space variables, respectively,
and they are all associated with real eigenvalues of the associated spectral problems. But
complexitons are different solutions which involve both exponential and trigonometric
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functions of space variables, and they are associated with complex eigenvalues of the as-
sociated spectral problems []. It is worth pointing out that our results seem to be differ-
ent from those reported in [] considering determinant form, but Ma and a co-worker
[] pointed out that the Casorati determinant solution has actually resulted from the
Darboux transformation of the Toda lattice equation. Hence we think that these solutions
may be the same as Casorati determinant solutions in essence, they may be different only
in form, of course, the relation between two kinds of determinant solutions is worthwhile
to be studied further. However, we should point out that there are some differences be-
tween our method and []. Firstly, the Lax pairs are different, one is the matrix form, the
other is the operator form; secondly, the deducing steps are different, comparing with []
we directly construct the Darboux matrix Tn, let a Lax pair be covariant with respect to
the action of the DT; thirdly, our results and Casorati determinant solutions have differ-
ent forms. For our results, when choosing different λ, whether we can get the negatons,
positons and complexitons may need further investigation. In what follows, we mainly
consider multi-soliton solutions and the solitonic interaction of Eq. (), this is the topic
that we would like to address in this paper.
To understand solution (), when N =  and N = , we plot their structure figures as

shown in Figures  to .
(I) When N = , let λ = λ. Solving the linear algebraic system () leads to

a(–)n =
�a(–)n

�
, b()n =

�b()n

�
, ()

with

� =

∣∣∣∣∣ 
λ

δ,n

λδ,n –

∣∣∣∣∣ , �a(–)n =

∣∣∣∣∣ –λ δ,n

– δ,n
λ

–

∣∣∣∣∣ , �b()n =

∣∣∣∣∣ 
λ

–λ

λδ,n – δ,n
λ

∣∣∣∣∣ .
Therefore, an explicit solution of () is obtained as follows:

M̃n = –b()n+. ()

To understand solution (), we plot its structure figures as shown in Figure , it is one-
soliton solution. Figure  shows the anti-bell-shape soliton and bell-shape soliton for (),

Figure 1 Evolution plots of solution (38) with the parameters chosen as (a) λ1 = 0.8, (b) λ1 = 1.2 at
different time.
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and solution () is the anti-bell soliton when  < λ < , while bell soliton structure when
λ > . When λ < , solution () is a complex solution, whose imaginary and real parts
are both periodic wave structures (here we omit their plots).
(II) When N = , let λ = λi (i = , , ). Solving the linear algebraic system () leads to

a(–)n =
�a(–)n

�
, b(–)n =

�b(–)n

�
, ()

with

� =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ

λ


λ

δ,n
λ

δ,n λ
δ,n

λ

λ


λ

δ,n
λ

δ,n λ
δ,n

λ

λ


λ

δ,n
λ

δ,n λ
δ,n

δ,n
λ

λδ,n λ
δ,n –λ

 – – 
λ

δ,n
λ

λδ,n λ
δ,n –λ

 – – 
λ

δ,n
λ

λδ,n λ
δ,n –λ

 – – 
λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

�a(–)n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ

λ

–λ


δ,n
λ

δ,n λ
δ,n

λ

λ

–λ


δ,n
λ

δ,n λ
δ,n

λ

λ

–λ


δ,n
λ

δ,n λ
δ,n

δ,n
λ

λδ,n – δ,n
λ

–λ
 – – 

λ
δ,n
λ

λδ,n – δ,n
λ

–λ
 – – 

λ
δ,n
λ

λδ,n – δ,n
λ

–λ
 – – 

λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

�b(–)n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ

λ


λ

δ,n
λ

δ,n –λ


λ

λ


λ

δ,n
λ

δ,n –λ


λ

λ


λ

δ,n
λ

δ,n –λ


δ,n
λ

λδ,n λ
δ,n –λ

 – – δ,n
λ

δ,n
λ

λδ,n λ
δ,n –λ

 – – δ,n
λ

δ,n
λ

λδ,n λ
δ,n –λ

 – – δ,n
λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Therefore, another explicit solution of () is obtained as follows:

M̃n = –b(–)n+ . ()

When N =  and the parameters are suitably chosen, solution () is the two-soliton and
three-soliton solution, respectively, the corresponding evolution plots are shown in Fig-
ures  to . Figure  shows the overtaking collision interactions between two solitons with
a bell-shaped and an anti-bell-shaped soliton with different amplitudes along the same
propagation direction for solution () at different time. The bell-shaped soliton with
higher amplitude travels faster than the anti-bell-shaped soliton with lower amplitude.
After the overtaking interaction, the amplitude of the anti-bell-shaped soliton becomes
higher; however, the amplitude of the bell-shaped soliton becomes lower. The final two
solitons move along the same direction and preserve their shapes and amplitudes, from
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Figure 2 Evolution plots of two-soliton solutions with overtaking collision behavior via (40) with the
parameters λ1 = 1.0, λ2 = 1.4, λ3 = 1.6 at different time.

Figure 3 Evolution plots of three-soliton solutions with overtaking collision behavior via (40) with the
parameters λ1 = 1.2, λ2 = 1.4, λ3 = 1.6 at different time.
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which we can find that the solitonic shapes and amplitudes have changed after the interac-
tion, the interactions between two solitons are inelastic. Figure  displays the overtaking
collision interactions among three solitons with two bell-shaped solitons and an anti-bell-
shaped soliton with different amplitudes along the same propagation direction of solution
() at different time, the solitonswith higher amplitude travel faster than thosewith lower
amplitudes. After the overtaking interaction, the amplitude of the higher bell-shaped soli-
ton becomes lowest; however, the amplitudes of the other two become higher, and the
lower solitons travel faster than those with higher amplitudes after the interaction. The
final three solitons move along the same direction and preserve their shapes, amplitudes
and velocities. The solitonic shapes and amplitudes have changed after the interaction,
so that the solitonic interactions among three solitons are also inelastic. As we know, the
inelastic interaction phenomenon is new for ().
With symbolic computation, solution () with N =  and N =  has been verified by

substituting them into (). When solution () is the soliton solution, note that solution
() is the (N + )-soliton solution if λi �=  and λi �= λj (i, j = , , . . . , N + ). However,
the corresponding (N +)-soliton solution will reduce to the (N)-soliton solution when
one of λ′

is (i = , , . . . , N + , N ≥ ) is , which can be seen from Figures  to . The
(N)-soliton and (N + )-soliton solutions can make up the N-soliton solution of ().
In [], the elastic interaction of the solitons for a discrete system has been discussed.

In this paper, we have found the inelastic interaction of the solitons in the discrete system.
Therefore, we can conclude that, similar to the continuous systems, there exist the elastic
interaction and inelastic interaction in the discrete systems.

5 Conservation laws of Eq. (1)
Conservation laws play a role in discussing the integrability for the NDDEs [, ], and
the first three conservation laws describe the energy, momentum and Hamiltonian con-
servation laws, respectively. In the following, we will derive infinitely many conservation
laws for ().
From () and (), we can get

ϕ,n+ = λϕ,n – λMnϕ,n, ϕ,n+ = λMnϕ,n – λϕ,n ()

and

ϕ,n+

ϕ,n
= λ – λMnθn,

ϕ,n+

ϕ,n
=

λMn

θn
+ , ()

where θn = ϕ,n/ϕ,n. From (), we can get

λθn+ – λθnθn+ – λMn – θn = . ()

Assume that

θn =
∞∑
j=

θn
(j)

λj . ()
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Substituting () into (), we obtain the following recursion relation:

θn
() =Mn–, θn

() = , θn
(m+) =Mn

m∑
j=

θn
(j)θn

(m+–j) – θn
(m) (m ≥ ). ()

From () and (), direct calculation leads to

[
ln

(
λ – λMnθn

)]
t = (E – )

[
λ +MnMn– –

(
λMn +

Mn–

λ

)
θn

]
. ()

Equating the same powers of λ in (), we can get an infinite number of conservation laws
for (). The first two conservation laws are listed as follows:

(MnMn–)t = (E – )
[
MnMn–

(
 +Mn–

) –Mn–
], ()[

Mn– +
(
Mn– +




)
Mn–


]
t

= (E – )
[(
MnMn–Mn–

 +Mn–Mn–
)(
 +Mn–

)
+ (MnMn– +Mn–Mn–)

(
 +Mn–

)]. ()

6 Conclusions
In this paper, an integrable lattice hierarchy and N-fold DT () and () for () have
been constructed based on its discrete spectral problem. We have derived N-soliton so-
lutions () in terms of determinant via the resulting DT. Based on the solutions ob-
tained, one- two- and three-solitonic structures are shown graphically: Figure  exhibits
the one-soliton structure with N = ; Figures  and  show the overtaking inelastic soli-
tonic interactions between/among the two and three solitons with N = . Solitonic shapes
and amplitudes have changed after the interaction. When solution () is solitonic, it is
worth pointing out that solution () is the (N + )-soliton solution if λi �=  and λi �= λj

(i, j = , , . . . , N +); and further, the corresponding (N +)-soliton solutions can reduce
to the (N)-soliton solutions if one of λi’s (i = , , . . . , N +,N ≥ ) is . Conservation laws
() and () for () have been explicitly given.

Appendix
Proof of Theorem  Let T–

n = T∗
n /detTn and

F(λ) = Tn+UTn
∗ =

(
f(λ,n) f(λ,n)
f(λ,n) f(λ,n)

)
. ()

It can be verified that λN+f(λ,n) is (N + )th order polynomial in λ, λN+f(λ,n) and
λN+f(λ,n) are (N + )th order polynomials in λ, and λN+f(λ,n) is (N + )th order
polynomial in λ.
From () and (), we have

an(λ) = –δi,nbn(λ), cn(λ) = –δi,ndn(λ), δi,n+ =
λiMn + δi,n

λ
i – λiMnδi,n

. ()
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Moreover, we can prove that f(λi,n), f(λi,n), f(λi,n) and f(λi,n) are all zeroes (the
detailed proof is omitted). So we have

Tn+UTn
∗ = detTn · Pn, ()

with

Pn =

(
P

()λ + P
()λ + P

() P
()λ + P

()

P
()λ + P

() P
()

)
. ()

Thus we obtain

Tn+U = PnTn. ()

Using () and comparing the coefficients of λ–N–, λ–N , λN+, λN+ in (), we have

P
() = , P

()(n) = , P
() = ,

P
() = –Mna(–N–)

n+ + b(–N)
n+ = –M̃n,

P
() = , P

() =Mna(–N–)
n+ – b(–N)

n+ = M̃n,

P
() = , P

() = .

()

From () and (), we see that Pn = Ũn.
Next, we will prove that the matrix Ṽn has the same form as Vn under transformations

() and ().
Let

(Tn,t + TnVn)T∗
n =

(
g(λ,n) g(λ,n)
g(λ,n) g(λ,n)

)
. ()

It can be verified that the highest order of g(λ,n) and g(λ,n) is N +, the lowest order
is –N –, and the highest and lowest orders of g(λ,n), g(λ,n) are N +  and –N –
respectively.
Using (), (), () and (), we can obtain

an,t(λi) = –δi,n,tbn(λi) – δi,nbn,t(λi), cn,t(λi) = –δi,n,tdn(λi) – δi,ndn,t(λi),

δi,n,t = λiMn– +
Mn

λi
+

(
–λ

i +

λ
i

)
δi,n +

(
λMn +

Mn–

λi

)
δi,n.

()

From (), we can prove that g(λi,n), g(λi,n), g(λi,n) and g(λi,n) are all zeroes (the
detailed proof is omitted). Moreover, we have

(Tn,t + TnVn)T∗
n = detTn · Rn, ()

with

Rn =

(
R, R,

R, R,

)
, ()
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where

R, = R
()λ + R

()λ + R
(–)/λ + R

(–)/λ + R
(),

R, = R
()λ + R

() + R
(–)/λ,

R, = R
()λ + R

() + R
(–)/λ,

R, = R
()λ + R

()λ + R
(–)/λ + R

(–)/λ + R
().

Thus, we obtain

Tn,t + TnVn = RnTn. ()

Using (), () and (), and comparing the coefficients of λN+, λN+, λN+, λ–N–,
λ–N–, λ–N– in (), we have

R
() = /, R

() = , R
(–) = –/, R

(–) = ,

R
() = , R

() = , R
(–) = –Mn–a(–N–)

n + b(–N)
n = –M̃n–,

R
(–) = , R

() =Mn–a(–N–)
n – b(–N)

n = M̃n–, R
(–) = /,

R
() = –/, R

() = 

()

and

R
() = R

()b(–N)
n +Mn–b(N)

n +MnMn–,

R
() = –

(
b(–N)
n +Mn

)
/a(–N–)

n ,

R
(–) =

(
b(–N)
n +Mn

)
/a(–N–)

n ,

R
() = –R

(–)b(–N)
n +Mn–b(N)

n +MnMn–.

()

In addition, from () we can obtain the following relation:

a(–N–)
n M̃n – b(–N)

n –Mn = . ()

Substituting () into (), from (), we can derive

R
() = M̃nM̃n–, R

() = –M̃n, R
(–) = M̃n, R

() = M̃nM̃n–. ()

From (), (), () and (), we can see that Rn = Ṽn. The theorem is proved. �
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