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1 Introduction
Boundary value problems for fractional differential equations have been discussed by
many authors; see the textbooks [1, 2], papers [3—21] and the references therein.

Fourth-order two-point boundary value problems are useful for material mechanics be-
cause the problems usually characterize the deflection of an elastic beam. The following
problem

{u"”(t) =flt,u(@), te (1), a
u(0)=u(l)=u/(0)=u/(1)=0

describes the deflection of an elastic beam with both ends rigidly fixed. The existence of
positive solutions were studied extensively; see [13-16].
In [12], the authors studied the existence of positive solutions of the following boundary
value problem for the fractional order beam equation:
{D‘(’)ﬁu(t) =f(t,u(®), te(0,1), .
u(0) = u(1) =u'(0) = /(1) =0,

where 3 < o < 4, D§, (D* for short) is the Riemann-Liouville fractional derivative of or-
der ,andf : [0,1] x [0, 00) — [0, 00) is continuous or f : [0,1] x (0, c0) — [0, c0) is contin-
uous and f is singular at x = 0. We note that f in (1) depends on x, t — f(¢,x) is continuous
and the solutions obtained in [11] satisfy that both x and x" are continuous on [0, 1] (hence
they are bounded on [0, 1]).

Motivated by [12] and the above-mentioned example, in this paper we discuss the
boundary value problem for nonlinear singular fractional order elastic beam equation of
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the form

DS u(t) =f(t,u(t), te(0,1),
lim,_, o £*u(t) = a,
lim;_, ¢ DgISM(t) =b,
u(1) = D%u(l) = 0,

3)

where 3 <« < 4, D§, (D for short) is the Riemann-Liouville fractional derivative of or-
der @, a,b € Rand f: (0,1) x R — R is continuous. f may be singular at £ =0 and ¢ = 1.

The purpose of this paper is to establish some existence results for solutions of BVP (3)
by using Schauder’s fixed point theorem. The solutions obtained in this paper may be un-
bounded since lim;_, o t**u(t) = a. The methods used in this paper are different from the
ones used in [13, contraction mapping and iterative techniques], [14, Guo-Krasnosel’skii
fixed point theorem], [15, upper and lower solution methods], [16, topological degree the-
ory in Banach space], [17, Lie symmetry group methods], [18, the contraction mapping
principle and Krasnoselskii’s fixed point theorem] and [19, study the asymptotic behavior
of solutions], Schauder’s fixed point theorem [22-24].

A function u : (0,1] — Ris called a solution of BVP (3) if u € C°(0,1] and all equations in
(3) are satisfied. The remainder of the paper is divided into three sections. In Section 2, we
present some preliminary results. In Section 3, we establish sufficient conditions for solv-
ability of BVP (3). An example is given to illustrate the main result at the end of the paper.

2 Preliminary results

For the convenience of the reader, we present here the necessary definitions from frac-
tional calculus theory. These definitions and results can be found in the literature [1, 2].
Denote the gamma function and the beta function, respectively, by

+00 1
I'(o7) = / o178 d, B(03,03) = / 1-x)2"1% 1 dx, 0,>0,i=1,2,3.
0 0

Definition 2.1 [1] The Riemann-Liouville fractional integral of order « > 0 of a function
f:(0,00) — R is given by

f(0) = ﬁ /0 (£ - 51 (s) ds,

provided that the right-hand side exists.

Definition 2.2 [1] The Riemann-Liouville fractional derivative of order o > 0 of a contin-
uous function f : (0,00) — R is given by

ar t f(S)

SO T —ayare Jy = oyt ®

where n —1 < « < n, provided that the right-hand side is point-wise defined on (0, c0).
Lemma2.1[1] Letn—-1<a <n,ue C°0,1)NL(0,1). Then
I8, D%, u(t) = u(t) + Crt* ™' + Cot* 2 + - + Cut* ™,

where C;eR,i=1,2,...,n.
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For our construction, we choose
X= {x € C°(0,1] : there exists the limit lir% t*“x(t)}
t—
with the norm

llull = sup £ |u(t)|
te(0,1]

for u € X. It is easy to show that X is a real Banach space.

Lemma 2.2 Suppose that h € C°(0,1) and there exist k > -1 and o € (3 — «,0] such that
|h(t)| < XA —t)° forall t € (0,1). Then x € X is a solution of the problem

D*x(t) =h(t), O0<t<l,
limt—>0 t4_ax(t) = 1imt—>0 Dg:sx(t) = 0: (4)
x(1) = D%3x(1) = 0,

if and only if x € X satisfies

(t S)al
x(t):/o @) ———h(s)ds

1 2 a-1 -2 ! a1
T (a-1)-T(@) (‘a_l’f +1 )/O 1-9)*"h(s)ds
1

al 0t2 2
T @-1)-T(@) /(1 S his)

1
T @—1)- F(a)(

2 -3+ ale =32 — (- 2)( - B)t"‘_?’)b

a-1 a—2 -4
D) T 2@ DeT + D)™ + (2T @ - 1) - T (@) )a. (5)

Proof Since h € C°(0,1) and there exist k > —1and o € (3 —a, 0] such that |(t)| < t*(1-¢)°
for all ¢ € (0,1), then

(t Sal ‘ (t- )alk o t(t—s)aflk -
—h(s)ds 1- d. - — d.
(s) / -9 ss/O (¢ —5)° ds

o T (e)
at+o—1 1 o+o—1
< / —(t =) Kds= t“*‘”k/ 7(1 —v) wKdw
o I 0 ['(a)
_ ek B(a +0,k+1)
- I'(a)

Similarly, we get

1
/ (1-29)2h(s)ds| <B(3 + 0o,k +1).
0
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So, for ¢ € (0,1], D*u(t) = h(t) together with Lemma 2.1 implies that there exist constants
¢; (i=1,2,3,4) such that

1
(t 5)” _ _ _
$)ds +cit® "+ ct® 7 + 3t 4 cat®™t

with

t 2
Dg‘:sx(t)zf (t—zs) h(s)ds+01¥t2+02F(a—1)t+031"(oz—2).
0

Now, lim;_, o £*%x(t) = a implies that ¢, = a.
lim;_.o D%3%(¢) = b implies ¢3 =
u(l) = Dg’:s(l) =0 implies that

~ La-s)e! b
cl+02——/(; ) h(s)ds—r(a_z)—a,

1
clr(z"‘) o —-/0 (1_28)2h(s)ds—b.

It follows that

1 1 2 2 1 ! a—-1
Cl:m/o 1-5s) h(s)ds—()[_121_,(0[_1)_“0[)/0 (L-s)*"h(s)ds

_b
a-2)"*

2( - 3) 2l (e - 1)
T @-1)-T(@) 2Fa-1)-T@)”
_ _ o)1
-1 r(a)/ M+ a1 - r(a)/(l s ds
ale—3) I'a)

T @-D-T@ & 2Ma-1)-T@@)"

Then

t( )ozl
x(t)z/(; ) ———h(s)ds

o—1 2
te (2F(a—1 F(a)/ Sy s

2 a-1
a—12T(@—1)— )/ 1= hls) ds

2(a —3) b 2l - 1)
T (@-1)-T(@) 2(a-1)- F(a)ﬂ)

1 1
a-2 2
e <_2F(a -1)-T(o) /(; (=Y his)ds

1
(1-35)*Lh(s)ds

M@-1)-T(@) /0
+ a(a - 3) ¥ G a) 173 +1%%g
2N —1) = T'(«) 2I'(a —1) - T (@) IN'a-2)
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B Lt —s)*t
—/0 Wh(s)ds

! 2 -1 o—2 ! a-1
+2F(“—1)—F(a)<_a—1t e >/0(1—s) h(s) ds

P S R / (1 5P ds
2N —1) = T'(«) 0

1
M @-1)-T(@)

(—2(a -3 v a(a —3)tY % — (@ - 2)(a — 3)t°‘73)b

o1 a=2 a—4
+ m(—zr(a - l)t + F(a)t + (2F(a — 1) _ l"(a))t )ﬂ.

It is easy to see that x € C°(0,1]. Furthermore, we have

/ G
0

«Bla+o,k+1)
I'(a)

I'(a)

t4—o¢ < t4+a+

—0 ast— 0.

Then the following limit exists
lim £4%x(¢).
t—0

Hence x € X and «x satisfies (5).
On the other hand, if x € X satisfies (5), we can show that x is a solution of problem (4).
The proof is completed. d

Define the operator T on X, for x € X, denote f,() = f(¢,x(¢)), by

t _ o)1
@)~ [ L (so)ds

1 2 e o ! a-
+2F(Ol—l)—I‘(a)<_a—lt et 2)/0<1—S> F(s(s)) ds

1

T @-1)-T(@)
1

" (@-1)-T(@)

1
(e -2 f (1-5)*f (s, %(s)) ds
0
(—2(0{ -3+ oo - 3)* 2 — (o - 2)(« — 3)t°‘_3)b

a-1 o—2 a4
+ m(—ZF(a - 1)t + F(O{)t + (2F(O€ - 1) - F(a))t )61.

By Lemma 2.2, we have that x € X is a solution of BVP (3) if and only if x € X is a fixed
point of T.

Lemma 2.3 Suppose that
(BO) f(t,x) is continuous on (0,1) x R and satisfies that for each r > 0 there exist k > -1,
o €(3-w,0] and M, >0 such that

If (£, %) | < M,£5(1 - 2)°

holds for all t € (0,1), |x| <r.
Then T : X — X is completely continuous.
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Proof We divide the proof into four steps.
Step 1. We prove that 7: X — X is well defined.
For x € X, there exists r > 0 such that

sup t*|x(t)| <.
te(0,1]

Then there exist k > -1, o € (3 —«, 0], M, > 0 such that

If (&:x(®)] = |f (&, 2 %(2)) | < M,£*Q - 2)° (6)

for all £ € (0,1). Similarly to the proof of Lemma 2.2, we can show that Tx € X.So T : X —
X is well defined.

Step 2. T' is continuous.

Let {x, € X} be a sequence such that x, — xy as # — oo in X. Then there exists r > 0
such that

sup t4_“‘x,,(t)| <r
te(0,1]

holds for n = 0,1,2,.... Then there exist M, > 0, k > -1 and o € (3 — &, 0) such that

If (£:2a(®)| = £ (& 27 ¢ x,(8)) | < M5 Q - 2)°
holds for all £ € (0,1), n=0,1,2,.... Then

£47| (Tx) (2) = (Txo) (8) |

i t (t_s)a—l ~
té Pl ACRVACIEE
1
T Rre-D-T@)| «-1

1
" 2r@-1)-Tr@)

2+ 12

=) |fy, (5) = fro (5) | s

1

t3—t2|/ (l—s)zlfxn(s)—ﬁco(s)ids
0

<M, ¢ ‘“/ (tl::‘))[“ 1s k(1 -s)7ds

2M, 2 1 i )
’ |2F(a—1)—F(a)|<a—1 +1)/0 (1-5)*"s"(1-s)"ds

aM
uNa—n—Fwn -

$)2sK(1 - 5)7ds

o [f - S)‘”‘1
<2M,¢* “/ = Ke-s)ds
o [(a)

2M,B(a +o,k+1) [ 2 4M,B(3 +0,k+1)
+urm—n—rwn< >+urm—n—rwn

oM t4.+(7+k /l (1 _ w)ot+o‘—l
— r
0 ['(a)

a-—-1

wrdw
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2M,B(a + 0,k +1) 2 4M, BB + 0,k +1)
"l -D-T@)| ( ) " 2M@-1) - (o)
B(a+0,k+1) 2M,B(x +a,k+1)( 2 ) AM,B(3 + 0,k +1)
< Mr + + .
I'a) 2T (o — 1) = ' ()| 2T (o — 1) = ' ()|

a-1

a-1

By the dominant convergence theorem, we have || Tx, — Tx|| — 0 as n — oo. Then T is
continuous.
Let 2 C X be a bounded subset. Then there exists » > 0 such that

sup ¥ }x(t)| <r, x€f.
te(0,1]

Then there exist M, >0, k> -1 and o € (3 — «,0) such that
If (&:x(®)] = |f (&, 2 x(2)) | < M,£* Q- 2)°

holds for all £ € (0,1), x € Q.
Step 3. Prove that T2 is a bounded set in X.
Similarly to Step 2, we can show that

£ (Tx)(0)| < v, ek D) M’B(“”’k”)( 2 1)

@ Rha-1)-T@)
2M,B(3 + 0,k +1)
|2 (e = 1) = ()|

+
a-—1

So T maps bounded sets into bounded sets in X.

Step 4. Prove that T'S2 is a relatively compact set in X.

We can prove easily that {t*~*(Tu)(t) : u € Q} is equicontinuous on (0, 1]. Therefore, TQ
is relatively compact.

From the above discussion, T is completely continuous. The proof is complete. 0

3 Main results
In this section, we prove the main results.

Theorem 3.1 Suppose that
(B1) ¢ € C%0,1) satisfies that there exist ko > -1, o9 € (3 — ¢, 0] and My > O such that
()] < Mot (1 - 1) forall t € (0,1);
(B2) f:(0,1) x R — R is continuous and there exist numbers ky > -1, o1 € (3 -, 0],
un=>0,A >0 such that
If (£ £7*x) — p(0)] < AL(L - 1) x|

holds for all t € (0,1), x € R. Let
_ t (t _ S)a—l
(D(t) = L W(f)(s) dS

1 2 a-1 -2 ! a-1
+2F(a—1)—F(a)(_a_1t +t )/0(1—8) b(s)ds
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1

1
a-1 -2 2
DT -f)A04M@m
1 a-1 a—2 w3
+ m(—Z(O{—B)t +O[(Ol—3)t —(a—z)(a_s)t )b
1

a-1 a—2
T @-1)-T(@ (2@ (¢ = 1)*" + T ()t

+ (2l (@-1)-T(@)* *)a

and

_B(a+01+k1,k1+1) 1 o+l

I'(«) * F(a)—zr(a—l)a_lB(a+Jl’kl+1)

— B3 ki +1).
T _ar@_p e rovki+l)
Then BVP (3) has at least one solution if

(i) w<lor
(ii) u=1withAP<1or
(iii) w>1 with

O
(1@l

Proof 1t is easy to show that (B1) and (B2) imply (BO). Let the Banach space X and the
operator T defined on X be defined in Section 2. By Lemma 2.3, T: X — X is well defined,
completely continuous, x € X is a positive solution if and only if x € X is a fixed point of T'.
It is easy to see that ¢ € X.

For r > 0, denote 2, = {x € X : ||x — ®|| < r}. One sees that

lxll = sup t**|x(0)| < llx— @] + | @] <r+ [P, x€Q.
te(0,1]

Hence for x € ©,, we have

If (8,%(2)) — ¢ (0| = |f (£, 8 *£**x(t)) - p(2)|
<A1 - 7| (e) "

<A Q- [r+||@)]".

We have

(£—s)* 1

W [f(s,x(s)) - ¢>(s)| ds

#*mww—MMS#ﬂft
0

1 2 5
+2F(a—1)—F(a)(_(x—1t ”)
1
X / (1 —s)“‘1V(s,x(s)) - ¢(s)‘ ds
0

1

1
3
* M(t _tz)/o 1= 9)?|f(s,x(5)) — p(s)| ds
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o [f -9
<t /0 %a)[f(s,x(s))—qﬁ(sﬂds

1 oa+1
+
2N —-1) - T () @ — 1

2 1 ) ) p
fale-1)-T@ f0< =P |f (5,(9)) - $(s)| ds

1
/0 (1-s)*t [f(s,x(s)) - ¢>(s)| ds

L(p— gl L
< t4—a/ &Askl(l—s)al [V"' ||q)||]l ds
0

I'(a)

1 a+l [1 el 4 o o .
+2I‘(a—1)—I‘(a)oz—1/(;(1_S) As (1 -5s) [r+||q>||] ds

2

1
2 4ck1(1 _ q)ot n
*m/o<1—5> A (A=) [r+ 1 @)]" ds

t -1
o (t _ S)Ol+o'1

0 I'(a)

1
/ (1 _s)a+<71—lsk1 ds
0

<A[r+l1®)]" [t‘*- sKds

1 oa+1
+
2 -1)-T(x) a -1

2 ! 2+07 k1
+—2F(a—1)—F(a)/(;(1_S) s ds]

=AP[r+ | ®|]".

It follows that
1T - @] < AP[r + | ®]".

Casel. u<1.
Since there exists o > 0 sufficiently large such that

AP[ry + [|@]|]" < ro.
Choose 2,, = {x € X : |[x — ®|| < ro}. From the above discussion, we have
[T — @I < Ap[ro + | @[] <ro.

Then Tx € Q,,. By Schauder’s fixed point theorem, T has at least one fixed point x € €.
Then x is a solution of BVP (3).

Case 2. u=1.
Choose
AP| @
ro > .
1-AP

Let Q,, = {x € X : [[x — ®|| <rp}. From the above discussion, we have
I1Tx - @I < AP[ro + @] < ro.

Then Tx € Q,,. By Schauder’s fixed point theorem, T has at least one fixed point x € .
Then x is a positive solution of BVP (3).

Page 9 of 12
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Case 3. u>1.

Choose rg = %. Let ©2,, = {x € X : |lx — ®|| < ro}. From the above discussion, we have

I Tx - @|| < AP[ro + || @[]
|l .
=AP| — + [P
|
@Il =D il .
< +lo|
(@) -1
_ el _
u-1

ro.

Then Tx € Q,,. By Schauder’s fixed point theorem, T has at least one fixed point x € €2,,.
Then x is a positive solution of BVP (3).
The proof of Theorem 3.1 is completed. O

4 An example
In this section, we give an example to illustrate the application of Theorem 3.1.

Example 4.1 Consider the following boundary value problem:

D35u(t) =2 (1- 1) 3(1+g(t,ut), te(0,1),
limy_, o t%°u(t) = a,

lim,_.o D7 u(t) = b,

u(1) = D§2u(1) = 0,

7)

where a,b > 0, g: [0,1] x R — R is defined by g(t,x) = At*>*x* with A > 0 and u > 0
continuous.

Corresponding to BVP (3), we have « = 3.5, a,b > 0 and f(¢,%) = 3 a- t)‘% (1 +g(¢,%)).
Choose ¢(t) = 3 (l—t)”ir .So ()| < Motk (1—¢)° forall £ € (0,1) with kg = 0.5, 0 = —%

and My = 1. Furthermore, we have
If (& £7*x) — p(8)] < AL(L - 1) x|

with A >0,k =-0.5and oy = —%. It is easy to see that (B1) and (B2) in Theorem 3.1 hold.

By using Mathlab, we get m ~ —1.5045. By direct computation, we find that

t (t _ 5)2.5
o I(35)

1 2 95 15 /1 25.-05 _1
T ey 1 5)255705(1 _
+21"(2.5)—1“(3.5)( Sgltt 0( §)*°s05(1—5)"3 ds

|D(2)] = s705(1 = )73 ds

! 25 _ 415 /1 2.-05 _1
(1) | (1-9%7%1-9) T d
+2F(2.5)—F(3.5)( ) 0( 8)°s (1 —s) 3 ds
1 2.5 15 05
——(-*° +1.75¢/"° — 0.75t°%)b
T I VET L )
1

25 15 ~05
*37e5 —TEg (2@ + TS + (2r(25) -T(35))¢")a
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t (t _ S)Z.S 05
o I'(3.5)
1
4+ -
2I(2.5) - I['(3.5)
PR S
2I(2.5) - I'(3.5)
PR S
2I(2.5) - I['(3.5)

(t- s)_% ds

(-0.8£>° — £'°)B(9.5/3,3/2)
(—£*° - £"5)B(8/3,3/2)
(—£*° - 1.75¢"5 - 0.75t°)b

2.5 1.5 -0.5
+m(—2r(2.5)t -T(35)t" + (2I'(2.5) - I'(3.5))t **)a.

So

10 B(9.5/3,3/2) -0.8t3 - 12
r(35) @ 2I'25)-T(35)
-3¢ B(8/3,3/2) -3 —1.75¢2 - 0.75¢
Tares) T35 Y T TN 25) —T(35)
_OT(2.5)8 — T(3.5)2 + (2T'(2.5) - T'(3.5))
i 2r(25)-T'(3.5)

_ B(9.5/3,3/2) —08-1

t°%| (1) < t*t B(9.5/3,3/2)

B(9.5/3,3/2
=" TGs ‘ares -ras 00332
o Lol ey, TLo175-075,  -ar@s)
0 , a
2T (25)-T(3.5) C(25)-T(35) " 2r(25)-T(35)
~ 0.9294 + 5.2658b + 104.

It follows that || ®|| < 0.9294 + 5.2658b + 10a. Furthermore, we have

_ B(8/3,0.5) 1 45 055,05
T TT@5) T35 _2r@25)25 Y

% B(8/3,05)~ 6.5695.
* T35 —2r@s) B e/ 09

Using Theorem 3.1, we know that BVP (7) has at least one solution if
(i) w<lor

(i) w =1 with A <1.1522 or
(iii) w > 1 with

(0.9294 + 5.2658b + 10a)(u — )"~
(0.9294 + 5.2658b + 10a) [u+

> 6.5695A.
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