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Abstract

In this paper, a two-species cooperating model with free diffusion and self-diffusion is
investigated. The existence of the global solution is first proved by using lower and
upper solution method. Then the sufficient conditions are given for the solution to
blow up in a finite time. Our results show that the solution is global if the intra-specific
competition is strong, while if the intra-specific competition is weak and the
self-diffusion rate is small, blow-up occurs provided that the initial value is large
enough or the free diffusion rate is small. Numerical simulations are also given to
illustrate the blow-up results.
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1 Introduction

In this paper, we are concerned with the following nonlinear reaction-diffusion system:

uyy — Al(dy + aqur)un] = uy(ay — byuy + ciup)  in Q2 x (0, 7),
uyr — Al(dy + azuz)uz] = us(ay + byuy — cauz)  in Q2 x (0, 7),
uy (%, t) = up(x,£) = 0 on 32 x (0,7),
wm(x,0)=m),  u2(x,0)=mn(x) in €,

(1.1)

where A = 3"V, 92/3x? is the Laplace operator, €2 is a bounded domain in RN with smooth
boundary 9. a;, b;, ¢;, d;, and «; (i = 1,2) are positive constants. System (1.1) is usually
referred as the cooperating two-species Lotka-Volterra model describing the interaction
of diffusive biological species. The spatial density of the ith species at time ¢ is represented
by u;(x,t) and its respective free diffusion rate is denoted by d;. ; is the self-diffusion rate.
The real number g; is the net birth rate of the ith species and b, ¢, are the crowding-
effect coefficients. The parameters ¢; and b, measure cooperations between the species.
The known 7;(x) is a smooth function satisfying the compatibility condition 7;(x) = 0 for
x € 9Q. The boundary conditions in (1.1) imply that the habitat is surrounded by a totally
hostile environment.

Recently, the global existence or blow-up problem for parabolic equations describing the
ecological models have been considered by many authors, e.g. [1-11]. In [10], Pao studied
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the following cooperating model with free diffusion:

Ui — di1Auy = ui(aq — biug + cruo) in Q x (0, 7),
Uy — Ay Aty = us(an + bouy — coun) in Q x (0, 7)),
ui(x,t) = us(x,£) =0 on Q2 x (0,T),
wm(x,0)=mx),  w2x0)=m(x) nQ,

1.2)

here all parameters are positive constants except a; and a, which can be chosen positive,
zero or negative. He proved that a unique solution of (1.2) exists and is uniformly bounded
in Q x [0, +00) if bicy > bycy, while if byc; > bycy the solution blows up in a finite time for
big a; with any nontrivial nonnegative initial data or for any a; with big initial data. His
results imply that the solution is global if the intra-specific competition is strong, while the
solution may blow up if the intra-specific competition is weak. Lou et al. [7] considered the
problem (1.2) with homogeneous Neumann boundary conditions and studied the effect
of diffusion on the blow-up. They gave a sufficient condition on the initial data for the
solution to blow up in a finite time. Wang et al. [11] studied a reaction-diffusion system
with nonlinear absorption terms and boundary flux. Some sufficient conditions for global
existence and finite time blow-up of the solutions are given.

On the other hand, Shigesada et al. [12] in 1979 proposed a generalization of Lotka-
Volterra competing model in order to describe spatial segregation of interacting popula-
tion species in one space dimension. More and more attention has been given to the SKT
model with other types of reaction terms. For example, the two-species prey-predator
model is in [13, 14], two-species cooperating model is in [15], three-species cooperating
model is in [16, 17]. These works concentrate on the existence of time-dependent solution
or uniform boundedness and stability of global solutions. In this paper we are interested
in studying the blow-up properties of the solution and we will consider the effect of self-
diffusion coefficients o and «; on the long time behaviors of the solution.

The content of this paper is organized as the follows: In Section 2, the existence and
uniqueness of global solution are given by using upper and lower solutions and their as-
sociated monotone iterations as in [18]. Section 3 is devoted to a sufficient condition for
the solution to blow up. Numerical illustrations are performed in Section 4 and a brief
discussion is also given in Section 5.

2 Existence of global solution

This section is devoted to the global existence of (1.1). First we give the definition of or-
dered upper and lower solutions of (1.1), then a pair of ordered upper and lower solutions
is constructed.

Definition 2.1 A pair of functions @ = (1, i), @ = (#y, ) in C([0, T] x )N C%((0, T] x )
are called ordered upper and lower solutions of the problem (1.1), if a > & and if @ satisfies
the relations

yy — Al(dy + aninn)ig] > g (ay — briay + cyikn) in 2 x (0,7),
iy — Al(dy + @aiin)itg] > (as + batiy — cotdy)  in Q2 x (0, T),
u;(x,£) >0 on 92 x (0, T),
(%, 0) > t;0(x) inQ

2.1)

and u satisfies the above inequalities in reversed order.
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Define
w; = dl‘bti + C(L'Ltiz = I(I/tl) (22)

Since we only consider the positive solution, then we have the inverse

—di + 4/ dlz + 4-O[L‘WL'

u; = 2, =q;(wy),

which is an increasing function of w > 0. In view of w;; = (d; + 20;u;)u;;, we may write the
problem (1.1) in the equivalent form

(dl + 20(1141)_1W1t —Awp = I/ll(dl —biug + 01142) in Q x (0, T),
(dz + 20[2142)_1W2t — Awy = Ltz(ﬂlz + byuy — Czl/tz) in Q x (0, T),

wi(x, t) = wa(x,£) = 0 on 92 x (0, T), (2.3)
wi(x,0) = wio(x) in Q,
u; = q;(wy) inQ x (0, 7).

Let w; = Li(i;), w; = I;(&1;), it is easy to see (iiy, itp, W1, W) and (i, tip, Wy, W) are ordered
upper and lower solutions of (2.3).
Define Lw; = Aw; — uw; and

Fi(u, u2) = pldy + onun)un + (a1 — biuy + crua)u,

Fy(u1,u2) = uldy + aauin)uy + (az + baty — coti) iy,
where w is a positive constant such that

uldy + oquy) + ay — 2byuy + cruy > 0, u(dy + aytty) + as + baug — 2¢cuy >0
for any u; > 0 and u, > 0. The problem (2.3) becomes

(di + 201u1)twyy — Lwy = Fi(uy,u2)  in Q% (0,7),

(dy + 20001) Wy — Lwy = Fy(uy, )  in 2 x (0, 7T),

wi(x, ) = wo(x,£) =0 on Q2 x (0,T), (2.4)
wi(x,0) = wio(x) in 2,
u; = q;(wy) in 2 x (0, 7).

We denote by C(Q x [0, T]) the space of all bounded and continuous functions in € x
[0, T, the vector-value functions are denoted by C(Q x [0, T]). Set

SiE{MiGC(QX[O,T])leiifuifljti}, S={u€C(§2X[0,T])Zﬁ ufﬁ},

SxS={mwe[C(@x0,T)]:@W) < (@ww) < @w)},

where u = (13, up) and w = (wy, wy). It is easy to see, for any (uy, u3), (v1,v2) € S, if (41, uz) <
(Vl, V2) then

Fi(uy, up) < Fi(vi,v2). (2.5)
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Before constructing monotone sequences, we present the following positivity lemma,
which will be used in the proof of the monotone property of the sequences.

Lemma 2.1 (Lemma 2.1 of [18]) Let o(x,£) >0in Q x (0,T], B >0 0n 02 x (0, T], and
let either (i) e(x,t) > 0 in Q x (0, T] or (ii) (—e/o(x,t)) be bounded in Q x [0,T). If z €
C*(Q2 x (0, T]) N C(Q x [0, T)) satisfies the following inequalities:

ox,t)zs— Az +elx,t)z>0 inQx(0,T],
g—i+ﬁ(x,t)220 on 92 x (0,77,
z(x,0) >0 inQ,

thenz>0inQ x [0,T].

(0)

. . A~ 0 ~ o el . .
By using either u; = i; or uf )= u; as the initial iteration we can construct a sequence

{u”, w"} from the nonlinear iteration process

(d; + 2a;u™) 1™ —wam) = Fi(uim_l), u(zm_l)) in @ x (0, T],

i it

wgm)(x, =0 on 92 x (0, 7],
(m) _ L (m-1) . (2.6)
w; o (%,0) = w;y (%) in Q,
ugm) = qi(wgm)) in Q x (0, T]
foranymandi=1,2.
Since the equation in (2.6) is equivalent to
P = AL )]+ sl Yl = E 7,1
under the same boundary and initial conditions, the existence of the sequence uﬁm) is en-

sured by [19] (Chapter V, Section 7). Denote the sequence by {a,w} if u® = @, and by
{u), wi} if u® = @, and refer to them as maximal and minimal sequences, respectively.
The following lemma shows that the sequences are monotone.

Lemma 2.2 The sequences {u"”,w'}, (u”),w} defined by (2.6) possess the monotone

property

< (@, w') < @,Ww), (2.7)
m=1,2,..., where w" = [(@") and w" = I(u).
Proof Let gl(l) = yﬁl) - ygo) = yﬁl) — w;, combining (2.6) with the definition of the lower

solution yields

W _ L,-z(.l) =F (2(0),2(0) - [(d,' + Zaiggl))_lm(f) - ngo)]

it ad] 1 2 )
=F; (Zio),ﬂ(zo)) - [(di + Zaiﬂf‘m)_lﬂ('o) —LEEO)]

it

(di+ 201&51))_12

— ((di +20") " = (d + 20”) )W

1

> —((dl' + 20(,‘251))_1 - (dl + 20@250))_1)&(,0).

it
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Moreover, by the mean value theorem, we have

-1 ©Oy-1 _ 2a; o (0
(i + 20027) " = (di + 2erias;”) ——m("_"i ~w;)

for some intermediate value gi“” = g}")(x, t) between ZEO) and gﬁl). Then we have

(di+ 2otig51))_lgg) - Lgﬁl) + y}"’gﬁ” >0 inQx(0,T], (2.8)
where
20

(d; + 20,8

On the other hand,

2 t) = (0, 6) - w(x,) =0 on 92 x (0,7},

27,0 = w!"(x,0) — i(x,0) 2 0 in €.

It follows from Lemma 2.1 that ggl) > 0, which leads to y?) 9 and thus %(1

51) < Vvﬁo) and ﬁED < 1250). Moreover, based on (2.5) and (2.6) we

satisfies

(

> w! ) (0)

> U’
A similar argument gives w
know that ¢i(1) = ﬁ/?) B w?)
—(1)y-1 4 (1 1 PR -(0) -(0 0
(@i + 20t )¢ = Loy + v V9" = Fi@y”, ) - Fiwy”, 5”) 2 0,
@0 =0,
1
¢t( )(xr 0) =0,

where Vi(l) - _ﬁwg), gi(l) = Sl.(l)(x, t) is between 21(1) and ggl) fori=1,2.
it2Qs;
1

Using Lemma 2.1 again, we have ¢}1) > 0, which leads to w; M

> EED and therefore iz;” >
ggl). Moreover,

() < (" w") < (@, ") < @, #").

Assume by induction that if

(ng—l)’mgm—l)) < (u(m),w(m)) < (L—tgm),v—vgm)) < (L_ti«m_l),v_l/gm_l))

Zi i

holds for some m > 1. Then ggmﬂ) = v_vgm”) - v_vgm) satisfies

(d; + 20 )2 1 (dy + 208 ) = (d + 20 WY - 12
= R, ud") - FE",ul" ) > o0,

2"V, 1) = 0,

2"V (x,0) = 0.

By the mean value theorem, we obtain

- - —2a;
di + 20 ) 7 = (dy 4 20™) T = — (WD
g ") ") (d; + Zaié,»(m))?’ (e w”)
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m+1

for some intermediate value £ between # and u"*V. It is easy to see that

’

(di + 205;‘”5”1“))_1%5:”“) _LgEmH) i )/i(m)ZSWHl) >0

(m) _ 20 (m)
where ;" = - ( di+2ai$,.(”“))3 Wi -
By Lemma 2.1, we have 2™ > 0, which leads to w!"*" > " and thus u"™" > &,

(m) = (m+1)

Similarly, we have %" > #"*" > w* and & > #"*" > """V The conclusion of the

lemma follows from the induction principle. g
From the proof of Lemma 2.2, we know that the following comparison principle holds.

Lemma 2.3 (Comparison Principle) Let (i1, ity) and (i, it;) in C([0, T] x Q) N C*((0, T] x
Q) be the ordered upper and lower solutions of the problem (1.1), respectively. Then we have

(le! ZlZ) Z (i'\tl’ IQZ) in [07 T] X Q
In view of Lemma 2.2, the pointwise limits

lim (ﬁ(’”),w(”’)) =(a,w) and lim (g(”’),ﬂ(”‘)) =(u,w)
exist and satisfy (a, w) > (u, w).
Now we show that (@, w) = (u,w) (:= (u*, w*)) and u* is the unique solution of (1.1).

Theorem 2.1 Let (i1, ), (i, iz) be a pair of ordered upper and lower solutions of problem
(1.1). Then the sequences {a”,w"}, (u", w™} obtained from (2.6) converge monotoni-

cally to the unique solution (u*,w*) € S x S of problem (2.3), and they satisfy the relation

Moreover, u* is the unique solution of problem (1.1).

The proof of this theorem is similar to Theorem 3.1 in [18], so we omit it here.

The existence and uniqueness of the solution to problem (1.1) can be ensured by con-
structing a pair of ordered upper and lower solutions of (1.1). In fact, we only need to con-
struct a bounded positive upper solution since that we can take (0,0) as lower solution.

We have the following theorem.

Theorem 2.2 If bicy > bycy, then for any nonnegative initial data, problem (1.1) admits a

unique global solution (w1, us), which is uniformly bounded in Q x [0,00).

Proof Let (11,12) be a positive solution of the following problem:

+hix—c1y >0, (210)
—byx +cy>0 ’
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and let (i1, i) = (p11, p112), then (W1, W) = (dypmy + a1 p’nf, dapn + a2 p?n3), where p > 1
is a constant such that (u;(x, 0), u3(x,0)) < (on1, pn2) and

a; —bypm +c1pny <0,

2.11)
a +bypm —capny < 0.

It is easily to check that (i, ita, W1, Wa) = (o1, P12, drpm1 + 010?03, dapny + a2 p?n3) is the
upper solution of problem (1.1). Further, (&5, ;) is global and uniformly bounded. The
desired results can obtain from Theorem 2.1. g
Remark 2.1 For the problem (1.1) with the Neumann boundary condition instead of the
Dirichlet boundary condition, it can be discussed similarly. For the one-dimensional case,

we can also obtain the existence and uniform boundedness of the global solution by using

Gagliardo-Nirenberg-type inequalities; see [17] for details.

3 Blow-up of the solution
In this section, we consider the existence of the blow-up solution. Here we say the solution

(41, u2) blows up in a finite time T > 0 if
tli)n}mgx(|u1(~,t)| + |ua (-, £)]) = +o0.

To get the blow-up results for the system (1.1), we first consider the scalar problem:
kz; — A[(D+az)z] =z(A + bz) in Q x (0,T),
z(x,£) =0 on Q2 x (0,T), (3.1)
z(0,x) >0 in Q,

where k, D, b, and « are positive constants.

Lemma 3.1 The problem

:A[(D +aP (@)Y @] + Y @A+ by () =0 inQ, 62

Y(x)=0 on IR

has a nontrivial nonnegative solution if b > aA, where X is the first eigenvalue of Laplace

operator subject to the homogeneous Dirichlet boundary condition.

The proof of Lemma 3.1 is similar to that of Lemma 11.7.1 of [10], where « = 0, and we

omit it here.

Lemma 3.2 Let z(x, t) be a nontrivial nonnegative solution of problem (3.1). If
A[(D + az(x,0))z(x,0)] + z(x,0) (A + bz(x,0)) > 0,

then z;(x,t) > 0in Q x (0, T).
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Proof Under the transform w = (D + az)z, the problem (3.1) becomes

k(D +2az)'w;— Aw=z(A+bz) inQx(0,7T),

w(x,t) =0 on Q2 x (0,T), (3.3)
w(x,0) >0 in 2,
where z = 7_’3*‘5*4‘)‘”’.

Using the comparison principle and assumptions on z(x,0), we have z(x, t) > z(x,0) in
Q2 x (0,T). So w(x,t) > w(x,0) in Q x (0, T). Then using again the comparison principle
yields w(x, t + &) > w(x,t) in 2 x (0, T — ¢) for an arbitrarily small ¢ > 0. Hence z;(x,t) =
(D + 2az)'w,(x,t) > 0in  x (0, T). O
Lemma 3.3 Let A be the first eigenvalue of Laplace operator subject to the homogeneous
Dirichlet boundary condition. If b > a) and one of the following conditions holds:

(i) A>Dx;
(ii) the initial data is large enough,

then all nontrivial nonnegative solutions of problem (3.1) blow up.

Proof Let ® > 0 be the corresponding eigenfunction of the eigenvalue X, which is chosen
to satisfy [, ®(x)dx = 1. Define

Fit)=1] & ,t) dx.
() /Q (x)z(x, t) dx
Then using the first equation in (3.1) and integrating by parts yield
kE,(t) = k / D (x)z,(x, t) dx
Q
= / D(x) [A[(D + az(x, t))z(x, t)] +2z(x, t) (A + bz(x, t))] dx
Q
= / Ad(x) (D + az(x, t))z(x, t)dx + / D (x)z(x, 1) (A + bz(x, t)) dx
Q Q
= —ADF(t) + / D(x)z(x, t) (A + bz(x, t) — alz(x, t)) dx
Q
=(A-AD)F(t) + (b - Ol)»)/ D (x)2%(x, t) dx.
Q
(i) Ifb>arand A > 1D, we get
KF:(£) = (b — a)F*(2),

obviously F(z) blows up in a fine time, and so does z(x, £).
(i) If b> ) and the initial data is large enough so that

(A — AD)F(0) + (b — aX)F2(0) > 0,

then there exists ¢ > 0 such that (A — AD)F(0) + (b—ai —€)F?(0) > 0. Therefore F(t) > F(0)
for t > 0 and kF,(t) > (A — AD)F(t) + (b — aX)F%(t) > eF?(t) + (A — AD)F(¢) + (b — ok —
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£)F2(t) > eF*(t). Based on the discussion, we show that if the initial value is large enough
the solution of problem (3.1) must blow up in a finite time. Thereby z(x, £) blows up in

finite time. O
Our main result in this section can now be stated as follows.

Theorem 3.1 Assume that o, oy are small enough and

| eady oqc% .| adi 0110%
) m it 1 3.4
ln{ bzdz 062]9% } < ln{ b1d2 Oézb% ( )

(i) Ifmax{a;/dy,as/dy} > A, then the solution of problem (1.1) with any nontrivial
nonnegative initial value blows up.
(i) Ifthe initial value is large enough,
then the solution of (1.1) blows up.

Proof To show this, it suffices to construct a lower solution of (2.3) and prove the lower
solution blows up in a finite time with some suitable conditions.

Take (u,, u,, wy, W,) = (q1(6121), 42(8222), 8121, 8222), where §; (i = 1,2) is positive constant
to be defined later, z;(x,¢) is a nonnegative function in Q x (0, T;) and vanishes on the
boundary, the functions g; are same as in Section 2. From Definition 2.1 and (2.3) we
know that (i, u,, w;, w,) is the lower solution of (2.3) if (8,2, 8,2) satisfies the following

inequalities:

3121 32z )
)

-1 _ Z] _
(dl + 2“1”1) 21t Azl = dy+201u1 (ﬂl bl (d1+2a1u7) ta dy+2au7

-1y _ Sz 8929
(dz + 2(121/!2) 22t AZZ = da+20puy (ﬂz + b2 (d1+2aqu1) € dy+2auy )’
S1z(x,0) <m(x),  822(x,0) < 2 (%),
which is equivalent to
1 z1 8121 8229
———z; - AZ1 < a—b +c
Vi d12+40t151Z1 1t 1= \/d% +4016121 ( L ! \/d%+4a16121 1 \/d%+4a26222 ’

1 2 dz1 %)
——Z —22__(ay,+b —C 3.5
A/ d%+40¢25222 2 A/ d%+4o¢28222 ( 2 2 «/d%+40{18122 2 \/d%ﬂlaz(gzzz )’ ( )
S12(x,0) <m(x),  822(x,0) < n2(x).

- Az <

If we choose z; = z5 = z, then (3.5) holds when

1z 5oz
+C
+4a1812 \/d%+4a2522)’

- Sz 3.6
€ \/d%+4a2622), ( )

1 z
——z - Az < —E——(a1 - b
4/d12+4011512 t - «/d%+4011512( ! 1 \/dlz
1 z 81z
——z - Az < ———(ay + b
A/ d%+4a2622 t PV d%+4a2522 ( 2 2 \/dlz+4a1612

812(x,0) < m(x), 822(%,0) < n2(x).

Now we consider the right hand sides of the first and second inequalities in (3.6); it is easy
to check that

8o 8 ) P

c >b , b L >c
! \/d% + 40[2522 ! \/dlz + 40[151Z 2 vV d12 + 40[151Z ? RV d% + 4-0[2822
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holds, provided that

dy do 251 o dy di 25 (241

— > , > —, >—, - > 5
b181 6152 b%Sl 6%82 6282 b231 C%(Sz b%(sl
which is equivalent to

Czdl 51 d1c1 d 0116% 51 OllC%
— < —<—/——— an <—<—.
bzdz 52 dzbl C\(zb% 52 OlQb%

Recalling the assumption (3.4) shows that there exists a small ¢ > 0 such that

) - bié,

(C - 8) justl )
' Va2 +4aydyz T \Jd? + daidiz

1 282
2= &)= z = .
V& +daidiz ~ Jd5 +4ardyz

(b

Thus (3.6) holds if

1 z $2z
s A< 5 92z ,
./d12+4a181zZ[ = 4/d12+4a15lz (611 te 4/d%+4a2622)
1 z 81z
——z; - Az < +& s 3.7
«/d%+40¢2522 t - \/d%+4a2522 ((lz «/d12+40[1512) ( )
812(x,0) < m(x), 822(x,0) < na(x).
If z; > 0, take
d = max{dy,d>}, d, = min{d,, d,}, o = min{ay, as},

A =max{ay/dy, az/d}, K = max{on8/d}, a28,/d3}, 8 = min{3y, 85},

then (3.7) holds if

2
Zt A Az 5z
d2+aasz — JV1+4Kz d%(1+4Kz)’

8Z(x7 O) = 771(?6): 5Z(x: O) = 7)2(96)

te
(3.8)

Take k = max{1/d,, /K/(a8)}; then (3.8) can be written

2
= /(Zt AZ < Az +e 8§z

Vivakz T = VIakz | 7 d(1+4Kz) (3.9)
0z(x,0) <m(x),  6z(x,0) < ma(x).

Let z = (1 + Kw)w; then (3.9) holds provided that

d

kw, — A[(1 + Kw)w] < Aw + £ w?,
(3.10)
w(x, 0) < nj (%), wi(x, 0) < n3(x),

where 7 (x) = AL W fori=1,2.

First we discuss the case when the initial value is large enough. By Lemma 3.1, problem
(3.2) has a nontrivial nonnegative solution, denoted by ¥*(x). We define z* to be the so-
lution of (3.1) with z*(x,0) = ¥*(x). Then it is easy to see that z; > 0 from Lemma 3.2. So
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if w;(x,0) > 819" (x) and w, (x,0) > 8,9 *(x), the pair (q1(612%), g2(822")) is a lower solution
of (1.1). On the other hand, if follows from Lemma 3.3 that the solution z* must blow up
in a finite time provided that fﬂ D (x)z"(x,0) dx > 21_);’;. So if w;(x,0) and w,(x, 0) are suf-
ficiently large, then the pair (§;z*, §,2*) blows up. Therefore the solution of (1.1) blows up

in a finite time.

Second, we consider the case that max{a;/dy,ax/d>} > X and o, ay are small enough.
For an arbitrary nontrivial nonnegative initial data (1;(x), n2(x)), the solution of (1.1) is
positive for ¢ > 0 by Lemma 3.2. Further, we may assume that u;(x,0) > 0 and u»(x,0) > 0
for x € 2, otherwise replace the initial function (u;(x, 0), u2(x, 0)) by (11 (%, £1), ua(x, t1)) for
some £ > 0.

Let ¢(x) > 0 be the eigenfunction corresponding to the eigenvalue A, then there exists
suitable & > 0, such that 9819 (x) < u3(x,0), £982¢(x) < us(x,0). Choosing ¥ (x) = e¢(x),
then v (x) satisfies (3.2) withD=1and b = ;—g and define w* be the solution of (3.1) with the
initial data v (x). Then A[(1 + aw*(x, 0))w*(x,0)] + w*(A + bw*)(x,0) > 0 and w* is mono-
tone nondecreasingin ¢ by Lemma 3.2. Moreover, it follows from the comparison principle
that u; (x, £) > §,w* (x, t) and uy (x, £) > Sow*(x, £) in Q x [0, Ty), where T is the maximal ex-
istent time of u1, uy, and w*. Hence (1, u,) = (q1(81w*), g2(82w*)) is a lower solution of (1.1).

On the other hand, Lemma 3.3 ensures the existence of a finite T such that the solution
w* exists in  x [0, Ty) and is unbounded in 2 as ¢ — T,. Thus the solution of (1.1) cannot
exist beyond Ty and is nonglobal. This finishes the proof. O

4 Numerical illustrations

In this section, we present some numerical simulations to investigate the blow-up results
in Theorem 3.1. Symbolic mathematical software Matlab 7.0 is used to plot numerical
graphs. For simplicity, we always take Q = [0, ].

Example 4.1 (Case (i)) In system (1.1), let a; = 1.5, a; = 1.0, b; = 0.5, b, = 0.8, ¢; = 0.6,
¢, =0.3,d; =1, and d, = 2. Take small self-diffusion rates «; = 0.04 and o, = 0.02. Then it
is easy to check that the condition (3.5) is satisfied. Choose the initial values of u; and u,
to be 1.5 + sin 2x and 2.0 — 0.1 cos 2x, respectively, and the solution of the system blows up,
as shown in Figure 1.

Example 4.2 (Case (ii)) In system (1.1), take a;, b;, ¢;, o; (i = 1,2) as in Example 4.1. Let
dy = 0.06 and d, = 0.08. Then it is easy to check the condition (3.4) hold. We choose
uy and u; to be 12 + sin2x and 15 — 0.1 cos 2x, respectively. According to Theorem 3.1, if
the initial value is large enough the solution of the system blows up. Figure 2 shows the
phenomenon.

5 Discussions

In this paper, we consider a two-species cooperating model with free diffusion and self-
diffusion. Our main purpose is to find sufficient conditions for the solution to blow up in
a finite time. The results show that the global solution exists if bico > bycy, i.e. the inter-
specific competition is strong.

If the inter-specific competition is weak, Theorem 3.1 shows that blow-up occurs pro-
vided that the initial value is large enough or the self-diffusion rate is small. The latter
gives the continuity of blow-up with the self-diffusion rate since the solution without self-
diffusion blows up. The former shows that the solution of the system with self-diffusion
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Figure 1 Blow-up solutions of Example 4.1.

space X time t space x

Figure 2 Blow-up solutions of Example 4.2.

time t 0 space x fime t 0 spacex

Figure 3 Blow-up solutions for large initial values and ac1 = o3 = 0.

or without self-diffusion blows up if the initial value is large enough. A natural question is
what the difference is between the solution with self-diffusion and without self-diffusion
for the same big initial values. Let us take a; = a3 = 0 and all other parameters and initial
value the same as in Example 4.2; we then have the following simulation; see Figure 3.

Comparing Figure 2 with Figure 3, we can see that the solution without self-diffusion
blows up fast, which implies the self-diffusion can ‘relax’ the blow-up. We still have no
theoretical proof, but we feel it is worth further investigation.
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