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1 Introduction
As is well known, the Narumi polynomials of order « are defined by the generating func-
tion to be
t ¢ > t"
(W) (1+2) = ZN,gm(x)— (see [1]). )

1+1%) = n!

Let r € Z.¢. We consider the polynomials N, (x|ay,...,a,) and N,,(x|a1, ...,dy), respec-
tively, called the Barnes-type Narumi polynomials of the first kind and those of the second
kind and respectively given by

. (1+t)a/—1 X i t"

E(m)(lﬂ) —;Nn(»’dﬂl:...,ﬂr)a @)
and

T A+ny-1 MR o

g(m)ﬂ”) —;N,,(xml,...,a,)a, 3)

where ay,a5,...,a, #0.
When x =0,

Nn(ﬂlr . ..,61,«) = Nn(0|a11 .. -;ﬂr)
and
Nn(alﬁ .. -;ﬂr) = Nn(()'al! .. ~;6lr)

are respectively called the Barnes-type Narumi numbers of the first kind and those of the
second kind.
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Note that

Nu(x[1,...,1) = NV (x),
— ——
r

N, (x1,...,1) = N (x)
N——

r

and

N,(x[1,...,1) = N,(,’)(x 7).
——

r

In the previous paper [2], N,(,D’)(x) was denoted by N and called the Narumi polyno-
mial of order .
The Bernoulli polynomials are defined by the generating function to be

oo

g v -
=) Bulw)— (see [3-6]). (4)

t—1
€ n=0

When x = 0, B, = B,(0) are called the Bernoulli numbers. In [7], it is known that the
Cauchy numbers are given by

o]

t t"
log(1 +¢t) - Z C"E' ®)

n=0

It is well known that the Stirling number of the first kind is given by
X)p=xx-1)---(x—n+1)= ZSl(n, Dxt (n>0) (see [1, 2, 7-11]). (6)
1=0
From (6), we have
N ¢
(log(1 +1)" =m Y " Si(l, my (12 0). 7)
I=n

Let C be the complex number field and let F be the set of all formal power series in the
variable ¢:

ok
F= :f(t) = de%‘dk GC}'
k=0 ’

Let P = C[x] and let P* be the vector space of all linear functionals on P. (L|p(x)) de-
notes the action of the linear functional L on p(x) which satisfies (L + M|p(x)) = (L|p(x)) +
(M|p(x)), and {cL|p(x)) = c(L|p(x)), where c is a complex constant. The linear functional
(f(®)]-) on P is defined by (f(¢)|x") = a, (n > 0), where f(¢) € F. Thus, we note that

(tk|x”> =nléux  (m,k=>0), (8)

where §,,x is the Kronecker symbol (see [12-18]).
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For f1(t) = > 120 L‘,jf tk, we have (f; (t)|x") = (L|x"). So, the map L > f;(t) is a vector
space isomorphism from P* onto F. Henceforth, F denotes both the algebra of formal
power series in ¢ and the vector space of all linear functionals on P, and so an element
f(t) of 7 will be thought of as both a formal power series and a linear functional. We
call F the umbral algebra. The order o(f(¢)) of a power series f(£) # O is the smallest in-
teger for which the coefficient of t* does not vanish. If o(f(t)) = 1, then f(t) is called a
delta series; if o(f(¢)) = 0, then g(¢) is called an invertible series. Let f(t),g(t) € F with
o(f(¢)) =1 and o(g(¢)) = 0. Then there exists a unique sequence s,(x) (degs,(x) = n) such
that (g(£)f (£)¥|s.(x)) = n!8,.x for n,k > 0. The sequence s, (x) is called the Sheffer sequence
for (g(2),f(¢)) which is denoted by s,,(x) ~ (g(£),f(2)).
For f(t),g(t) € F and p(x) € P, we have

{f(Og@®)lp) = (f(©)lg(t)p@)) = (@) E)p(x) )

and

S k
)= Z(f(t)lxk)%,
k=0 !

N (10)
px) = (¢ Ip(x
k=0
From (10), we can derive the following equation (11):
dfp(x
#px) = p¥(x) = ; (k ) ) =platy) (el (11)

Let s,(x) ~ (g(£),f(¢)). Then the following will be used:

1

s,
) Z( )(f(t)lx” sy, (12)
=0

where f(¢) is the compositional inverse of f(£) with £(f(£)) = f(f(¢)) = t,

g(f(t)) ed0 - ;sn(x) forallx € C, (13)
[@)s(0) = ns,1(x)  (n21), Xoj wv (14)
j
S+ 9) = ZO (] )s;(x)pn_,»(y>, where p, (x) = g(£)5,(x), (15)
“
[F()lap() = (0 (©)Ip()),  where df(¢) = %(f) (16)

and

sua) = (5= £ ) ssio) 0= 0) (e 1, 19) 17)
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Let us assume that s, (x) ~ (g(¢),f(¢)) and r,(x) ~ (h(¢), {(t)). Then we have

$5®) =Y Cumrm(®) (1= 0), (18)
where
L BE®) )
Cn,m—%<ml(f(f)) x> (see [1, 5]). (19)

From (2), (3) and (13), we note that

Ny (xla,...,a,) ~ (1—[<Wt_ 1>,et _ 1) (20)

j=1
and
r .
~ tet
Ny(xlay,...,a;) ~ (H(W—_J,et—l). (21)

In this paper, we study the Barnes-type Narumi polynomials with umbral calculus view-
point. From our study, we derive various identities of the Barnes-type Narumi polynomi-
als.

2 Barnes-type Narumi polynomials
From (21), we note that

H(ea/tt_1>Nn(x|a1,...,a,) ~(Le-1) (22)
j=1

and
@)~ (L€ - 1). (23)

Thus, by (22) and (23), we get

Nl a) = 1‘[(6 / t‘1)<x>n

j=1
n r ealt _1
= Zsl(n,m)l_[( )xm. (24)
m=0 j=1
Note that
r ea/t -1 S ll+1 o ﬂlr+1 ;
= .. r t r
!_1[( : ) (Z; G x lz:;(l,n)!

11+1 41

...ar i
Z 2 11+1 NSV @5)

Doy =0 I+ +1p=i
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From (24) and (25), we have

ll+1 . lr+1

Ny(xlay, .. ,ar)—ZSl(n,m)Z > mt””

i=0 Ly+-+lp=i
Z i+r m
vt =i Lh+1,...,0+1 i

Z{Z > s

—i+r)!
i=0 \m=i lj++lp=m—i )

m—i+r M\ h+1 L1 |
gt . 26
X<11+1,...,l,+1>(i)a1 or }x (26)

By (21), we see that
r .
tet \ .
H(etl/t—_1>Nn(x|a1""’dr)N (l,et—l), (27)
j=1

and we recall (23).

Thus, we have

. | arrr (e -1
N,,(x|al,...,a,)=H(W>(x)n=e ,1/1—[( t )(x),,

j=1 j=1

ST 4
= e LRYIN, (x|ay,. .., a,)

i{z S S

— !
m=i [{+-+lp=m—i (}’}’1 l+}").

m—i+r m N 4t
X N P
Lh+1,...,0.+1/\ i

(m — i)!

n
Sl(n;m)i
— !
i= [ml11+ Alp=m—i ( l+l’)

m-—i+r M\ h+l gl _ . ) l
X<11+1 z,+1>(i)“1 “ }(x ;“’) 29

or

Nn(x|al:~-:ar) = H(ea >( )n l_[<e ) x)n

Jj=1 Jj=1

n m i‘
=Y Silmm) Y (1) —
— Py (i+71)
i+r m 11*'1 L+1, m—i
X a cear iy
Z <i1+1 ,l,+1>( ) ! "

H+-+lp=i
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- et (m —0)!
:, {Z Z (-1) Sl(”»m)m

m=i lj+--+l=m—i
m=itr M\ her |
X aleal T x
h+1,...,0,+1
Therefore, by (26), (28) and (29), we obtain the following theorem.

Theorem 1 For n > 0, we have

n n (m —i)!
Nn(xml,...,ar):Z{Z Z Sl(”m)(izir)'

i=0 Um=i h+-+l=m—i

m-i+r M\ her |
x al™ e artt b
()]

and

: N (m—
Nn(x|a1,...,6lr)=2{2 Z Sl(”’m)h

i=0 Um=i h+-+lp=m—i

. r i
m-=i+r M\ a1
X a e X — a;
(11+1,...,1,+1>(i> ! r }( Z ’)

j=1

= {Z Y CVSinm)

i=0 \m=i lj++lp=m—i

» (m - i) m—i+r m g
m—i+r))\L+1,..,L,+1)\j ) r

From (14), we can derive the following equation (30):

n

Ny (x|las,...,a,) = Z 1<lj[((10-;-%(24_1;)1> (log(l + t))j

=0 M\

(log(1 + t))jx”>

x”>xj,

where

</,

1+t -
log(1 +¢t)

(1 +1)% -1
log(l )
(1 +1)% -

log(l + 1) )

=t Z ( l)sl(z, JIN,_i(ar, ... a,).

=

) log(1 + t))

]!Zsll] l' >

Thus, by (30) and (31), we obtain the following theorem.

(29)

(30)

(31
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Theorem 2 For n > 0, we have

Nn(x|ﬂl’ oo ,6{,«) = Z{Z <7>Sl(l’j)Nn—l(al: .. wdr)}xj

j=0 Ui
By the same methods as in (28), (29) and (30), we get

N,(x|ay,...,a,)

= Z[Z <’;>Sl(l,j)Nn_l(ﬂ1,...,(l,)} X

j=0 Uiz

5|

j=0

3 (’;)51(1, j)Nn_l(al,...,a,)}xf. (32)

I=j
x”>

Q+1% -1
log(1 +¢t) >(l +y

1+0)% -1
log(1 +¢t)

" n\ [ 1 +8)% -1
o ()11t )

By (8), we get

ti
Nz(}’|ﬂ1, xar)E

M8

Nn(ylab .. ‘;ﬂr) =

N
o

g
Lot
o)

= (y)m (Z)Nn—m(ﬂlr“wﬂr) (33)
0

i
x}’l
l >

|
d A +1)% -
<]_[ 10g(1+t 1+t) )(1+t)y

;
il
(f1(5ee

j=1

m=

and

Nn(ylal, ;ﬂr) - Z |(l1, )ar)

i=0

J=1

T A+pi-1
1 Q+0)Q+8)%¥

)
)

Jj=1

n n r (1+t)u/ -1

- (”)(y)mm_m(al,...,u,). (34)
m=0 m

Therefore, by (33) and (34), we obtain the following theorem.
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Theorem 3 For n > 0, we have

n

Nn(x|ﬂl:~':ar) = Z (Z)Nn—m(dlvw:ar)(x)m

and

m=0

Nn(x|alw--rar) = Z (Z)Nn—m(alr“'rur)(x)m'

m=0

From (15), we note that

n

Nn(x + y|ﬂlr e (l,«) = Z (7)]\[/(96'“17 oo :ﬂr)(y)n—j

and

Jj=0

n

Jj=0

By (14), we get

(¢ -

and

1)N,,(x|a1, ensdy) = UN,_1(x|a,...,a,)

]\[/(xlalr (X :ﬂr)(y)n—j'

N n\ ~
Nn(x+y|ﬂl’~war):2<j>

(¢ =1)Ny(xlay, ..., a,) = €Ny(xlay, ..., ar) = Nu(xlay, ..., a,)

=N,(x +1|ay,...,a,) — N(x|ay,...,a,).

From (37) and (38), we have

N,(x +1lay,...,a,) — N,(x|ay,...,a,) = uN,_1(x|a1, ..., a,).

By the same method as (39), we get

N,(x +1lay,...,a,) — N,(x|ay,...,a,) = uN,_1(x|a1, ..., a,).

Recall that N,,(x|ay, ..., a,) ~ (]_[;:1(;), e —1).

ea/t—l

From (17), we can derive the following equation (41):

Nya(xlay,...,a,) = xNy(x — lay,...,a,) —e”*

Now, we observe that

gt

g

= (logg(t)) = (rlog t— Zlog(e“/[ -

Jj=1

2Ty = D{e¥” -1 - taye®)
= tl—[;ZI(eajt _ l)

g(

£)

g(t)

1))/

’

Nn(x|alr .. -,ﬂr)'

(35)

(39)

(41)

(42)
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where

ajte* ~ Z;=1 ]_[i#j(e“” - Dfe%* -1 - a;te”’"}

r
r— - -
jzzl ea]t _ 1 I—[f‘zl (e“/t _ 1)

]

_ _%(Z;zl aay -+ .aj_lglzajﬂ . 'ﬂr)tHl P

(mas - - a,)t"
1 r
:_E(Zg]«)t.}.
j=1

has at least the order 1.
By (42) and (43), we get

g
g

r— Zil % " " (n
S (Z{IZ (})sc i)Nn_l(al,...,ar)}x")

i=0

N,(x|ay,...,a,)

, o oaiteyt
n n r— Z': é' ’
- { (’;)sl(z, DNyila, .. ,a»} L
i=0 I=i t
n n r A i+l
n a;te’’ X
= Si1(L )N, (@, ..., ar P
L,_O{;(l) l( l) l(al d)}(r j_Zleait_1>l'+1
n n r oo
1 n ) i+1 (=4i)" i
= ’ H-—li ’ (Z)Sl(l,l)N,,_l(al,...,a,)}(rx —ZZBW, - x
i=0 I=i j=1 m=0
n n
1 n )
= — Sl(lr l)Nn_l(ﬂl,...,ﬂr)
— j+1 <\ [
i=0 l=i
roi+l .
1 .
x (_l)m (l + )Bmﬂ;anl_m
j=1 m=1 m

1 " (n ,
== : i+1{Z(l)SI(l,l)Nn_l(ab.“’ﬂr)}
r i ) i+ 1 ’
% (_1)1+1—m (l + )a;+1mBi+1_mxm.

Therefore, by (41) and (44), we obtain the following theorem.
Theorem 4 For n > 0, we have

Nn+1(x|al; LR ;ﬂr)

=xN,(x -1lay,...,a,) + Z{ZZZ %(’;) (i;l)sl(l,i)

m=0 Ui=m [=i j=1

X BHl,m(—a/)”l’mNn,l(al, ey dy) } (x=1)".

(43)

Page 9 of 19
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By the same method as the proof of Theorem 4, we get

N},H(xml, ey ly) = (x - Z@-)NM&C —1lay,...,a,)

j=1

EEEE ()

m=0 Li=m I=i j=1

X Bi+1-m(—ﬂj)i+l_mﬁn-l(ﬂly oo dy) } (x—1)".

From (12) and (20), we can derive the following equation (46):

o= ost o) - (3 L

m=1

Thus, by (46), we get
d L (n
EN,,(xml,...,a, lzoz (l) Y= - 1 -1)INy(x|a, ..., a,)
n-1 yr-i-1

n‘Zl Nj(x|ai,...,a,).
1=0

By the same method as (47), we get

n—l—l

N(xlal, Say) = n‘Z e Ni(xlay,...,a,).

From (8), we note that, for n > 1,

‘

1+ -
log 1+¢) )(1 vy

Nn()/|ﬂ1, e ;ﬂr)

‘<ZN'(V|011; ¢ar)t_l

il ‘)
1+2)% - el
<3< 10g(1+t) )(1+t)y)x >
L (1 +1)Y —
<1 log(1 +¢t) )(81(1+t)) >
1+p)% -1 i
(o )Jre k)

1+8)% -1
:yNn_l()/—H(ll,...,dy) + <<at(m>)(l + t)y

x”_1>.

l> = (1) m-1-1)

(45)

(46)

(47)

(48)

(49)

Page 10 of 19


http://www.advancesindifferenceequations.com/content/2014/1/182

Kim and Kim Advances in Difference Equations 2014, 2014:182
http://www.advancesindifferenceequations.com/content/2014/1/182

Now, we observe that

L (A+)Y -1
3t£[( log(1 +¢t) )

L+8)% -1\ a1+0)9 Tlogl+1t) - (A +1)% - l)m
Z H( log(1 +¢t) > (log(1 + t))?

j=1 i

L1 s -1\ K g1+ 0)Y 1
_1—+ti1<10g(1+t)) {(1+t)“l—1_log(1+t)}

j=1

ajt| 1+t)/ ¢
1 - ((1 + t)ai —1) Z] 1{ i+t 41 log(1+t)}

T 1+t i log(1 +¢t) t

; (50)

where

" [ @t + 1)
;{(1+t)"1’—1 10g1+t} (Z“/>t+ (51)

is a series with order greater than or equal to 1.
By (50) and (51), we get
xn—l>

LA+ 0)% -1
<(at!:[( log(1 +¢t) ))(1+t)y
_ LA+t -1\ (1 +2) ZI 1{Ti+tl+/t)1 IOg(t1+t)} n-1
- 1;[< 10g(1+t)> 1+t t x
1 LA+ -1 ~ at(L+1)% ¢ .,
- ”<ll_1[( log(1 +¢) )( 8 Z{(1+t)”1—1_log(1+t)}x>
1 [deetn raeneony ol e
- n{;a]<(l+t)“i—lli_1[< log(1 +¢t) >(1+t)y 1og(1+t)x >

LA+ -1 » ¢ ;
_r<l (it )9 gz >}
lxn—l>

r

1 - ’n n log(1 +¢) Q+8)% -1 -
“n - % = (1>C1<(1+t)“f—11i_1[< log(1 +¢t) >(1+t)y

j=1 =
l>

aye N | e
= <1>C’<H< e LAY

1< (7 )
= (l)ﬂjCan—l(y+ﬂj—1|6l1,...,6lj,...,ar)
"
r " n
— ; <Z>C1Nn—l(y_1|ﬂ1,,,,,ar)’ (52)
1=0

where 4; means that 4; is omitted.
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Therefore, by (49) and (52), we obtain the following theorem.

Theorem 5 For n > 1, we have

Ny(xlay,...,a;) = xNy_1(x = 1lay, ..., a,)

+_ZZ( )“}Can lx+ﬂ,—1|ll1, ,Zl,',...,a,)

j=1 1=0
__Z< )Can lx 1|ﬂlr !ar)r

where C,, are the Cauchy numbers with the generating function given by

t t"
—=> C,—.
log(1 +¢t) HZ: " !

By the same method as the proof of Theorem 5, we get

N, (x|ai, ... a,) = ( Za,) 1x = 1|ay,...,a,)
" (n
- — (l)C;N,,_l(x—lml,...,a,)
1 A
- Z:Z (7)11,~C1N,,1(x— lay,...,@,...,a).

Now we compute the following formula (54) in two different ways:

(A% -1 o
<£[<log(l—+t)>(log(1+t)) x>

On the one hand,
<g(%)(log(l +1)" x”>
% (e[St )

(53)

(54)

Page 12 of 19
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On the other hand,
- 1+p)% -1 L
<H<W> (log(L+2))" | >
- r % m n-1
i <at (!_1[( log(1 +t) >(10g(1 +1)) ) x >

r (1+t)a/_1 m n—
:<H<m)(at((log(l+t)) )| 1>

A+ )% -1 o
+<<8 1_[<(10;(i )>>(10g(1+t)) x 1>. »

j=1
xn—1>

log(1+ )" 'x 1,.n- 1>

Note that

LA+ )Y -1 §
<E(W)(at((log(l+t)) )
= S A+)Y -1
—m<!_1[<m>l .
S A Sk
—m<!—1[<log(17+t)>(1+t)

(m — 1)‘251(1141 1) . >

l=m—1

o1 L (L4 8% By
m & (" s (it oo
=m—-1 j=1
= m 21: (" _ 1)51(1, m—1)N, 1 i(Lla,...,a)
l=m-1 !
S <";1>51(n—1 Lm - DN/(=1lay,...,a) (57)
=0

and

r (1+t)aj_1 m| p-1
<(8t j-1 (W)> (log +1))" |« >
_ r 1+8)%-1 00 y B
_<<8t!—1[(10g(14+t)>>‘m!;n:51(l,m)ﬁx >

Z {M ;}
= i fog+! | _
(1+2) tl o . [>

r (1+t)“i—1
< <m)ﬂ+ ot
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| n-1
-2 (”)sl(l,nﬂ
n l

LA+ -1 o
X<1_1[< log(1 + ¢t) >(1+t)

[ aitl+ )Y t -l
Z{ A+0)% -1 log(1+t)}x >

j=1

d [ log(1+2) @+ —1 aj-1
x {Za’<(l+t)“i—1 H( log(1 +1¢) )(1”)

j=1 i=1
t xn—l
log(1+1¢)

L/A+t)s -1 i
_r<H<—log(1+t) )(1+t)
m! n-1 " r n-1 n—1l X
= — ; <Z>Sl(l,m) Zaj 2 Ck< X )ank(aj —llay,...,a;...,a,)

L xn—l
log(1 + ¢)

i=1
j=1

n—-1 .y
_chk<”k )Nn_l_k(—llal,...,a,)}. (58)
k=0

Therefore, by (55), (56), (57) and (58), we obtain the following theorem.

Theorem 6 Forn—1>m > 1, we have

=0 !
— (n—-1
= ( ; )Sl(n—l—l,m—l)N;(—1|zz1,...,a,)

1=0
1 n-1 n-l r " n—l

+ - Z (l)( « )a,»C,,_l_kSl(l, m)Ni(a; - 1la,...,a)...,d,)
" l=m k=0 j=1
r n-1 n-1 " n—l

-— Co-1-kS1(l, m)Ni (1| ay, ..., a;).
n ) k

I=m k=0

1=0 !
n-m no1
:Z< I >Sl(n_l_l’m_l)Nl(—Udl,...,a,)
1=0
1< L ot n\ (n-1
+Z 4 Z <l)< X )aan_z-kSl(l,m)Nk(—1|a1,...,&j,,,,,ar)
j=1 l=m k=0
r n-1 n-1 " n—[
_Z Co-i-kS1(l, m)Ny(~1lay, ..., a;)
l=m k=0
r n-m-1 n_1
_ 4 Si(n—=1-1,m)Ni(-1lay, ..., a,), 5
;m ;( ] )1(” m)N(=1|ay, ..., a,) -

wheren—-1>m>1.
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Let us consider the following two Sheffer sequences:

4 t
N,(x|ay,...,a,) ~ (H(m)et _ 1)

j=1

and (23).
We let

n
N,,(x|a1, .. .,61,«) = Z Cn,m(x)rn'
m=0

From (18) and (19), we note that
1[5/ Q+t% -1\,
Com = %<[1[< log(1 +¢t) >t
n\ [/ Q+8)% -1
) (m)<H( log(1+1) )
j=1
= <n>Nnm(a1,.,.,a,).
m

Therefore, by (61) and (62), we obtain the following theorem.

xn>
-

Theorem 7 Forn > 0, we have

n

Nn(x|ﬂl:~':ar) = Z (Z)Nn—m(dlvw:ar)(x)m'

m=0
By the same method as the proof of Theorem 7, we get
n

Ny (&la, ..., ar) =) (Z)Nn—m(aln-war)(x)m~

m=0

For
r t ;
N,(xlay,...,a.) ~ l—[ 7 )€1
j=1
and
e -1\’ )
HY @) ~ (75 ) £) +eCwithas,

let us assume that

Ny(@lay,...,ar) = Y ComHy (x]2),

m=0

(60)

(62)

(63)

(64)

Page 15 0f 19


http://www.advancesindifferenceequations.com/content/2014/1/182

Kim and Kim Advances in Difference Equations 2014, 2014:182
http://www.advancesindifferenceequations.com/content/2014/1/182

where H{)(x|1) are the Frobenius-Euler polynomials of order s defined by the generating

function as
1-2\° > t"
Xt _ (s) z
(et —)\) e = H| (x|)\)n!.
n=0
From (18) and (19), we note that

1 (05 -1 m .
Cn,m = m‘(l—)\)s <£[< lOg(1+t) )(log(1+t)) (1—)\+t)

1 L |
m!(l—k)5<!,_1[( log(1+£) ) log(1.+£)"

x”>
>(1 AT x >

min{s,n

o
1 KYs -
- iy 2 ) -
< <H(%> (log(1 + 1)) x’>
_ m 12: C) (1= 2y ()t
x tm (n_j)Sl(n—j—l,m)Nl(al,...,a,)
2\
e
22 ()()
x (m)(L-A)7Si(n—j— L, mNya,...,a,). (65)

Therefore, by (64) and (65), we obtain the following theorem.
Theorem 8 For n > 0, we have
N, (xl|ay,...,a;)
n n—m n—m-, n— B )
EEE O
j=0 I=0

x Si(n—j—1l,mNya,.. ,ar)] © (x/n).

By the same method as the proof of Theorem 8, we get

N,(x|ay,...,a,)

EET O

j=0 =0

x (1=A)7Sy(n—j—1,mNy(ay,.. ,a,)} ©) (x|2). (66)
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Now, we consider the following two Sheffer sequences:

N,(&lay,...,a,) ~ (1—[<eaﬂt_ 1>,et - 1) (67)

j=1

and

where BY () are the Bernoulli polynomials of order s given by the generating function as

t
et

s e} tn

Xt _ (8) ()~

_1) € _ZB" (x)n‘
n=0

Let us assume that

n
Ny&lar,....a,) = Y CpuB) (). (68)

m=0

By (18) and (19), we get

1 Q+n% -1
Cn,m:_

m! il 10g1+t)
1+t“l—1>

log(1 +1¢)

t .,

1g1+t) (10g(1+t)> >

t .
(1 g(1+t)>

)

log(1 + t)

1+5)%
log(1+¢

A/—\

)1> log(1 + t)

o
Z N
(Ck k!x
k=0

1 n Q+)% -1
2 (k> (1t Yoo

o (1)t S ()
=— Si(n—=1-km)N)a,...,a,)
m k=0 k 1=0
n—-m n—-m—k " n—k
- (k) ( ) )C‘k”sl(n —k—-1L,m)Nyay,...,a,), (69)

where (Cff) are the Cauchy numbers of the first kind of order s defined by the generating
function as

VI

(log(1+t)> 20: nt’

Therefore, by (68) and (69), we obtain the following theorem.
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Theorem 9 For n > 0, we have

n n-m n-m—-k

n\ (n—k\

Nn(x|ﬂ1y...,ar)zz (k)( ; )(C;()
=0

m=0 L k=0 [

x S1(n -k -1l,m)Ny(a,...,a,) ng,)(x).

By the same method as the proof of Theorem 9, we get

n n—mn

—-m—k
N,,(xml,...,a,) = Z Z (Z) (n;k)((:;f)

m=0 L k=0 [=0

x Si(n -k —1,m)Ny(ay,...,a,) } BS (x).
Recently, several authors have studied umbral calculus (see [1-5, 7-18, 20]).
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