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Abstract
The current paper is devoted to the dynamics of a stochastic modified Boussinesq
approximate equation driven by fractional Brownian motion with H ∈ ( 12 , 1). Based on
the different diffusion operators �2 and –� in the stochastic system, we combine
two types of operators �1 = I and a Hilbert-Schmidt operator �2 to guarantee the
convergence of the corresponding Wiener-type stochastic integrals. Then the
existence and regularity of the stochastic convolution for the corresponding additive
linear stochastic equation can be shown. By the Banach modified fixed point theorem
in the selected intersection space, the existence and uniqueness of the global mild
solution are obtained. Finally, the existence of a random attractor for the random
dynamical system generated by the mild solution for the modified Boussinesq
approximation equation is also established.
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1 Introduction
The modified Boussinesq approximation equation is a reasonable model to describe the
essential phenomena of the highly viscous incompressible fluid in the Earth’s mantle. We
refer to Hills and Roberts [] and Padula [] for a derivation of the following Boussinesq
approximation equation:⎧⎨⎩ut + u · ∇u –∇ · τ (e(u)) = –∇π + f (x) + eθ ,

θt + (u · ∇)θ –�θ = g(x),
(.)

where the vector function u represents the velocity of the fluid, θ is the scalar temperature,
function f (x) and g(x) are periodic external forces with respect to space variable x, the
vector e = (, ) is a unit vector in R, the scalar function π is the pressure and τij(e(u)) is
a symmetric stress tensor with the following form:

τij
(
e(u)

)
= μ

(
ε + |e|) p–

 eij – μ�eij, ε > , i, j = , ,

eij(u) =



(
∂ui
∂xj

+
∂uj
∂xi

)
,

∣∣e(u)∣∣ = ∑
i,j=

∣∣eij(u)∣∣,
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where μ and μ are positive constants. There are many papers concerning the existence
and uniqueness of the solution, attractors, and manifold for the modified Boussinesq ap-
proximation equation. We refer to [–] for the deterministic non-Newtonian flow (in
the absence of θ ). The well-posedness and long-time behavior of the modified Boussinesq
approximation equation can be referred to [].
The fractional Brownianmotion (FBM) is a family of Gaussian process which is indexed

by the Hurst parameterH ∈ (, ). ForH �= 
 , the FBM is not a semi-martingale and the in-

crements of the process are not independent. The application of the classical Itô stochastic
integral to FBM fails. The stochastic integral of FBMhas been studied inmany papers (see
[–] and the references therein). Due to the properties of FBM such as the self similar
and long range dependence, the data in the fields like financial markets, traffic networks,
and climate systems can be described suitably by FBM. In [], the equilibrium fluctuation
of the distance between an electron transfer donor and acceptor pair within a protein that
spans a broad range of time scales can be explained by the generalized Langevin equation
driven by fractional Gaussian noise. This result is in excellent agreement with a single-
molecule experiment. So it is worth to study the well-posedness and long-time behavior
of the stochastic partial differential equation (SPDE) driven by FBM. We also refer to [,
, –] for the well-posedness and dynamics of the stochastic PDE driven by FBM.
Recently, Guo [] showed the existence of a random attractor for the stochastic Boussi-

nesq approximation equation driven by Gaussian white noise in domainD = [,L]× [,L]:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du + (u · ∇u –∇ · τ (e(u)) +∇π )dt

= (f (x) + eθ )dt +�(t)dW (t), x ∈D, t > ,

dθt + ((u · ∇)θ –�θ )dt = g(x)dt +�(t)dW (t), x ∈D, t > ,

∇ · u(x, t) = , x ∈D, t > ,

u(x, ) = u(x), θ (x, ) = θ(x), x ∈D,

ui(x, t) = ui(x + Lχj, t), θ (x, t) = θ (x + Lχj, t), i = , ,

(.)

where {χj}j= is the natural basis of R,W (t) =
∑

i βi(t)hi is the cylindrical Wiener process
for white noise, βi(t) is a family of mutually independent real-valued standard Wiener
process, hi(x) is an orthonormal complete basis inHilbert space L(D),�(t) is vector value
predictable process, while �(t) is scalar predictable process, which are linear mappings
and are assumed to be Hilbert-Schmidt operators.
Motivated by the ideas in [] and [], we consider the following stochastic modified

Boussinesq equation driven by fractional Brownian motion with H ∈ (  , ):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du(t) + (u · ∇u –∇ · τ (e(u)) +∇π )dt

= (f (x) + eθ )dt +� dBH (t), x ∈O, t > ,

dθ (t) + ((u · ∇)θ –�θ )dt = g(x)dt +�(t)dBH (t), x ∈O, t > ,

∇ · u(x, t) = , x ∈O, t > ,

u(x, ) = u(x), θ (x, ) = θ(x), x ∈O,

ui(x, t) = ui(x + Lχj, t), θ (x, t) = θ (x + Lχj, t), i = , ,

(.)

where O ⊂ R is a bounded domain with smooth boundary ∂O.
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Due to the regularity of the stochastic convolution for FBM depends on the value of
Hurst parameter H ∈ (, ), the stochastic Wiener-type integral is quite different for H ∈
(/, ) and H ∈ (, /). For H ∈ (, /), on account of the lower regularity, it needs the
fractional Riemann-Liouville integral to transfer the fractional Brownian motion to be
represented in terms of the standard cylindrical Brownian motion. The well-posedness
and dynamics of equation (.) with H ∈ (  ,


 ) have been studied in [].

However, for H ∈ (/, ), we can use Wiener stochastic integrals to deal with fractional
Brownian motion directly. In this paper, we focus on the case H ∈ (  , ). For the different
diffusion operators � and –�, let � = I and � be a Hilbert-Schmidt operator. Then
the existence and regularity of the stochastic convolution for the corresponding additive
linear stochastic equation can be guaranteed. By themodified Banach fixed point theorem
in the selected intersection space, the existence and uniqueness of the mild solution for
equation (.) are obtained. Finally, the existence of a random attractor for the random
dynamical system generated by the mild solution for equation (.) is also presented.
The contribution of the current paper is to establish the well-posedness and dynamics of

the stochastic modified Boussinesq approximation equation with H ∈ (  , ), and reveals
the difference between dynamics of modified Boussinesq approximation equation with
differential Hurst parameter. Since the computation for the regularity is different for H ∈
(  ,


 ) and H ∈ (  , ), the conditions (Hyper-) and (Hyper-) are different from that in

[]. For the technical reasons, there is no result on the computation for the regularity
for H ∈ (,  ). This shows that the Hurst parameter H determines the conditions which
ensure the regularity of the stochastic convolution and the existence of a random attractor
generated by the mild solution for equation (.). If the temperature variable θ = , then
the result in the present paper and [] will reduce to that in [] and [], respectively.
The rest of the paper is organized as follows: In Section , we present the function space

and operators. Then the definitions and criteria for the random dynamical system are
presented. In Section , we introduce the definition of the infinite-dimensional fractional
Brownian motion and its stochastic integral. Then some proper conditions which can en-
sure the existence and regularity of the stochastic convolution for the corresponding ad-
ditive linear stochastic equation are shown. In Section , the proper selected intersection
space is constructed and the existence and uniqueness of the global mild solution are ob-
tained in the space by the modified Banach fixed point theorem. Finally, the existence of
a random attractor for the random dynamical system generated by the mild solution of
equation (.) is shown in Section .

2 Preliminaries
In this section, we will present some notations for the working function space and oper-
ators, and then rewrite equation (.) as a stochastic evolution equation by the standard
mathematical setting.
Firstly, we introduce some notations as follows:

H =
{
u ∈ (

L(O)
) :∇ · u = ,u · n|∂O = 

}
, H = L(O).

Denote H =H ×H endowed with the norm

|φ|H := |u|H + |θ |H ,

http://www.advancesindifferenceequations.com/content/2014/1/207
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for any φ = (u, θ ) ∈H , where u ∈H and θ ∈H. For ease of notation, we use the notation
| · | to represent the norm for space H, H, and H , respectively. It is easy to verify that H,
H, and H are Hilbert space with the inner product (·, ·).
Denote

V =
{
u ∈ (

H
(O)

) :∇ · u = 
}
, V =H

(O), V = V ×V,

where V is endowed with the norm

|φ|V := |u|V + |θ |V .

Define bilinear operator a(·, ·) : V ×V →R and a(·, ·) : V ×V → R by

a(u, v) = (u, v)V , a(θ , ξ ) = (θ , ξ )V .

By the Lax-Milgram lemma, we can use the bilinear operators a(·, ·) and a(·, ·) to define
the following linear operators A ∈ L (V,V ′

) and A ∈ L (V,V ′
):

〈Au, v〉 = a(u, v), 〈Aθ , ξ〉 = a(θ , ξ ),

where V ′
i is the dual space of Vi.

Similar to the arguments in [] and [], the operator Ai is an isometry from Vi to V ′
i for

i = , .
Denote

D(A) = V ∩ {
H(O)

}, D(A) = V ∩H(O),

then Ai ∈ L (D(Ai),Hi) is an isometry from D(Ai) to Hi, and Ai is a self-adjoint positive
operator with compact inverse A–

i , where i = , .
It follows from the Hilbert-Schmidt theorem that there exist eigenvalues {λj}∞j=, {λ̂j}∞j=

and the corresponding eigenvectors {ej}∞j= ⊂D(A), {êj}∞j= ⊂D(A) such that

Aej = λjej, j = , , . . . ,  < λ ≤ λ ≤ · · · ≤ λj ≤ · · · ,λj → ∞ (j → ∞),

Aêj = λ̂jêj, j = , , . . . ,  < λ̂ ≤ λ̂ ≤ · · · ≤ λ̂j ≤ · · · , λ̂j → ∞ (j → ∞).

Moreover, {ej}∞j= and {êj}∞j= are the orthonormal basis for H and H, respectively.
Since Ai (i = , ) is the densely defined, self-adjoint, and bounded below operator in

Hilbert space Hi (i = , ), then Ai (i = , ) is a sectional operator, and Si(t) ∈ L (Hi) is an
analytic semigroup generated by Ai (i = , ) in the following form:

Si(t) := e–tAi =
∫ ∞


e–tλ dEi,λ, i = , ,

where {Ei,λ} is the spectrum of the operator Ai, i = , .
For any φ = (u, θ ) ∈ V , denote

Aφ =

(
μAu
Aθ

)
, S(t)φ =

(
S(t)u
S(t)θ

)
,

http://www.advancesindifferenceequations.com/content/2014/1/207


Shen et al. Advances in Difference Equations 2014, 2014:207 Page 5 of 21
http://www.advancesindifferenceequations.com/content/2014/1/207

and define the trilinear operator b(·, ·, ·) by

b(φ,φ,φ) = b(u,u,u) + b(u, θ, θ), ∀φi = (ui, θi) ∈ V ,

where

b(y, v,w) =
∑

i,j=

∫
O
yi

∂vj
∂xi

wj dx, ∀y, v,w ∈ (
H(O)

),
b(y, θ , ξ ) =

∑
i=

∫
O
yi

∂θ

∂xi
ξ dx, ∀y ∈ (

H(O)
), θ , ξ ∈H(O).

For any φi = (ui, θi), we define the continuous bilinear functionals B(φ,φ) ∈ V ′,
B(u,u) ∈ V ′

 , and B(u, θ) ∈ V ′
 by〈

B(φ,φ),φ
〉
= b(φ,φ,φ),〈

B(u,u),u
〉
= b(u,u,u),〈

B(u, θ), θ
〉
= b(u, θ, θ).

In what follows, we abbreviate B(φ,φ) as B(φ) for any φ ∈ V .
Define the functional N(u) ∈ V ′

 by

〈
N(u), v

〉
=

∫
O

μ(u)eij(u)eij(v)dx, ∀v ∈ V

and

Ñ(φ) =

(
N(u)


)
, ∀φ = (u, θ ) ∈ V .

We also denote Ñ as N without any confusion, and

Rφ =

(
–θχ



)
, �dBH (t) =

(
� dBH (t)
� dBH (t)

)
.

Under the above notations, the stochastic modified Boussinesq approximation equation
(.) can be rewritten as the following abstract stochastic evolution equation:⎧⎨⎩dφ(t) + (Aφ(t) + B(φ(t)) +N(φ)(t) + R(φ(t)))dt =�dBH (t),

φ() = (u, θ).
(.)

Finally, we recall some definitions and criteria of the random dynamical system and
random attractor which are taken from [].
Due to the properties of the stationary increments, we can switch FBM and additive

white noise to the equivalent canonical realization. Consider the Borel set

 = C(R) :=
{
ω ∈ C(R,R) : ω() = 

}
(.)

http://www.advancesindifferenceequations.com/content/2014/1/207
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with the compact open topology and let F be the associated incomplete Borel-σ -algebra.
The operator θt can form the flow which is given by the Wiener shift:

θtω(·) = ω(· + t) –ω(t), t ∈R. (.)

Definition . Let E be a complete and separable metric space. A random dynamical
system (RDS) with space E carried by a metric dynamical system (,F ,P, θ ) is given by
the mapping

ϕ :R+ ×  × E → E, (.)

which is (B(R+)× F × B(E);B(E))-measurable and possesses the cocycle property:

ϕ(t + τ ,ω,x) = ϕ
(
τ , θtω,ϕ(t,ω,x)

)
, ∀t, τ ∈ R+,x ∈ E,ω ∈ , (.)

ϕ(,ω, ·) = id. (.)

Definition .
(i) A set-valued mapping K :  → E taking value in the closed subsets of E is said to

be measurable if for each x ∈ E the mapping ω �→ d(x,K (ω)) is measurable, where

d(A,B) = sup
x∈A

inf
y∈Bd(x, y). (.)

A measurable set-valued mapping K is called a random set.
(ii) Let A, B be random sets. A is said to attract B if

d
(
ϕ(t, θ–tω)B(θ–tω),A(ω)

) → , as t → ∞ P-a.s. (.)

A is said to absorb B if P-a.s. there exists an absorption time tB(ω) such that, for all
t ≥ tB(ω),

ϕ(t, θ–tω)B(θ–tω) ⊂ A(ω). (.)

(iii) The -limit set of a random set K is defined by

K (ω) =
⋂
T≥

⋃
t≥T

ϕ(t, θ–tω)K (θ–tω). (.)

Definition . A random attractor for an RDS ϕ is a compact random set A P-a.s. satis-
fying:

(i) A is invariant, i.e., ϕ(t,ω)A(ω) =A(θtω) for all t > ;
(ii) A attracts all the deterministic bounded sets in E.

The following proposition (cf. [], Theorem .) yields a sufficient criterion for the
existence of a random attractor.

http://www.advancesindifferenceequations.com/content/2014/1/207
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Theorem . Let ϕ be an RDS and assume that there exists a compact random set K
absorbing every deterministic bounded set B ⊂ E. Then the set

A(ω) =
⋃
B⊂E

B(ω) (.)

is a random attractor for ϕ.

3 Fractional Brownianmotion and its stochastic convolution
In this section, we introduce the definition of the infinite-dimensional fractional Brow-
nian motion only with H ∈ (  , ) and its Wiener-type stochastic integral with respect to
infinite-dimensional FBM. Then some conditions which ensure the existence and regular-
ity of the infinite-dimensional stochastic convolution for the corresponding additive linear
stochastic equation are presented. Finally, the existence and regularity of the stochastic
convolution are obtained under these conditions.
Since the derivative of FBM exists almost nowhere, equation (.) should be under-

stood in the integral form. There are several approaches to define an integral for one-
dimensional FBM and each has its advantage (cf. [] for a useful summary). Wiener inte-
grals are introduced since they deal with the simplest case of deterministic integrands by
using FBM’s Gaussianity in []. We refer to [] for the general framework of theWiener-
type stochastic integral with respect to infinite-dimensional FBM.
As a conclusion, we have the following relationship between the Wiener integral with

respect to FBM and the Wiener integral with respect to the Wiener process:

∫ t


ϕ(s)dβH(s) =

∫ t



(
K∗
Hϕ

)
(s)dW (s), (.)

for every t ≤ T and ϕ ∈ H if and only if K∗
Hϕ ∈ L(,T ;V ).

The infinite-dimensional FBM and corresponding stochastic integration are defined
now. Let Q be a self-adjoint and positive linear operator on Hi. Assume that there exists a
sequence of nonnegative numbers {̃λi}i∈N such that

Qei = λ̃iei, i = , , . . . . (.)

The infinite-dimensional FBM on H with covariance operator Q is formally defined by

BH (t) =
∞∑
i=

√
λ̃ieiβH

i (t), (.)

where {βH
i (t)}i∈N is a sequence of real stochastically independent one-dimensional FBM.

This process, if convergence, is an H-valued Gaussian process. It starts from , has zero
mean and covariance

E
(
BH (t)BH(s)

)
= R(t, s)Q. (.)

Let (�s)≤s≤T be a deterministic function with values in L (Hi) (i = , ), the space of all
bounded linear operators from Hi to Hi. The stochastic integral of �i with respect to BH

http://www.advancesindifferenceequations.com/content/2014/1/207
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is formally defined by

∫ t


�s dBH (s) :=

∞∑
i=

√
λ̃i

∫ t


�sei dβH

i (s) =
∞∑
i=

√
λ̃i

∫ t



(
K∗
H (�ei)

)
s dβi(s), (.)

where βi is the standard Brownianmotion. The above summay not converge. However, as
we are about to see, the linear additive stochastic equation can have a mild solution even
if

∫ t
 �s dBH (s) is not properly defined as an H-valued Gaussian random variable.
Consider the following stochastic convolution:

z(t) :=
∫ t


S(t – s)� dBH(s). (.)

Then z, if it is well defined, is the unique mild solution of the following linear stochastic
evolution equation:

dz(t) = Az(t)dt +� dBH (t), z() =  ∈ V. (.)

Here are three kinds of condition on the stochastic convolution:
(Hyper-) Q ∈ L(H), � ≡ idH ;
(Hyper-) Q ≡ idH , � ∈ L(H);
(Hyper-) Q ≡ idH , � ∈ L (H) such that ��

∗
 ∈ L(H),

where L(H) is the space of all nuclear operators on H and L(H) is the space of all
Hilbert-Schmidt operators on H (cf. [], Appendix C). These conditions have been pro-
posed by Maslowski and Schmalfuss in [], Duncan et al. in [] and Tindel et al. in [],
respectively.Wemention that theHilbert-Schmidt operators (elements ofL(H)) is com-
pact. Indeed, the key feature of these conditions is the compactness which guarantees that
we can handle the infinite-dimensional problem in a finite-dimensional manner.
Then for the linear stochastic evolution equation (.), let � satisfy the condition of

(Hyper-) and we have the following lemma.

Lemma . ([]) If H ∈ (  , ) and � satisfies the condition of (Hyper-), then there
is a version of the stochastic convolution z(t) =

∫ t
 S(t – s)� dBH (s), t ∈ [,T] with

C([,T];V) sample paths.

Next we consider another stochastic linear differential equation:⎧⎨⎩dz = Az dt +� dBH ,

z() =  ∈ V,
(.)

where � = I .
As noted in [] and [], the stochastic integral

∫ t
 Id dB

H (s) is not well defined as a
V-valued random variable since the identity operator Id /∈ L(V). Then we consider the
following condition on the stochastic convolution which is taken from []:
(Hyper-) O = [–π ,π ]× [–π ,π ], Q ≡ � ≡ idH .
If the condition (Hyper-) is satisfied, we have the following lemma from [].

http://www.advancesindifferenceequations.com/content/2014/1/207
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Lemma . ([]) If H ∈ (  , ) and condition (Hyper-) is satisfied, there is a version of the
stochastic convolution z(t) :=

∫ t
 S(t – s)dBH (s) with C([,T];H) sample paths. If addi-

tionally H ∈ (  , ), then the process z has an L∞(,T ;V) version.

Noticing that the sample orbit of fractional Brownianmotion is not differentiable almost
everywhere in the classical sense, we consider the stochastic convolution in the product
space H :

z(t) =
∫ t


S(t – s)�dBH(t) :=

( ∫ t
 S(t – s)dBH(t)∫ t

 S(t – s)� dBH (t)

)
�

(
z(t)
z(t)

)
. (.)

4 Existence and uniqueness of themild solution
In this section, we will apply the modified Banach fixed point theorem to show the exis-
tence and uniqueness of themild solution for equation (.) in the space E = C([,T];H)∩
L(,T ;V ) with the norm | · |E = | · |C([,T];H) + | · |L(,T ;V ).
The notion of the mild solution for equation (.) is given as follows.

Definition . An H-valued random process (φ(t), t ≥ ) on a fixed probability space
(,F ,P) with a given infinite-dimensional fractional Brownian motion is called a mild
solution of stochastic equation (.) if (φ(t), t ≥ ) satisfies the following equation:

φ(t) = S(t)φ –
∫ t


S(t – s)B

(
φ(s)

)
ds –

∫ t


S(t – s)N

(
φ(s)

)
ds

–
∫ t


S(t – s)R

(
φ(s)

)
ds +

∫ t


S(t – s)�dBH (s), (.)

where the first three terms are operator-valued Bochner integrals, and the last one is the
Wiener-type stochastic integral defined by equation (.).

Denote

E = C
(
[,T];H

) ∩ L(,T ;V), E = C
(
[,T];H

) ∩ L(,T ;V),

with the norm

| · |E = | · |C([,T];H) + | · |L(,T ;V), | · |E = | · |C([,T];H) + | · |L(,T ;V),

| · |E = | · |E + | · |E .

It is easy to verify that E, E, and E are Banach spaces. In order to apply the modified
Banach fixed point theorem, it is necessary to estimate each term of the integral equation
(.) in the space E.
For any φ ∈ E, denote

J(φ) := –
∫ ·


S(· – s)B

(
φ(s)

)
ds, (.)

J(φ) := –
∫ ·


S(· – s)N

(
φ(s)

)
ds, (.)

http://www.advancesindifferenceequations.com/content/2014/1/207
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J(φ) := –
∫ ·


S(· – s)R

(
φ(s)

)
ds, (.)

then the operators J, J, and J satisfy the following properties.

Lemma . J : E → E, and for any φ,ψ ∈ E, it follows that∣∣J(φ)∣∣E ≤ c|φ|E ,∣∣J(φ) – J(ψ)
∣∣
E

≤ c
(
c|φ|C([,T];H)|φ|L(,T ;V ) + c|ψ |C([,T];H)|ψ |L(,T ;V ) +


c

)
|φ –ψ |E .

Proof The proof is the same as Lemma . in [], and it is omitted here. �

Lemma . J : E → E, and for any φ,ψ ∈ E, it follows that∣∣J(φ)∣∣E ≤ c|φ|E , (.)∣∣J(φ) – J(φ)
∣∣
E ≤ cT


 |φ –ψ |E . (.)

Proof The proof is the same as Lemma . in [], and it is omitted here. �

Lemma . J : E → E, and for any φ,ψ ∈ E, it follows that∣∣J(φ)∣∣E ≤ c|φ|E , (.)∣∣J(φ) – J(ψ)
∣∣
E ≤ cT |φ –ψ |E . (.)

Proof The proof is the same as Lemma . in [], and it is omitted here. �

Since the process z(t) (t ∈ [,T]) has a V -valued continuous modification, then we can
obtain the existence and uniqueness of the mild solution for equation (.).

Theorem. If H ∈ (  , ), (Hyper-) and (Hyper-) hold, then for any initial value φ ∈ H
and T > , equation (.) has a unique mild solution in the space C([,T];H)∩L(,T ;V ).

Proof The proof is the same as Theorem . in [], and it is omitted here. �

Next, we will show the existence of the global mild solution for equation (.).
Let φ be the local mild solution of equation (.) on [,T], and denoteψ(t) = φ(t)– z(t),

then ψ(t) is the mild solution for the following equation:

ψ(t) = S(t)φ –
∫ t


S(t – s)B

(
ψ(s) + z(s)

)
ds –

∫ t


S(t – s)N

(
ψ(s) + z(s)

)
ds

–
∫ t


S(t – s)R

(
ψ(s) + z(s)

)
ds. (.)

It is easy to see that ψ(t) is also the weak solution of the following evolution equation
with random coefficients:⎧⎨⎩ d

dtψ(t) +Aψ(t) + B(ψ(t) + z(t)) +N(ψ(t) + z(t)) + R(ψ(s) + z(s)) = ,

ψ() = φ.
(.)
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Following the arguments in [], Section ., we can get a upper boundedness for ψ in
the space E.

Lemma . Let ψ be the local solution of the stochastic evolution equation (.) on [,T],
then

sup
t∈[,T]

∣∣ψ(t)
∣∣ ≤ ec

∫ T
 |z(s)| ds|φ| +

∫ T


ec

∫ T
s |z(r)| drh(s)ds, (.)

∫ T



∣∣ψ(t)
∣∣
V dt ≤ c|φ| + cc sup

t∈[,T]

∣∣ψ(t)
∣∣ ∫ T



(∣∣z(s)∣∣)ds + c
∫ T


h(s)ds, (.)

where c and c are positive constants which depend on the domain O, and the integral
function h depends on z.

Proof Integrating both sides of equation (.) with ψ(t) over O, and applying the facts
that 〈N(ψ),ψ〉 ≥ , 〈R(ψ),ψ〉 ≥ , and that we have the orthogonality of the trilinear term
b leads to



d|ψ(t)|

dt
+

∣∣ψ(t)
∣∣
V

= –b
(
ψ(t) + z(t),ψ(t) + z(t),ψ(t)

)
–

〈
N

(
ψ(t) + z(t)

)
,ψ(t)

〉
–

〈
R
(
ψ(t) + z(t)

)
,ψ(t)

〉
≤ ∣∣b(ψ + z(t), z(t),ψ + z(t)

)∣∣ – 〈
N

(
z(t)

)
,ψ(t)

〉
–

〈
R
(
z(t)

)
,ψ(t)

〉
. (.)

It follows from λ >  (due to Lemma . in []) that

b(v + z, z, v + z)

≤ C|v + z| · |z| · |v + z|

≤ C

C
|z| · |v + z| + CC


|v + z|

≤ C

C
|z| · |v| +CC|v| +

C

C
|z| · |z| +CC|z|

≤ C

C
|z| · |v| +CC

|v|V

λ




+
C

C
|z| · |z| +CC|z|

≤ C

C
|z| · |v| +CC|v|V +

C

C
|z| · |z| +CC|z| (.)

and

b(v + z, z,η + z)

≤ C|v + z| · |z| · |η + z|

≤ C

C
|z| · |v + z| + CC


|η + z|

≤ C

C
|z| · |v| +CC|η|V +

C

C
|z| · |z| +CC|z| . (.)

http://www.advancesindifferenceequations.com/content/2014/1/207
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Hence, combining equations (.) and (.), we get

b
(
ψ(t) + z(t),ψ(t) + z(t),ψ(t)

)
≤ b(v + z, z, v + z) + b(v + z, z,η + z)

≤ C

C
|z| · |v| +CC|ψ |V +

C

C
|z| · |z| +CC|z|

≤ C

C
|z| · |ψ | +CC|ψ | +

C

C
|z| · |z| +CC|z| . (.)

Similarly, direct calculations show that

–
〈
N(z),ψ

〉
= –

〈
N(z), v

〉 ≤ με
–α/|z| · |v| ≤ rλ



 |v| +

μ


rεαλ




|z|

≤ r|v|V +
μ


rεαλ




|z| ≤ r|ψ |V +
μ


rεαλ




|z| (.)

and

–
〈
R(z),ψ

〉 ≤ ∣∣(ez, v)∣∣ ≤ λ





|v| +


λ




|z|

≤ 


|v|V +


λ




|z| ≤ 


|v|V +


λ




|z|. (.)

Then let λ =min{λ, λ̂} and we can obtain

|ψ |V = |v|V + |θ |V ≥ λ|v| + λ̂|θ | ≥ λ|ψ |V . (.)

Combining equations (.), (.), (.), and (.) gives



d
dt

|ψ | + λ


|ψ | + 


|ψ |V

≤ C

C
|z| |ψ | +

(
CC + r +




)
|ψ |V +

(
C

C
|z| +



λ




)
|z|

+CC|z| +
μ


rεαλ




|z| , (.)

where C is a positive constant determined later.
Let

h =
(

C

C
|z| +



λ




)
|z| + CC|z| +

μ


rεαλ




|z| ,

then

d
dt

|ψ | +
(


– (CC + r)

)
|ψ |V +

(
λ – 

C|z|
C

)
|ψ | ≤ h. (.)

http://www.advancesindifferenceequations.com/content/2014/1/207
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Choosing C < 
C

, let r be small enough such that CC + r < 
 , then we deduce

d
dt

|ψ | +
(

λ – 
C|z|
C

)
|ψ | ≤ h. (.)

Applying the Gronwall lemma leads to

∣∣ψ(t)
∣∣ ≤ ∣∣φ()∣∣e– ∫ t

(λ–
C |z(s)|

C
)ds +

∫ t


h(s)e

–
∫ t
s
(λ–

C |z(s)|
C

)ds ds,

which implies that

sup
t∈[,T]

∣∣ψ(t)
∣∣ ≤ e

C
C

∫ T
 |z(s)| ds|φ| +

∫ T


e

C
C

∫ T
s |z(r)| drh(s)ds.

Let c = C/C, then the inequality (.) holds.
Integrating both sides of equation (.) over [,T], we have

∣∣ψ(T)
∣∣ – ∣∣ψ()

∣∣ +(


– (CC + r)

)∫ T



∣∣ψ(s)
∣∣
V ds

≤
∫ T



C

C

∣∣z(s)∣∣ ∣∣�(s)
∣∣ ds + ∫ T


h(s)ds. (.)

Let c = (  – (CC + r))–, then the inequality (.) holds. Thus, we complete the proof
of Lemma .. �

Based on Theorem . for the existence of the local mild solution and Lemma . for
the extension of the local mild solution, we state the existence of the global mild solution
for equation (.).

Theorem . Assume the conditions (Hyper-) and (Hyper-) hold, then for H ∈ (  , ),
φ ∈ H , and T > , equation (.) has a unique global mild solution in the space
C([,T];H)∩ L(,T ;V ).

Remark . In fact, we define a stopping time

τn = T ∧ inf
{
t ∈ [t,T] :

∣∣ψ(t)
∣∣ > n

}
. (.)

Then for some given ω ∈ , ψ(t) is bounded on [t,T], |ψ(t)| < n for large enough n, and
τn = T , which implies that τn → T , t∧ τn → t as n→ ∞ and t ∈ [t,T].We replace t in the
argument of Lemma . by t ∧ τn, we can obtain the existence of the global mild solution.

5 Existence of a random attractor
In this section, we will show the existence of a random attractor for the random dynamical
system generalized by equation (.).
To the end, it suffices to prove the absorbing set in the space Ḣ = Ḣ

 × Ḣ
 with the

norm |φ| = |v| + |θ | where

Ḣ
 = the closure of V in space

(
H(O)

),
Ḣ

 = V = the closure of V in space H(O).

http://www.advancesindifferenceequations.com/content/2014/1/207
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If we follow the method employed for Lemma . (which is based on the change
of variable ψ = φ – z), we end up with the problem of finding a uniform bound for
{∫ t

t
|z(s)| ds, t ∈ R} (cf. equations (.)-(.)). To overcome this difficulty, the fractional

Ornstein-Uhlenbeck process is introduced. By the stationary property of the fractional
Ornstein-Uhlenbeck process, we can use the Birkhoff-Chintchin ergodic theorem to con-
vert the integration over time variable to the integration over sample space. This yields a
uniform bound for those integrals, so that we can deduce a bound in H for |ψ(t)|.
Denote

Z(t,ω) =
∫ t

–∞
S(t – r)dBH (r,ω) =

( ∫ t
–∞ S(t – r)dBH (r,ω)∫ t

–∞ S(t – r)� dBH (r,ω)

)
�

(
Z(t)
Z(t)

)
. (.)

Then Z is a stationary solution of the following fractional Ornstein-Uhlenbeck equation:

dZ(t) = AZ(t) +�dBH (t), t ∈R, (.)

where

� =

(
I

�

)
. (.)

Now the existence of the stationary solution Z(t) (t ∈ R) will be proved. Assume Lem-
ma . and Lemma . hold, it suffices to prove that Z() converges in the space L(;H).
For H ∈ (  , ), it follows that

E
∣∣Z()∣∣ = E

∣∣∣∣∣ limt→∞

∞∑
i=

∫ 

–t
S(–s)dBH (s)

∣∣∣∣∣




≤ lim sup
t→∞

E

(∣∣∣∣∣
∞∑
i=

∫ 

–t
S(–s)ei dβi(s)

∣∣∣∣∣




+

∣∣∣∣∣
∞∑
i=

∫ 

–t
S(–s)�êi dβi(s)

∣∣∣∣∣




)

= lim sup
t→∞

∞∑
i=

(∣∣S(·)ei∣∣H (,t;H) +
∣∣S(·)�êi

∣∣
H (,t;H)

)
= lim sup

t→∞

∞∑
i=

∫ t



∫ t



〈
S(u)ei,S(v)ei

〉
H |u – v|H– dudv

+
∫ t



∫ t



〈
S(θ )�êi,S(ξ )�êi

〉
H |θ – ξ |H– dθ dξ

=  lim sup
t→∞

∞∑
i=

λ


i

∫ t



∫ u


e–λi(u+v)(u – v)H– dudv

+
∫ t



∫ θ


e–λ̂(θ+ξ )|�êi|V (θ – ξ )H– dθ dξ

=  lim sup
t→∞

∞∑
i=

λ


i

∫ t



∫ u


e–λi(u–x)xH– dxdu

+ |�êi|V

∫ t



∫ θ


e–λ(θ–x)xH– dxdθ
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=  lim sup
t→∞

∞∑
i=

λ
– 


i

∫ t


e–λi(u–x)xH–( – e–λi(t–x)

)
dx

+ |�êi|V

∫ t


e–λ(θ–x)xH–( – e–λ(t–x)

)
dx

≤ lim sup
t→∞

∞∑
i=

λ

 –H
i

∫ λit


e–yyH– dy + |�|L (V)λ̂

–H


∫ λt


e–yyH– dy

≤ �(H – ) · (βD(H – )ζ (H – ) – ζ (H – ) + |�|L (V)λ̂
–H


)
<∞.

Now, let us consider the real-valued continuous function |Z(θ·ω)| . Notice that (,F ,
{θ (t)}t∈R) is the metric dynamical system and it follows from the Birkhoff-Chintchin er-
godic theorem that

lim
n→±∞


n

∫ n



∣∣Z(θtω)∣∣ dt = E
∣∣Z(ω)∣∣ < ∞. (.)

Next, we will verify that the random dynamical system can be generated by the mild
solution of equation (.).
It follows from Theorem . that, for t ∈R, φ(t,ω; t,φ) is the unique mild solution of

the equation:

φ(t; t) = S(t)φ –
∫ t


S(t – s)B

(
φ(s)

)
ds –

∫ t


S(t – s)N

(
φ(s)

)
ds

–
∫ t


S(t – s)R

(
φ(s)

)
ds +

∫ t


S(t – s)�dBH (s). (.)

By the change of variable φ(t,ω; t) = ψ(t,ω; t) + Z(t,ω), it follows that ψ(t,ω; t,φ –
Z(θtω)) is the solution of the following integral equation:

ψ(t) = S(t)
(
φ – Z(θtω)

)
–

∫ t


S(t – s)B

(
ψ(s) + Z(s)

)
ds

–
∫ t


S(t – s)N

(
ψ(s) + Z(s)

)
ds –

∫ t


S(t – s)R

(
ψ(s) + Z(s)

)
ds.

Thus, ψ is the weak solution of the following differential equation with random coeffi-
cients:⎧⎨⎩

dψ

dt +A(ψ) + B(ψ + Z) +N(ψ + Z) + R(ψ + Z) = ,

ψ(t) = φ – Z(θtω).
(.)

Define a continuous map:

ϕ(t,ω,φ) = ψ
(
t,ω; t,φ – Z(θtω)

)
+ Z(θtω), ∀(t,ω,φ) ∈R×  ×H .

Then it can be verified that the measurability of ϕ follows from the continuous depen-
dence of the initial values, and the cocycle property follows from the uniqueness of the
solution. Hence, the random dynamical system can be generated by the mild solution ϕ of
equation (.).
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Next, we will show the following two important lemmas, which give the existence of
the absorbing set in the spaces H and H, respectively. For simplicity of presentation, we
introduce the following condition:
(Hyper-) �(H – ) · (βD(H – )ζ (H – ) – ζ (H – ) + |�|L (V)λ̂

–H
 ) < λ

C

.

Lemma . Assume that the conditions (Hyper-), (Hyper-), and (Hyper-) are satisfied.
Then for H ∈ (  , ), there exist random radii ρH (ω) and ρ(ω) such that, for any constant
M > , there exists t(ω) < –, such that, for any t < t and |φ| <M,

∣∣ψ(
t,ω; t,φ – Z(θtω)

)∣∣ ≤ ρH(ω), ∀t ∈ [–, ], (.)∣∣φ(t,ω; t,φ)
∣∣ ≤ ρH (ω), ∀t ∈ [–, ], (.)∫ 

–

∣∣ψ(t)
∣∣
V dt ≤ ρ(ω),

∫ 

–

∣∣ψ(t) + Z(t)
∣∣
V dt ≤ ρ(ω). (.)

Proof Firstly, we show that both |φ(t)| and |ψ(t)| are bounded in the spaceH . Similar to
the argument in Lemma ., we have

d
dt

|ψ | +
(


– (CC + r)

)
|ψ |V +

(
λ – 

C|Z|
C

)
|ψ | ≤ h, (.)

where

h =
(

C

C
|Z| +



λ




)
|Z| + CC|Z| +

μ


rεαλ




|Z| .

Choosing

C ∈
(
Cλ

–�(H – ) · (βD(H – )ζ (H – ) – ζ (H – ) + |�|L (V)λ̂
–H


)
,


C

)
,

let r be small enough such that the following inequality holds:

d
dt

|ψ | +
(

λ – 
C|Z|
C

)
|ψ | ≤ h. (.)

By the Gronwall lemma, it follows that, for any t ∈ [–, ] and t < –,

∣∣ψ(t)
∣∣ ≤ ∣∣ψ(t)

∣∣e– ∫ t
t
(λ–

C|Z(s)|
C

)ds +
∫ t

t
h(s)e

–
∫ t
s
(λ–

C |Z(s)|
C

)ds ds

≤ ∣∣ψ(t)
∣∣e– ∫ 

t
(λ–

C|Z(s)|
C

)ds +
∫ 

t
h(s)e

–
∫ 
s
(λ–

C|Z(s)|
C

)ds ds. (.)

Applying the ergodic theorem gives

lim
t→–∞


–t

∫ 

t

∣∣Z(s)∣∣ ds = E
∣∣Z(ω)∣∣ . (.)
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Let r be small enough such that

C

C
�(H – ) · (βD(H – )ζ (H – ) – ζ (H – ) + |�|L (V)λ̂

–H


)
<

λ


–
r

. (.)

Then there exists t(ω) < – such that, for any t < t and t ∈ [–, ],

∣∣ψ(t)
∣∣ ≤ e(+t)r |φ| +

∫ 

t
e(+t)rh(s)ds. (.)

Noticing that the term h has at most polynomial growth as t → –∞ for P-a.s. ω ∈ , we
derive∫ 

t
h(s)e(+s)r ds≤

∫ 

–∞
h(s)e(+s)r ds ≤ ∞, P-a.s.

Let

ρH = 
∫ 

–∞
h(s)e(+s)r ds +  sup

t∈[–,]

∣∣Z(t)∣∣.
Then there exists t(ω) < t(ω) < – such that, for any |φ| ≤M, t < t, and t ∈ [–, ],

∣∣ψ(
–,ω; t,φ – Z(θtω)

)∣∣ ≤ 
∫ 

–∞
h(s)e(+s)r ds

and

∣∣φ(–,ω; t,φ)
∣∣ ≤ 

∣∣ψ(
–,ω; t,φ – Z(θtω)

)∣∣ +  sup
t∈[–,]

∣∣Z(t)∣∣ ≤ ρH (ω).

Next, we prove that both
∫ 
– |ψ(t)|V dt and

∫ 
– |φ(t)|V dt are bounded. Integrating both

sides of equation (.) over [–, ] leads to

∣∣ψ()
∣∣ – ∣∣ψ(–)

∣∣ + c–
∫ 

–

∣∣ψ(t)
∣∣
V dt

≤
∫ 

–
h(t)dt +

∫ 

–

C

C

∣∣Z(t)∣∣ · ∣∣ψ(t)
∣∣ dt. (.)

It follows that, for t < t,∫ 

–

∣∣ψ(t)
∣∣
V dt ≤ c

(∫ 

–
h(t)dt +

CρH

C

∫ 

–

∣∣Z(t)∣∣ dt + ∣∣ψ(–)
∣∣)� C(ω).

Similarly,∫ 

–

∣∣ψ(t) + Z(t)
∣∣
V dt

≤ c
(∫ 

–
h(t)dt +

CρH

C

∫ 

–

∣∣Z(t)∣∣ dt + ∣∣ψ(–)
∣∣) + 

∫ 

–

∣∣Z(t)∣∣V dt � C̃(ω).

Denote ρ(ω) =max{C(ω), C̃(ω)}. Thus, the proof is completed. �
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Lemma . Assume that the conditions (Hyper-), (Hyper-), and (Hyper-) are satisfied.
Then for H ∈ (  , ), there exists a random radius ρ(ω) such that, for anyM > , there exists
t(ω) < – such that, for |φ| < M, t < t and t ∈ [– 

 , ], the following inequalities hold
P-a.s.:∣∣ψ(

t,ω; t,φ – Z(θtω)
)∣∣

 ≤ ρ(ω), (.)∣∣φ(t,ω; t,φ)
∣∣
 ≤ ρ(ω). (.)

Proof By integrating equation (.) with –�v over O, it follows that



d
dt

|ψ | + |v| + |θ | ≤ ∣∣b(ψ + Z,ψ + Z,�ψ)
∣∣ – 〈

N(ψ + Z), –�ψ
〉

–
〈
R
(
ψ(t) + z(t)

)
, –�ψ

〉
+

〈
G(x), –�ψ

〉
. (.)

By Gagliardo-Nirenberg’s inequality and Young’s inequality, we have∣∣b(v + Z, v + Z,�v)
∣∣

≤ C|v + Z|/ · |v + Z|/ · |v + Z| · |v|
≤ C|v + Z|/ · |v + Z| · |v|/ +C|v + Z|/ · |v + Z| · |Z|/ · |v|

≤ 

|v| + C|v + Z| · |v + Z| +



|v| + C|v + Z| · |v + Z| · |Z|

and ∣∣b(v + Z,η + Z,�η)
∣∣

≤ C|v + Z|/ · |η + Z|/ · |η + Z| · |η|
≤ C|v + Z|/ · |η + Z| · |η|/ +C|v + Z|/ · |η + Z| · |Z|/ · |η|

≤ 

|η| + C|v + Z| · |η + Z| +



|η| + C|v + Z| · |η + Z| · |Z|.

Hence,∣∣b(ψ + Z,ψ + Z,�ψ)
∣∣

≤ ∣∣b(v + Z, v + Z,�v)
∣∣ + ∣∣b(v + Z,η + Z,�η)

∣∣
≤ 


|ψ | + C|ψ + Z| · |ψ + Z| + C|ψ + Z| · |ψ + Z| · |Z|.

Finally, we estimate the following two terms in equation (.):

–
〈
N(ψ + Z),�ψ

〉
= –

〈
N(v + Z),�v

〉 ≤ με
– α


∫
D

∣∣eij(v + Z)eij(�v)
∣∣dx

≤ με
– α
 |v + Z| · |v| ≤ 


|v| +

μ


εα
|v + Z| ≤ 


|v| +

μ


εα
|ψ + Z|

and

–
〈
R(ψ + Z),�ψ

〉
= –

〈
e(η + Z),�v

〉 ≤ 

|v| +



|η + Z| ≤ 


|ψ | +



|ψ + Z|.
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Denote

h(t) = 
(
C|ψ +Z| · |Z| + C|ψ +Z| · |ψ +Z| · |Z| + μ


εα

|ψ +Z| +


|ψ +Z|

)

and

h(t) = C|ψ + Z| · |ψ | .

It follows from λ >  (Lemma . in []) that




|v| + |θ | ≥ 


λ|v| + |θ | ≥ |v| + |θ | = |ψ |. (.)

Then the inequality (.) can be rewritten as the following inequality:

d
dt

∣∣ψ(t)
∣∣
 +




∣∣ψ(t)
∣∣
 ≤ h(t) + h(t)

∣∣ψ(t)
∣∣
 . (.)

Thus,

d
dt

∣∣ψ(t)
∣∣
 ≤ h(t) + h(t)

∣∣ψ(t)
∣∣
 . (.)

By the variation of constant formula, it follows from equation (.) that, for any –≤ s ≤
t ≤ ,

∣∣ψ(t)
∣∣
 ≤ ∣∣ψ(s)

∣∣
 · e

∫ t
s h(s)ds + e

∫ t
s h(s)ds ·

∫ t

s
h(s)e–

∫ s
s h(s)ds ds

≤
(∣∣ψ(s)

∣∣
 +

∫ 

–
h(s)ds

)
· e

∫ 
– h(s)ds . (.)

Integrating inequality (.) with respect to s over [–, t], we obtain

( + t)
∣∣ψ(t)

∣∣
 ≤

(∫ 

–

∣∣ψ(s)
∣∣
 ds +

∫ 

–
h(s)ds

)
· e

∫ 
– h(s)ds. (.)

Since all the terms
∫ 
– h(s)ds,

∫ 
– h(s)ds and

∫ 
– |ψ(s)| ds are bounded as t → –∞.

Therefore, for any t < t and t ∈ [– 
 , ], we have∣∣ψ(t)

∣∣
 ≤ C(ω). (.)

Finally, we will prove that the second inequality (.) holds. There exists a random radius
ρ(ω) such that

∣∣φ(t,ω; t,φ)
∣∣
 ≤ 

∣∣ψ(
t,ω; t,φ – Z(θtω)

)∣∣
 + sup

t∈[– 
 ,]

∣∣Z(t)∣∣
≤ ρ(ω), ∀t < t, t ∈

[
–


, 

]
. (.)
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Especially for t = , it follows that

∣∣φ(,ω; t,φ)
∣∣
 ≤ ρ(ω), ∀t < t.

Thus, the proof has been completed. �

Since Ḣ is compactly embedded inH , then it follows fromLemmas . and . that there
exists a compact random absorbing set in the space H . So we get the following existence
of a random attractor for equation (.) from Theorem ..

Theorem . Assume that the conditions (Hyper-), (Hyper-), and (Hyper-) are sat-
isfied. Then for H ∈ (  , ), the stochastic modified Boussinesq approximate equation (.)
possesses a random attractor.

Remark . Since the computation for the regularity is different for H ∈ (  ,

 ) and

H ∈ (  , ), the conditions (Hyper-) and (Hyper-) are different from that in []. This
shows that the Hurst parameter H determines the conditions which ensure the regularity
of the stochastic convolution and the existence of a random attractor generated by the
mild solution for equation (.). If the temperature variable θ = , then the result in the
present paper and [] will reduce to that in [] and [], respectively.
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