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Abstract
This paper is concerned with the traveling wave solutions of a competitive
integrodifference system with Lotka-Volterra type nonlinearity. The existence of
traveling wave solutions is proved by constructing generalized upper and lower
solutions. The asymptotic behavior of traveling wave solutions is established by
combining the theory of asymptotic spreading with the idea of contracting
rectangles. The nonexistence of monotone traveling wave solutions is also confirmed
by the theory of asymptotic spreading.
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1 Introduction
In this paper, we study the traveling wave solutions of the following integrodifference sys-
tem with Lotka-Volterra type nonlinearity:

⎧⎨
⎩
Xn+(x) =

∫
R
rXn(y)[ –Xn(y) – aYn(y)]g(x – y)dy,

Yn+(x) =
∫
R
rYn(y)[ – Yn(y) – aXn(y)]g(x – y)dy,

(.)

in which n ∈ N ∪ {}, and ri > , ai ≥ , i = , , are constants. For i = , , gi is the proba-
bility function describing the randomwalk of individuals under consideration, and it is the
so-called kernel function. In particular, we take the following conditions in this paper:
(A) gi is Lebesgue measurable and integrable on R and

∫
R
gi(y)dy = ;

(A) gi(y) = gi(–y) ≥ , y ∈R, and for each λ ∈R,
∫
R
gi(y)eλy dy < ∞.

For the parameters in (.), we also give the following assumptions:
(A) r, r ∈ (, );
(A)  – l – al ≥ ,  – l – al ≥ , where

li =

⎧⎨
⎩

ri–
ri
, ri ∈ (, ),

ri
 , ri ∈ [, )

for i = , ;
(A) r( – al) > , r( – al) > ;
(A)  – /r > a( – /r),  – /r > a( – /r);
(A)  – l – al ≥ ,  – l – al ≥ .
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We now give some illustration of (A)-(A) from the viewpoint of both the literature
and the population dynamics of the corresponding difference system

Xn+ = rXn[ –Xn – aYn], Yn+ = rYn[ – Yn – aXn]. (.)

If the inter-specific vanishes (a = a = ) and (A) holds in (.), then Xn+ = rXn[ –
Xn] or Yn+ = rYn[ – Yn] : [, ] → [, ] and is persistent in population dynamics (see
Murray [, Section .] for the dynamics). Condition (A) provides a positive invariant
region of the difference system (.), namely, [, l]× [, l]. (A) indicates that the inter-
specific is weak, namely, even if the competitor Xn (Yn) takes the maximal value l (l),
the species Yn (Xn) still persists. The coexistence steady state of (.) exists if (A) holds.
(A) leads to a comparison principle appealing to the difference system (.) in [, l] ×
[, l]. Finally, if (A)-(A) hold, then (.) has a stable steady state. In particular, there
are different parameters such that part or all of (A)-(A) hold. For example, if r = .,
r = ., a = a = ., then (.) satisfies (A)-(A); if r = ., r = ., a = a = ., then
(.) satisfies (A)-(A), if r = ., r = ., a = a = ., then (A) and (A) hold.
Hereafter, a traveling wave solution of (.) is a special solution having the form

Xn(x) = φ(t), Yn(x) =ψ(t), t = x + cn,

in which c >  is the wave speed and (φ,ψ) describes the wave profile that propagates in
the media R. Then (φ,ψ) and cmust satisfy

⎧⎨
⎩

φ(t + c) =
∫
R
rφ(y)( – φ(y) – aψ(y))g(t – y)dy,

ψ(t + c) =
∫
R
rψ(y)( –ψ(y) – aφ(y))g(t – y)dy

(.)

for t ∈R. To describe determinative transition processes between different states, proper
asymptotic behavior satisfied by the traveling wave solutions is often necessary. In this
paper, we require the following asymptotic boundary conditions:

lim
t→–∞

(
φ(t),ψ(t)

)
= (, ), lim inf

t→∞ φ(t) > , lim inf
t→∞ ψ(t) > . (.)

Furthermore, we also consider the following stronger ones:

lim
t→–∞

(
φ(t),ψ(t)

)
= (, ), lim

t→∞φ(t) = k, lim
t→∞ψ(t) = k, (.)

in which

k =
 – 

r
– a( – 

r
)

 – aa
> , k =

 – 
r
– a( – 

r
)

 – aa
> ,

provided that (A) is true. In population dynamics, (.) with (.) or (.) with (.) could
formulate the successful invasion of two competitors.
To study the existence of traveling wave solutions of competitive recursions of two com-

petitors, Lin et al. [] established an abstract scheme and the existence of traveling wave
solutions was reduced to the existence of upper and lower solutions. Since the competitive
system in [] does not generate monotone semiflows when the synchronous invasion of
two competitors is concerned, the asymptotic behavior of traveling wave solutions cannot
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be confirmed by the monotonicity of them (see [–] for monostable traveling wave so-
lutions of (local) monotone recursions). In [], the asymptotic behavior of traveling wave
solutions was obtained by that of upper and lower solutions. Themethod was also applied
to several competitive systems; see [–] and the references cited therein. Without the
requirements of upper and lower solutions, it is difficult to obtain the asymptotic behavior
of traveling wave solutions []. In fact, for coupled systems with general kernels, it is not
an easy job to construct proper upper and lower solutions satisfying the asymptotic be-
havior in [], and [–] just obtained the existence of traveling wave solutions of some
systems with special kernels. Although the kernel functions in [, –] satisfy some spe-
cial conditions, the verification of upper and lower solutions is still very complex, and the
nonexistence of nontrivial traveling wave solutions of models in [, –] remains open.
To simplify the construction of upper and lower solutions and provide a more general

result of the existence of traveling wave solutions of recursions, Lin [] further consid-
ered the traveling wave solutions of recursions and gave some simpler conditions. By the
theory in [], the existence of traveling wave solutions can be obtained by the existence
of upper and lower solutions which are easy to construct. Moreover, by the properties of
the corresponding difference systems, the asymptotic behavior of traveling wave solutions
was also studied.Moreover, for themodel investigated by [, ], Lin [] also obtained the
nonexistence of nontrivial traveling wave solutions by the theory of asymptotic spreading.
In this paper, we shall establish the existence and nonexistence of (.) with (.) or (.)

with (.), and we present the corresponding mathematical results by the idea in []. In
particular, we shall not take special general kernels g, g, and just add conditions (A)-(A)
in what follows.
The rest of this paper is organized as follows. In Section , we investigate the exis-

tence of traveling wave solutions by constructing upper and lower solutions and applying
Schauder’s fixed point theorem in a functional space equipped with the decay norm. In
Section , the asymptotic boundary conditions (.) and (.) will be considered by com-
bining the theory of asymptotic spreading with the idea of contracting rectangles in [].
Finally, the nonexistence of monotone traveling wave solutions is proved, which indicates
that the threshold in the paper is the minimal wave speed of monotone traveling wave
solutions of (.).

2 Existence of traveling wave solutions
In this paper, we shall utilize standard partial ordering in R

. Also let X be the set of uni-
formly continuous and bounded functions from R to R

. Moreover, we denote

X[,L] =
{
� = (φ,ψ) ∈ X : ≤ ψ(t)≤ l, ≤ φ(t) ≤ l, t ∈R

}
.

Let | · | be the supremum norm in R
 and μ >  be a constant. We define

Bμ

(
R,R) = {

� ∈ X : sup
x∈R

∣∣�(x)
∣∣e–μ|x| < ∞

}
,

and the decay norm

|�|μ = sup
x∈R

∣∣�(x)
∣∣e–μ|x|, � ∈ Bμ

(
R,R).

Then (Bμ(R,R), | · |μ) is a Banach space.
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Before discussing (.), we first consider the corresponding difference equation

⎧⎨
⎩
Xn+ = rXn[ –Xn – aYn], X = x,

Yn+ = rYn[ – Yn – aXn], Y = y, n +  ∈ N.
(.)

Lemma . For (.), we have the following conclusions:
(D) if (A)-(A) hold, then [, l]× [, l] is invariant, namely, if x ∈ [, l], y ∈ [, l],

then Xn ∈ [, l], Yn ∈ [, l], n ∈N;
(D) if (A), (A), and (A) are true and x ∈ [, l], y ∈ [, l], then for each n ∈N,

Xn (Yn) is monotone increasing in Xn– (Yn–) and monotone decreasing in Yn–

(Xn–).

We now introduce some constants. Denote

�i(λ, c) = ri
∫
R

eλy–λcgi(y)dy, i = , 

for λ ∈R and c≥ . Then the following result holds.

Lemma . There exists a positive constant c∗ >  such that c < c∗ implies that �(λ, c) > 
for any λ ≥  or�(λ, c) >  for any λ ≥ . If c > c∗, then �i(λ, c) =  has at least one positive
root λi(c) such that �i(λi(c), c) =  and �i(λ, c) >  for λ ∈ (,λi(c)), i = , .Moreover, there
exists γ = γ (c) ∈ (, ) such that �i(λ′

i(c), c) <  for all λ′
i(c) ∈ (λi(c),γ λi(c)], i = , .

By Liang and Zhao [, Lemma .], Lemma . is clear and c∗ is defined by

c∗ =max

{
inf
λ>

ln(r
∫
R
eλyg(y)dy)
λ

, inf
λ>

ln(r
∫
R
eλyg(y)dy)
λ

}
.

In what follows, we suppose that c > c∗ is fixed. If (φ,ψ) ∈ X[,L], then we define P =
(P,P) : X[,L] → X by

P(φ,ψ)(t) =
∫
R

rφ(y)
(
 – φ(y) – aψ(y)

)
g(t – c – y)dy,

P(φ,ψ)(t) =
∫
R

rψ(y)
(
 –ψ(y) – aφ(y)

)
g(t – c – y)dy.

In particular, P also admits the following properties.

Lemma . P : X[,L] → X[,L].

Lemma . is clear by Lemma . and (A)-(A), and we omit the proof here. Clearly,
a fixed point of P in X[,L] is a solution to (.). Therefore, it suffices to prove the existence
of the fixed points ofP by Schauder’s fixed point theorem, andwefirst construct a potential
set of wave profiles.
For the purpose, we define continuous functions

φ(t) =min
{
eλt , l

}
, ψ(t) =min

{
eλt , l

}

http://www.advancesindifferenceequations.com/content/2014/1/173
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and

φ(t) =max
{
eλt –Meηλt , 

}
, ψ(t) =max

{
eλt –Meηλt , 

}
,

whereM >  is a positive constant clarified later and η ∈ (, ) such that

ηλ < λ + λ, ηλ < λ + λ, �(ηλ, c) < , �(ηλ, c) < .

With these notations, we define the following set of potential wave profiles:

	 =
{
(φ,ψ) ∈ X, (φ,ψ) ≤ (φ,ψ)≤ (φ,ψ)

}
,

which satisfies the following nice properties.

Lemma . If M >  is large such that

(φ,ψ)≤ (φ,ψ),

then	 is convex and nonempty.Moreover, it is closed and boundedwith respect to the decay
norm | · |μ.

Lemma . Assume that (A)-(A) hold. If M >  is large, then P : 	 → 	.

Proof By Lemma ., it suffices to verify that

(
P(φ,ψ)(t),P(φ,ψ)(t)

) ≤ (
φ(t),ψ(t)

)
, t ∈R

and

(
P(φ,ψ)(t),P(φ,ψ)(t)

) ≥ (
φ(t),ψ(t)

)
, t ∈R

for (φ,ψ) ∈ 	.
If φ(t) = eλt , then

P(φ,ψ)(t) =
∫
R

rφ(y)
(
 – φ(y) – aψ(y)

)
g(t – c – y)dy

≤
∫
R

rφ(y)g(t – c – y)dy

≤
∫
R

reλyg(t – c – y)dy

= eλt = φ(t).

If φ(t) = l, then Lemma . implies that

P(φ,ψ)(t) =
∫
R

rφ(y)
(
 – φ(y) – aψ(y)

)
g(t – c – y)dy

≤
∫
R

rφ(y)
(
 – φ(y)

)
g(t – c – y)dy

≤ l = φ(t),

http://www.advancesindifferenceequations.com/content/2014/1/173
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and we have verified that

P(φ,ψ)(t)≤ φ(t), t ∈R.

In a similar way, we can prove that

P(φ,ψ)(t)≤ ψ(t), t ∈R.

If φ(t) = , then

 – φ(y) – aψ(y) ≥  – φ(y) – aψ(y)

≥  – l – al

≥  = φ(y)

by (A) and

P(φ,ψ)(t) =
∫
R

rφ(y)
(
 – φ(y) – aψ(y)

)
g(t – c – y)dy ≥  = φ(t)

is clear. Otherwise, (φ,ψ) ∈ 	 leads to

rφ(y)
(
 – φ(y) – aψ(y)

)
= rφ(y) – rφ(y) – raφ(y)ψ(y)

≥ reλy – rMeηλy – reλy – rae(λ+λ)y

and

P(φ,ψ)(t) =
∫
R

rφ(y)
(
 – φ(y) – aψ(y)

)
g(t – c – y)dy

≥
∫
R

[
reλy – rMeηλy

]
g(t – c – y)dy

–
∫
R

[
reλy + rae(λ+λ)y

]
g(t – c – y)dy

= eλt –M�(ηλ, c)eηλt –�(λ, c)eλt – a�(λ + λ, c)e(λ+λ)t

≥ eλt –Meηλt

= φ(t)

provided that

M ≥  +
�(λ, c) + a�(λ + λ, c)

 –�(ηλ, c)
> .

In a similar way, when

M ≥  +
�(λ, c) + a�(λ + λ, c)

 –�(ηλ, c)
> 
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Pan and Yang Advances in Difference Equations 2014, 2014:173 Page 7 of 12
http://www.advancesindifferenceequations.com/content/2014/1/173

is true, we have

P(φ,ψ)(t)≥ ψ(t), t ∈R.

The proof is complete. �

Lemma . Assume that (A)-(A) hold. Then P : 	 → 	 is complete continuous in the
sense of the decay norm | · |μ.

The proof is provided by Lin [, Lemma .] and we omit it here.

Theorem . Assume that (A)-(A) hold. Then for each c > c∗, (.) has a positive solu-
tion (φ,ψ) such that

lim
t→–∞

(
φ(t),ψ(t)

)
= (, ), lim

t→–∞
(
φ(t)e–λt ,ψ(t)e–λt

)
= (, )

and

 < φ(t)≤ l,  < ψ(t)≤ l, t ∈R.

The result is evident by Schauder’s fixed point theorem and Lemmas .-., and we
omit the proof here.

3 Asymptotic behavior of traveling wave solutions
In this section, we investigate the asymptotic behavior of positive solutions of (.). We
first consider the initial value problem

⎧⎨
⎩
un+(x) =

∫
R
b(un(y))g(x – y)dy,

u(x) = u(x), x ∈ R,n +  ∈ N,
(.)

where b(u) satisfies
(U) for some U+ > , b(u) : [,U+] → [,U+] is Lipschitz continuous and monotone

increasing;
(U) there exists u+ ∈ (,U+] such that b(u) > u, u ∈ (,u+), b(u+) = u+; if U+ > u+, then

b(u) < u, u ∈ (u+,U+);
(U) b() = ;
(U) b′() >  and b(u) < b′()u, u ∈ (,U+].

In literature, (U)-(U) imply the comparison principle, monostability, and persistence in
(.). More precisely, by Hsu and Zhao [], we have the following conclusion.

Lemma . Assume that g satisfies (A)-(A).
() If u(x) is bounded and uniformly continuous such that

 < u(x)≤U+, x ∈R,

http://www.advancesindifferenceequations.com/content/2014/1/173
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then limn→∞ un() = u+.Moreover, let C >  satisfy

⎧⎨
⎩

∫
R
b′()eλy–λcg(y)dy =  has no real root λ ≥  if c < C,∫

R
b′()eλy–λcg(y)dy =  has positive roots if c ≥ C,

then for each c < C, we have

lim inf
n→∞ inf|x|<cn un(x) = lim sup

n→∞
sup
|x|<cn

un(x) = u+.

() If un(x) is bounded and uniformly continuous for each n such that

 ≤ un(x)≤U+, n +  ∈N,x ∈ R

and
⎧⎨
⎩
un+(x)≥ (≤)

∫
R
b(un(y))g(x – y)dy,

u(x)≥ (≤)u(x), x ∈R,n +  ∈N,

then un(x)≥ (≤)un(x), x ∈R, n ∈N.

Theorem . Assume that (A)-(A) hold. If (φ,ψ) is given by Theorem ., then (.) is
true.

Proof Note that a traveling wave solution is a special invariant solution; then φ(t) = Xn(x)
satisfies the following inequality:

⎧⎨
⎩
Xn+(x) ≥

∫
R
rXn(y)[ –Xn(y) – al]g(x – y)dy,

X(x) = φ(x) ∈ [, l]

for all n +  ∈N. Define

b(u) = inf
v∈[u,l]

{
rv[ – v – al]

}
.

Clearly, b(u) admits the following properties:
(b) b(u) : [, l] → [, l] is Lipschitz continuous and monotone increasing;
(b) b() = , b′() = r( – al) > ;
(b) there exists u+ ∈ (, l] such that b(u+) = u+ and

b(u) > u, u ∈ (
,u+

)
;

(b) if u+ < l, then b(u) < u, u ∈ (u+, l].
Therefore, b(u) satisfies (U)-(U) and Lemma . implies that

lim inf
n→∞ Xn()≥ u+ > 
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and

r


≥ lim inf
t→∞ φ(t)≥ u+ > .

In a similar way, we have

r


≥ lim inf
t→∞ ψ(t) > .

The proof is complete. �

Theorem . Assume that (A)-(A) hold. If (φ,ψ) is given by Theorem ., then (.) is
true.

Proof By what we have done, we see that

r


≥ lim sup
t→∞

φ(t) ≥ lim inf
t→∞ φ(t) > 

and

r


≥ lim sup
t→∞

ψ(t)≥ lim inf
t→∞ ψ(t) > .

Define

lim inf
t→∞ φ(t) = u, lim sup

t→∞
φ(t) = u

and

lim inf
t→∞ ψ(t) = v, lim sup

t→∞
ψ(t) = v.

Applying the dominated convergence theorem in P when t → ∞, then the monotone
condition (A) implies that

u + av ≤  –

r
, (.)

v + au≥  –

r
, (.)

u + av ≥  –

r
, (.)

v + au≤  –

r
. (.)

By (.) and (.), we have

u – u ≤ a(v – v). (.)

Furthermore, (.) and (.) lead to

v – v≤ a(u – u). (.)
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Since (A) implies that aa < , then we have

u = u, v = v

by (.) and (.). Again by (A), we see that

u = u = k, v = v = k.

The proof is complete. �

Remark . Although we did not construct the contracting rectangle (see []) in this
paper, the proof of Theorem . was motivated by Lin [, Sections -]. Of course, if a
model involves more unknown functions, it is difficult to obtain the asymptotic behavior
of traveling wave solutions by the inequalities similar to (.) and (.).

4 Nonexistence of monotone traveling wave solutions
In this section, we confirm that c∗ is the minimal wave speed of monotone invasion travel-
ing wave solutions by presenting the following nonexistence of monotone traveling wave
solutions.

Theorem . Assume that (A)-(A) hold. If c < c∗, then there is no strict monotone
(φ(t),ψ(t)) satisfying (.)-(.) and

 < φ(t) < k,  < ψ(t) < k. (.)

Proof Without loss of generality, we assume that a >  and

�(λ, c) > , c ∈ (
, c∗

)
,λ ≥ .

Were the statement false, then there exists c ∈ (, c∗) such that there is (φ(t),ψ(t)) satis-
fying (.)-(.) and (.).
Since φ(t), ψ(t) are monotone increasing, then

t → φ(t), t → ψ(t)

are one to one and there is a continuous mapping h such that

h
(
φ(t)

)
= r

(
 – φ(t) – aψ(t)

)
,

in which h : [,k]→ [, r] satisfying
(H) h() = r;
(H) h : [,k]→ [, r] is continuous and strictly monotone decreasing;
(H) h(k) = .

At the same time, h also leads to

φ(t + c) =
∫
R

φ(y)h
(
φ(y)

)
g(t – y)dy, t ∈ R.
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Let –x = (c + c∗)n, then

t = x + cn → –∞, n→ ∞

such that

φ(t) → , t → –∞.

Note that φ(t) = un(x) is a special solution to

⎧⎨
⎩
un+(x) =

∫
R
h(un(y))g(x – y)dy,

u(x) = φ(x) > , x ∈R,n +  ∈N.
(.)

Define h(u) = infv∈[u,k] h(v), then h(u) is monotone and continuous for u ∈ [,k]. More-
over, applying Lemma . to (.), we see that C = c∗. Again by Lemma ., we obtain

lim inf
n→∞,–x=(c+c∗)n

un(x) > 

and

lim inf
t→–∞ φ(t) > .

A contradiction occurs. The proof is complete. �

Before ending this paper, we make the following remark.

Remark . By what we have done, c∗ is the minimal wave speed of monotone traveling
wave solutions of (.). However, when the wave speed is c∗, the existence and nonexis-
tence of nontrivial traveling wave solutions remain open. At the same time, if we remove
the monotonicity of traveling wave solutions in Theorem ., then we believe that the re-
sult still holds. Clearly, for these two problems, we cannot discuss them directly by the
methods similar to those in this paper, and we shall consider these problems in our future
studies.
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