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Abstract
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1 Introduction
In this paper, we shall consider the existence of mild solutions for impulsive neutral
stochastic functional integro-differential inclusions with infinite delay of the following

form:
d[x(t) —g(t,xt, /ta(t, s,xs)ds>i| dt
0
€ [Ax(6) + f(&,x))] dt + F(t, %) dw(t), te]=[0,b],t %, (L1)
Ax(ty) =x(t) —%(5) = Le(%(£)), k=12,...,m, 12)
x(t) = p(¢) € LX(2, By) forace. t € Jy = (—00,0], (1.3)

where the state x(-) takes values in a separable real Hilbert space H with inner product (-, -)
and norm | - |, A is the infinitesimal generator of a compact analytic resolvent operator S(z),
t > 0, in the Hilbert space H. Suppose that {w(¢) : £ > 0} is a given K-valued Brownian mo-
tion or Wiener process with a finite trace nuclear covariance operator Q > 0 and L(K, H)
denotes the space of all bounded linear operators from K into H. Furthera : D x B, — H,
g JxByxH—H,f:]xB,— HandF:] x B, > P(Lo(K,H)) are given functions,
where D = {(t,s) € ] x J : s < t}, P(Lo(K,H)) is the family of all nonempty subsets of
Lg(K,H) and Lo(K, H) denotes the space of all Q-Hilbert-Schmidt operators from K into
H, which will be defined in Section 2. Here, Iy € C(H,H) (k =1,2,...,m) are bounded
functions. Furthermore, the fixed times #; satisfies 0 =y < t; <y <--- < &, < b, x(£{) and
x(t;) denote the right and left limits of x(t) at £ = £. Ax(tx) = 2(£{) — x(t;) = Ir(x(£;)) rep-
resents the jump in the state x at time #, where I; determines the size of jump. The his-
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tories x; : 2 — By, t > 0, which are defined by setting x; = {x(t + s) : s € (—00,0]}, be-
long to the abstract phase space ), which will be defined in Section 2. The initial data
¢ ={¢(t) : —o0 < t < 0} is an Fy-measurable, B;-valued random variables independent of
{w(¢) : t > 0} with finite second moment.

The theory of impulsive integro-differential inclusions has become an active area of in-
vestigation due to their applications in the fields such as mechanics, electrical engineering,
medicine biology, ecology, and so on (see [1, 2] and references therein).

The existence of impulsive neutral stochastic functional integro-differential equations
or inclusions with infinite delays have attracted great interest of researchers. For example,
Lin and Hu [3] consider the existence results for impulsive neutral stochastic functional
integro-differential inclusions with nonlocal initial conditions. Hu and Ren [4] studied the
existence results for impulsive neutral stochastic functional integro-differential equations
with infinite delays.

Motivated by the previous mentioned papers, we prove the existence of solutions for
impulsive neutral stochastic functional integro-differential inclusions with infinite delays.

2 Preliminaries

Throughout this paper, (H,| - |) and (K, | - |x) denote two real separable Hilbert spaces.
Let (2, F,P;F) (F = {Fi}t>0) be a complete filtered probability space satisfying the re-
quirement that F; contains all P-null sets of F. An H-valued random variable is an
JF-measurable function x(¢) : 2 — H and the collection of random variables S = {x(¢, w) :
Q — HJt € ]} is called a stochastic process. Suppose that {w(f) : t > 0} is a cylindrical
K-valued Wiener process with a finite trace nuclear covariance operator Q > 0, denote
T,Q = Y72 & = A < 00, which satisfies Qe; = A;e;. So, actually, w(t) = Y o0 /Aw;(b)e,
where {w;(£)}7°, are mutually independent one-dimensional standard Wiener process. We
assume that F; = o{w(s) : 0 < s < ¢t} is the o-algebra generated by w and Fr = F. Let
¥ € L(K,H) and define

W= T(wQu?) = Y [Vinve
n=1

If Y| < 00, then ¥ is called a Q-Hilbert-Schmidt operator. Let Lo(K, H) denote the space
of all Q-Hilbert-Schmidt operator ¢ : K — H. The completion Lo(K, H) of L(K, H) with
respect to the topology induced by the norm | - |, where |1/f|2Q = (Y, V) is a Hilbert space
with the above norm topology.

Let A : D(A) — H be the infinitesimal generator of a compact, analytic resolvent oper-
ator S(£), £ > 0. Let 0 € p(A). Then it is possible to define the fractional power (-A)“ for
0 <« <1 as a closed linear operator with its domain D((—A)%) being dense in H. We de-
note by H, the Banach space D(-A%) endowed with the norm ||x||, = ||(~A)“x||, which is
equivalent to the graph norm of (-A)*.

Lemma 2.1 ([5]) The following properties hold:
(i) If0< B <a <1, the H, C Hg and the embedding is continuous and compact
whenever the resolvent operator of A is compact.
(i) Forevery 0 <« <1, there exists a positive constant ¢, such that

[carso] = 5, e>o.
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Now, we define the abstract phase space ). Assume that h : (—00,0] — (0, 00) is a contin-
uous function with [ = f_ooo h(t) dt < oo. For any a > 0 we define

By, = {W :(-00,0] — H: (E‘lﬁ(@)‘z)% is a bounded and measurable

0 1
function on [-a,0] and h(s) sup (E|1//(9)|2)7 ds < oo}.

— $<0<0

If By, is endowed with the norm

0 1
||w||3h=/ h(s) sup (E|y(6)|*)? ds forallyr € By,

0 $<0<0
then (By, || - |8,) is a Banach space [6]. Now, we consider the space
By = {x: (=00, b] — H such that x; € C(Jx, H) and there exist

x(t,’(') and x(t,:) with x(t;) = x(t,:),xo =¢ e L*(Q,By,) on

(—00,0],/(=1,2,...,W1},

where xy is the restriction of x to Ji = (tx, txs1], k= 0,1,...,m. Let || - ||, be a seminorm in BBy,
defined by

[T

%y = lI%olls, + sup (E|x()[*)%, x € By

0<s<b

Lemma 2.2 ([7]) Assume that x € By, then for t € ], x; € IB),. Moreover
2y3 2\3
HEx®)]")? < Ixells, < lIxolls, + ! sup (Elx@)])?,
<s<t

where [ = f?oo h(s) ds < oo.

We use the notation P(H) for the family of all subsets H and denote

Pa(H) = {Y eP(H):Yis closed},
Ppa(H) ={Y € P(H): Y is bounded},
Pey(H) = {Y € P(H) : Y is convex},

Pep(H) ={Y € P(H): Y is compact}.

A multi-valued mapping I" : H — P(H) is called upper semicontinuous (u.s.c) if for any
x € H, the set I'(x) is a nonempty closed subset of H and if for each open set G of H
containing I'(x), there exists an open neighborhood N of x such that I'(N) € G. T is said
to be completely continuous if I'(B) is relatively compact for every bounded subset of
B C H. If the multi-valued mapping I is completely continuous with nonempty compact
values, then I' is u.s.c. if and only if I" has a closed graph, i.e., x, — %, y, = ¥, y» € I'(x,)
imply y € I'(x).
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Definition 2.1 The multi-valued mapping F : ] x B;, — P(H)issaid tobe L2-Carathéodory
if
(i) t+> F(t,v) is measurable for each v € By,
(if) v+ F(t,v) is u.s.c. for almost all £ € J and v € By,
(iii) for each g > 0, there exists /&, € L'(J,R*) such that

[E@ v

= sup E([flz) < hy(t),
feF(ty)

for all ||v||%3h <gandforae.te].
The following lemma is crucial in the proof of our main result.

Lemma 2.3 ([8]) Let I be a compact interval and H be a Hilbert space. Let F be an L?-
Carathéodory multi-valued mapping with N, # ¢ and let I be a linear continuous map-
ping from L*(I, H) to C(I, H). Then the operator

['oNp: C(I,H) = Pepev(H), x> (I o Np)(x) = T(NEy)

is a closed graph operator in C(I, H) x C(I, H), where N is known as the selectors set from
F; it is given by

0 € Npx={o € L*(L(K,H)) : 0 (t) € F(t,x) for a.e. t €]}

Theorem 2.1 ([9]) Let X be a Banach space, ®1: X — Peevpa(X) and Oy : X — Pepey(X)
be two multi-valued operators satisfying:

(a) @, is a contraction,

(b) @, is u.s.c. and completely continuous.

Then either

(i) the operator inclusion dx € ®1x + Oox has a solution for . =1, or

(ii) theset G={x€ X: x € O1x + Pox, A > 1} is unbounded.

Lemma 2.4 ([10]) Letv,w: [0,b] — [0, 00) be continuous functions. If w is nondecreasing
and there are constants 6 >0, 0 < o < 1 such that

V(t)fw(t)+9/t&ds, te],
0

(£ - )1«
then
o L 0b
v(t) <e T Z(7> w(t)

j=0
forevery t € ] and every n € N such that na > 1 and I'(-) is the Gamma function.

3 Main result
Let J; = (00, b]. First, we present the definition of the mild solution of problem (1.1)-(1.3).

Definition 3.1 A stochastic process x:J; x Q2 — H is called a mild solution of problem
(1.1)-(1.3) if
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(i) x(2) is measurable and F;-adapted for each t > 0,
(i) Ax(te) =x(tf) —x(t;), k=1,2,...,m,
(iii) x(¢t) € H has cadlag paths on ¢ € J a.e. and there exists a function o € N, such that

x(t) = S(t) [¢(0) —g(O, o, 0)] +g(t» xtr/O a(t, s, xy) dS)
+/0 AS(t—s)g(s,xs,fO zz(s,t,x,)dr) ds+/0 AS(t = s)f (s,x5)ds

+/0 S(t—s)o(s)dw(s) + Z S(t—tk)lk(x(t,:)), te],

O<ty<t
(iv) %o(-) = ¢ € L*(R, B;) on Jo = (=00, 0] satisfies [ ]|, < oo.

Now, we assume the following hypotheses:
(H1) A isthe infinitesimal generator of a compact analytic resolvent operator S(¢), t > 0,
in the Hilbert space H and there exist positive constants M and M; such that

IsOf <, A% <o, e,
(H2) a:D x B, — H, D ={(t,s) €] x J : t > s} is a continuous function and there exists

a constant M, such that

2

t
Ef[a(t,s,x)—a(t,s,y)]ds §Ma||x—y||%h forallt € J,x,y € By,.
0

(H3) There exist constants 0 < 8 <1 and M, such that g is Hg-valued, (~A)Pgis

continuous and
2
E|(=A) g(t,x1,01) — (A g(t,5%2,32)|” < My[ll%1 = %213, + Elyr = 3 *].

(H4) The function f : ] x B, — H satisfies the following conditions:
(i) t+> f(¢,s) is measurable for each x € By;
(i) » > f(¢,x) is continuous for almost all £ € J;
(iii) There exists a constant My such that

E|-APf(tx) — AP f (69" < Myllx -yl
forallx,y € By, t € J and
Elft0|" < p@)y (I1x11%,)

for almost all £ € J, where p € L'(J,R), ¥ : R, — (0, 00) is continuous and

increasing with

b S |
d. —ds,
fo wes) SE/M ek

11(2) = Boksp(t),

Page 5 of 17
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4¢llp, +PF
1-9612||(=A)|2M, (1 + 2M,)’
96b> My (1 +2M,)c}_g
1-962||(=A) | 2M,(1 + 2M,)’
48MbI?
1-9612||(=A)#|2M,(1 + 2M,)’

612 512
o=38 b ) (| car? P+ G220 ) e G | <o

268 -1 26 -1
n-1
By =€l 8)" 6" T (np Z(kzbﬁ)

j=1

1=

y =

ks =

=B sup a*(t,5,0), ¢ =|(-A)F | sup|g(z,0,0)|
(t,s)eD te]

and

F = aM|p(0)|* +96(M + || (=A) P |*)es + 192 (=A) | Myer

1926 CY
+ T(Cz +2M C1) + 4'8M”,LL||L1 UR+ b TI'(Q)

+ 48Mm? Z di+ 96M | (-A)? |’ Myl o1,
k=1

(H5) The multi-valued mapping F :J x By, — Ppaei,er(L(K, H)) is an L2-Carathéodory
function that satisfies the following conditions:
(i) For each t €], the function F(¢,-) : By = Pracrer(L(K, H)) is ws.c. and for each
fixed x € By, the function F(-,x) is measurable. For each x € BB}, the set

Ny ={o € L*(K,H):0(t) € F(t,x) forae. t €]}

is nonempty.
(ii) There exists a positive function u € Llloc(], R*) such that

|E@t®)|* = sup Elo|> < u.
o €F(tx)

(H6) Iy € C(Hy, H,) and there exist positive constants dj such that for each x € H,,
L@ <di k=1,2,...,m
We consider the mapping ® : B, — P(B),) defined by

(), te(-00,0],

S(6)[p(0) - g(0,$,0)] + g(t, %, [, alt, s,x5) ds)
Px(t) =1+ [y AS(t - 9)g(s,%s, [y als, T,%;) d7) ds

+ [LAS(t - s)f (s,x5) ds + [ S(t —5)0 (s) dwl(s)
+ D 0ct e SE— I (x(8), e,
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where o € Nf,. For each ¢ € 3, we define

o(2), t € (-00,0],
S(6)¢(0), te],

o) =

and then ¢ € By, Let x(¢) = y(t) + &(¢), t € (—o00,b]. Then it is easy to see that x satisfies
(1.1)-(1.3) if and only if y satisfies yo = 0 and

t
_)/(t) = _S(t)g(or ¢1O) +g(t’yt + d;t;/ a(trs’ys + q;s) dS)
0

+/ AS(t—s)g(s,ys +g?>s,/sa(s,r,y, +<;~5f)dr> ds
0 0
+ /OtAS(t—s)f(s,ys + ) ds + /OtS(t—s)a(s)dw(s)

+ Z S - t)I(y(tc) + 0 (%)), te,

O<ty<t

where o € Np,,. Let B) = {y € B, : yo = 0 € By,}. Forany y € B,

1
Iylls = Iyolls, + sup (E|y)|*)?

0<s<b

1
= sup (E|y(s)[")?
0<s<b

and thus (B}, || - ||5) is a Banach space. Set B, = {y € B, : |lyll2 < g} for some g > 0. Then
B, < B, is uniformly bounded and for any y € B, from Lemma 2.2, we see that

lye + Geliz, < 20yl + 20l

< 4% sup E‘y(s)

|2
0<s<t

+4lyoly,
~ 2 ~
+42 sup [9(5)|” + 41l
<s<t

< 4P (q+ M|p(0)|*) + 4l1$113,

/

=q.

Define the operator @ : B, — P(B;) by

0, te(-00,0],

~S(£)g(0,¢,0) + g(t, 31 + by, [y alt, s,y + bs) )
dyt) =1+ [LASE-$)g(s,y5 + b, [ als, T,y: + ) dT) ds
+ [ AS(t = $)f (5,95 + ds) ds + [, S(t —5)o () dw(s)
+ D 0ear SE— )L ((E) + D(5)),  teT,
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where o € Nf,. Obviously, the operator ® has a fixed point is equivalent to proving that
® has a fixed point. Now, we decompose ® as ®; + ®,, where

®1y(2) = -S(£)g(0,,0) + g(w + b, /0 att 5,95 + bs) ds)
+ /OtAS(t—s)g<s,ys + s /Osa(s,r,yr + qS,)dr) ds
+ /0 tAS(t—s)f(s, Vs + ¢s) ds
and

Doy(t) = / S(t-s)o(s)dw(s)+ Y St-tl(y(t) + (&), tel,
0

O<ty<t

where o € Nf,. In what follows, we show that the operators ®; and ®, satisfy all the
conditions of Theorem 2.1.

Lemma 3.1 Assume that the assumptions (H1)-(H6) hold. Then ®, is a contraction and
®, is u.s.c. and completely continuous.

Proof We give the proof in several steps:
Step 1. &>1 is a contraction.
Let u,v € B},. Then we have

E|G1u(t) - grv(o)|*
2

t t
< SE'g (t, U + q}t,/ a(t, s, ug + q;s) ds) —g(t, Ve + én/ a(t,s,vs + <13s) ds)
0 0

+ 3bE(/t AS(t—S)|:g<S, U +<;~SS,/Soz(s,t,1,tI +¢~5I)d‘[>
0 0
s 2
—g(s,vs+¢~>5,/ a(s, T, u, +q31)dt>] ds)
0

+ 3bE(/t|AS(t - S) [f(sr Us + (l;s) —f(S, Vs + q;S)] |2 d5>
0

< 3] (=AY P "Myl = vellly, + Mallue—vel%,)

£ C?
1-
#3b [ s Myl = i, Mo~ ) ds
b (-
t 2
1-
#3b | G Myl = vl ds
_B112
<3[(-A) P | "M,y (1 + M) l|u - ve 1,
(Cr_pbP)?
+3M(1 + M) |l — v, I
28 -1 "
(Cr_pbP)?
+3Mfm”ut_vt”%h
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B2 B2
(1wt o o) g Gt

2
x [ 2 sup Elu(s) = v(s) + luolly, + Il |
s€[0,b]

sup E|u(s) —v(s) |2

B B2
~ar e (Jcart s G220 ) g (G0

28 -1 28 -1

s€[0,b]
=Ly sup E|u(s) —v(s) 2,
sel0,]
612 612
where Lo = 3 [Mg(1 + M,)(I|(-A)|* + (Clz’gf’l) ) + My (Clz’fffl) ] <1 and we have used the

fact that ||ug ||ZBh =0and ||lvg II%h = 0. Taking the supremum over £, we obtain
g1 = davil} < Lollu— vl

and so q’~)1 is a contraction.
Now, we show that the operator ®, is completely continuous.
Step 2. @,y is convex for each y € B,
In fact, if uy, uy € Py (¥), then there exist 01,07 € Nr, such that

u;(t) = /(; S(t — s)oy(s) dw(s) + Z St -t L(y(t) + o(£))

O<ty<t

fori=1,2and ¢t €J. Let A € [0,1]. Then for each ¢ € J, we have

Aur(E) + (1= Nusy(t) = /0 S(t - s)[kol(s) +(1- )»)0'2(8)] dw(s)

+ D Se-tl(y(t) + 8()).

O<ty<t

Since Nf,, is convex (because F has convex values), we obtain
Ay (2) + (1= Vuy(t) € Da(y).

Step 3. &, maps bounded sets into bounded sets in B,

It is enough to show that there exists a positive constant A such that for each u € ®,y,
yeB;={yeB,:yly <q)onehas |ull, < A.Ifuc ®,(y), there exists o € NF, such that
foreachte]

u(t) = /o S(s =)o (s)dw(s)+ Y St-t)L(y(t) + b (%))

O<ty<t

and so

2

E|u(t)|2 = E‘ /0 S(t - s)o (s) dw(s) + Z St -t (y(&) + 9(&))

O<ty<t

2
+2E

2

<2E /0 S(t —s)o (s) dw(s) Z S(t - tk)lk(y(t,:) + qg(t,:))

O<ty<t

Page9of 17
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b m
< 2Tr(Q)Mb/ w(s) ds + 2Mm? Z di
0

k=1

m
<2Tr(QMb? || It g+ 2Mm* ) " dy
k=1

= A.

Thus, for each y € 15), we get ||u||7 < A.

Step 4. ®, maps bounded sets into equicontinuous sets of B,

Let 0<ty<ty<b Foreachye B, ={yeB,:|lyly <q} and u € Dy(y). Let 11,15 €
J\{t1, t2, ..., t,}. Then there exists o € N, such that for each £ €/,

u(t) = /0 S(t—s)o(s)dw(s)+ Y St—t)l(y(tr) + b (%))

O<ty<t

Thus we have
2
E|u(ty) — u(n)|

= E‘/O ’ S(ty —8)o(s)dw(s) + Z S(ty —s)Ik(y(t,:) + ¢~>(t,;))

O<ty<t2

2

_f ' Sty = 8)o (s) dw(s) — Z St - eIk (y() + (13(1,‘,;))

0

O<ty<m1

<2E

/ (St = 8)0 () = S(11 - )0 (5)) dwls)
0

2

+ /Tl (S(rz —98)a(s)-S(ny —s)a(s)) dw(s) + /12 S(ty — 8)o(s) dw(s)

T

+2E 3" [S(e - 1) - S(n - 0 [ (y(5) + (1))
O<ty<my
B 2
+ Y So - k() + 6 (%))
TI<lk<T2

< 66 THQ) / )| S( - 9) - St - )| ds
0

1

+6¢ Tr(Q)/ u(s) HS(rz -8)=8(t1—s) ”2 ds

T1-¢

+6ln =) THQ) [ u(9)stex -] ds

+4m? Z HS(‘L’z -8)=S(t1—5) ”de

O<tx<m1

+4m*M Z dr.

T <Lk <T2

The right-hand side of the above inequality tends to zero as 1y — 1, with ¢ sufficiently
small, since S(¢) is strongly continuous and the compactness of S(¢) for ¢ > 0 implies the
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continuity in the uniform operator topology. Thus, the set {®,y:y € B,} is equicontinu-
ous. Here we consider the case 0 < 71 < 75 < b, sincethecase 11 <1, <0or71 <0<17, <bh
is simple.

Step 5. d, maps B, into a precompact set in H.

LetO<t<bandO<e<t.Forye Bjandu e P4 (y), there exists o € NF, such that

u(t) = /H S(t—s)o(s)dw(s) + /t S(t —s)o (s) dw(s)
0 t

—&

+ 7 SE-h(y() + $(50)).

O<ty<t

Define

ue(t) = S(e) /0 S(t— - )0 (s) dw(s) + > Se-tI(y(5) + (%))

O<ty<t—¢

Since S(¢) is a compact operator, the set V,(£) = {u.(¢) : u. € &DZ(B,,)} is relatively compact

in H for each ¢, 0 < ¢ < t. Moreover,

E|u(t) - ue(8)|?

=E /0 S(t—s)o(s)dw(s) + /H S(t —s)o (s) dw(s)

+ 30 S - k() + d(55)) - Ste) /0  S(t— & — ) (s) dwls)

O<ty<t

2

- Y Se- k(&) + 6(5))

O<ty<t—e¢

§4MbTr(Q)s||u||L110CU’R+)+4m2M Z dr.

t—e<ty<t

Therefore letting ¢ — 0, we can see that there are relative compact sets arbitrarily close
to the set {u(t):u € &Dz(Bq)}. Thus, the set {u(t) : u € &DZ(B,])} is relatively compact in H.
Hence, the Arzeld-Ascoli theorem shows that @, is a compact multi-valued mapping.

Step 6. @, has a closed graph.

Lety, — ys Uy € dNJZ(y,,) and u, — u,. We prove that u, € &Jg(y*).

Indeed, u, € &32()/”) means that there exists 0, € Nf,, such that

u,,(t):/ S(t — 5)o,(s) dw(s) + Z St -t (ya(tr) + (8)), tel.
0

O<ty<t

Thus we must prove that there exists o, € N, such that

u,(t) =/o S(t — 8)oy(s) dw(s) + Z S(t—tk)lk(y*(t,:) +q~>(t,:)), te].

O<ty<t
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Since Iy, k =1,2,...,m, are continuous, we see that

2
—0
b

> Ste=tlyn(te) + $(8)) = 3 St =ty (t6) + $(8))

O<tg<t O<ty<t

as #n — o0. Consider the linear continuous operator I" : L2(J, H) — C(J, H) with T'(c)(¢) =
fot S(t — s)o (s) dw(s), where o € Nf,,. From Lemma 2.3, it follows that I" o Nf is a closed
graph operator. Moreover, we have

un(t) = Y Stk (ya(55) + $(t)) € T(NEy,).

O<ty<t

Since y,, — ¥, from Lemma 2.3, we obtain

w ()= Y St -ty (t) + $(t)) € T(NEy).

O<ty<t

That is, there exists a 0, € Nf,, such that

u () — Z S(t — t) Ik (7. () + 6 (£)) = T (0.(0))

O<ty<t

_ / " S(t — s)ors () dws).
0

Therefore ®, has a closed graph and ®, is u.s.c. This completes the proof. 0

Lemma 3.2 Assume that the assumptions (H1)-(H2) hold. Then there exists a constant
K > 0 such that ||y; + ¢ ||2Bh <K forallt € ], where K is depends only on b and the functions

¥ and .

Proof Let y be a possible solution of y € A®(y) for some 0 < A < 1. Then there exists o €
NF,y such that for £ € J we have

t
y(¢) = -AS(t)g(0,,0) + /\g(t, Ve + bor / a(t,s,ys + bs) dS)
0
t s
+ A/ AS(t - S)g(S,ys + qNSs,/ a(s, t,y. + ¢~>,) dr) ds
0 0

+A/o S(t—s)f(s,ys+¢>s)ds+/0 S(t - s)o (s) dw(s)

w1y Se=th((5) + 6 (5))-

O<ty<t

Then, by the assumptions, we deduce that
2 - (! ~
E|y(t)| = E‘_S(t)g(o) ¢! 0) +g(tryt + ¢tr / ﬂ(t! $Ys + ¢5) ds)
0

t s
+/ AS(t—s)g(s,ys+¢~>S,f a(s, t,y: +<;~5f)dr) ds
0 0
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+ /o St -95)f(s,y5 + ¢s)ds + /(; S(t - s)o (s) dw(s)

2

+ 3 Se- () + ()

O<ty<t

< 12{2M(|| (=A) P "M, llp13, +c2)

£ 2] (AP P [ Mo (lys + BB, +2Mallys + dll, +261) + 2]
t 2 - -
+2b | (t_;)—jil_ﬂ)[Mg(nys + Bl + 2Mullys + bl +21) + 2] ds

t m
0D [ pO)0 I+ Bl ds + Ml b THQ) + M Y
0 0C k:1

48b% ¢,
7_1(C2 + 2Mgcl)

= 24(M + | (=A) | *)ca + 48] (~A) P |*Mycr + 2

m
_B12
+12M||p,||L110C(,,]R+)b2 Tr(Q) + 12Mm* Y~ di + 24M||(-A) " | "M, I 113,
k=1

+ 24 (~A) P "My (1 + 2M,)lys + Bl

72
Elys + ¢S”Bh

2
+ 24‘ng(1 + 2Ma)C1_/3 /0 m S

+12Mb [0 tp(s)vf(nys + ¢sll,) ds.
From Lemma 2.2 we see that
lye + gy, <4 Os;gﬂy(s)ﬁ +4lPM|$(0)|” + 4l1glI%, -
Thus, for any ¢ € /, we have

lye + el
<alPM|pO)[* + 418113, + 962 (M + | (-A)*|*)cz

19226% C?

+192/2 H(—A)’ﬂ ||2Mgcl + 261 1-6 (c2 +2M,cy)

m
+ 48M||M||L11 (],]R+)b2lz Tr(Q) + 48MPm* Z dy
k=1

+96ME | (-A)* | Ml 11%,
+ 9612 | (=A) P | M1 + 2M,) s + b1,

2
Elys + ¢s||5h

2 2
+96b1° My (1 +2M,)C} TER T

t
+ 48Mb12/ P&V (Ilys + bslls, ) ds
0
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= 4lplh, + PF + 9612 (=A) P |*My(1 + 2M,) sup 135+ el%,
<s<t

llys + Gl

2 2
+96b1° M, (1 +2M,)C} TP PEI

t
+ 48MbP /0 POV (Iys + o1, ) ds

Let v(£) = supgs<; lys + (55”%311‘ Then the function v(t) is nondecreasing in J. Thus, we ob-
tain

v(t) < 4l1plI%, + PF + 9612 | (~A) P | My(1 + 2M)u(t)

t
+96bI2M,(1+ 2M,)C2, f : ")

 (t—9)20P ds

+ 48Mbl? /tp(s)w (V(s)) ds
0

From this we derive that
4lplly, +PF
vt < =
1-962||(-A)# ||2Mg(l +2M,)

96bI* M, (1 +2M,)C}_, L)
T 1962 (A FIPM L+ 2M,) Jy (=P

48Mbl?
+
1-962|(=A)P|12M,(1 + 2M,) Jo

<ki+ky fot % ds + kg/ (S)l/f(V(S)) ds

ps)Y (v(s)) ds

By Lemma 2.4, we get

v(£) < By <k1 + k3 / ()Y (v(s)) ds),
0

where

n-1 B

_ nnﬁ/rnﬂ kzb
o= eirron (12
j=1

Let us take the right-hand side of the above inequality as u(¢). Then ©(0) = Boky, v(£) <
u(t), t €] and

1 (2) < Bokap(£)yr (v(t)).
Since ¥ is nondecreasing, we have

W' (8) < Boksp()yr (1 (2))
= 7Oy (u(®).
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It follows that

L Ry
— ds<
/M(O) Y(s) S_/o uls)ds

*© 1
< ——ds,
- -/B()Kl I/f (S)

which indicates that () < 0o. Thus, there exists a constant K such that u(¢) < K, t €.
Furthermore, we see that ||y, + (73‘”%314 <v(t)<u()<K,te]. (]

Theorem 3.1 Assume that the assumptions (H1)-(H6) hold. The problem (1.1)-(1.3) has at
least one mild solution on J.

Proof Let us take the set
G(®) = {x € B, :x € A®(x) for some A € (0,1)}.
Then for any x € G(®), we have

2 72
%l = llye + ¢ellg, <K, tel,

where K > 0 is a constant in Lemma 3.2. This show that G is bounded on J. Hence from
Theorem 2.1 there exists a fixed point x(¢) for ® on B}, which is a mild solution of (1.1)-(1.3)
on]. O

4 An example
As an application of Theorem 3.1, we consider the impulsive neutral stochastic functional
integro-differential inclusion of the following form:

% (z(t, x) +g(t, z(t - h, %), /Ot a(t,s,z(s — h,x)) ds>)

2

a—z(t, %)+ (f (626 = hx) + [Qu (6,22 — 1, %)), Qu (6, 2(¢ — b, %)) ]) dw(?), (4.1)

IS
0x?

O<x<mtel,tZt,

Az(t,x) = z(t,j,x) - z(t,:,x) = Ik(z(t,:,x)), k=1,2,...,m, (4.2)
z(¢,0)=z(t,m) =0, te], (4.3)
z(t,x) = p(t,x), -o0<t<0,0<x<um, (4.4)

where / = [0,b], k = 1,2,...,m, z(t;,x) = limy_.o+ 2(tx + h,x), 2(t;, %) = limy_.o- 2(tx + h, %),
Q1,Qz : ] x R — Rare two given functions and w(¢) is a one-dimensional standard Wiener
process. We assume that for each ¢ € J, Qy(¢,-) is lower semicontinuous and Qs(¢,-) is
upper semicontinuous. Let J; = (oo, b] and H = L2([0, 7r]) with norm || - ||. Define A : H —
H by Av = v" with domain D(A) = {v € H : v,V are absolutely continuous, v’ € H,v(0) =
v(rr) = 0}. Then

[e¢]
Av=> "r*(v,v,), veD(A),
n=1


http://www.advancesindifferenceequations.com/content/2014/1/17

Park and Jeong Advances in Difference Equations 2014, 2014:17 Page 16 of 17
http://www.advancesindifferenceequations.com/content/2014/1/17

where v, = \/g sin(ns), n = 1,2,..., is the orthogonal set of eigenvectors in A. It is well
known that A is the infinitesimal generator of an analytic semigroup S(£), t > 0 in H given
by

S(t)v = Z et v,)v,, veH.

n=1

Foreveryve H, (—A)‘%v => 0 %(V, V)V, and || (—A)‘% || = 1. The operator (—A)% is given
by

(_A)% V= Z }’I(V, Vn)Vn

n=1

on the space D((—A)’%) ={veH:Y 2 n(v,v,)v, € H}. Since the analytic semigroup S(z)
is compact [10], there exists a constant M > 0 such that ||S(¢)|| < M and satisfies (H1). Now,
we give a special By -space. Let h(s) = €%, s < 0. Then [ = f_ooo h(s)ds = % and let

0 1
lells, = h(s) supO(E|g0(<9)|2)2 ds.

s<0

It follows from [5] that (B, || - || 3,) is a Banach space. Hence for (¢, ¢) € [0,b] x By, let

¢(9)x = ¢(6!x)! (G,x) € (—O0,0] X [0: ﬂ]r

z(8)(x) = z(t, %)
and

F(t,¢)(x) = [Ql(t,zb(@,x)),Qg(t,¢(9,x))], —00<0 <0,x€[0,7].

Then (4.1)-(4.4) can be rewritten as the abstract form as the system (1.1)-(1.3). If we assume
that (H2)-(H6) are satisfied, then the system (4.1)-(4.4) has a mild solution on [0, b].
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