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Abstract
Memristive oscillator systems are common models for many problems in physics,
engineering, and systems biology. This paper presents a convergence analysis of two
types of algorithms for solving a fourth-order memristive oscillator system. For the
first algorithm, a parallel algorithm, a limiting state of the iterate sequence generated
by a Jacobi iterative scheme and the Euler polygonal method, is a solution of the
system under some weaker conditions. With the second algorithm, a partial
difference method, which is based on the partial difference concept and exponential
convergence, is also presented. The proposed algorithms in this paper can be applied
to general nonlinear hybrid systems.

Keywords: memristor; hybrid systems; parallel algorithm; partial difference method;
convergence

1 Introduction
Recently, a large number of applications for memristive oscillator systems have been re-
ported, including nonvolatile memristor memories, digital and analog circuits; see [–].
The models of memristive oscillator systems suggest possible responses of simple intelli-
gences in biomimetics as well as new approaches for bio-inspired reconfigurable circuits.
Considerable attention has been devoted to the theoretical properties of memristive os-
cillator systems, and their relationship to memristor dynamics (see [–, , , ] and
references therein). A very lower dimensional memristor equation can appear with com-
plex double-loop behavior. Therefore, the memristive system is a complicated system that
has strongly nonlinear behavior, as it includes the switched network cluster and shows
a high uncertainty []. Deep studies of the memristive system are important in various
applications due to the important guiding role in memristor-based physical commercially
available devices. For example, nonlinear dynamics has been shown to play an important
role in the understanding of a wide spectrum of memristor-based technological and bio-
logical systems [–, , –].
In this paper, we consider a fourth-order memristive oscillator system described by the

following differential equations:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ϕ̇(t) = v(t),
v̇(t) = 

CR
v(t) – 

CR
v(t) – 

C
W (ϕ(t))v(t),

v̇(t) = 
CR

v(t) – 
CR

v(t) – 
C

�(t),
�̇(t) = 

Lv(t),

()
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where v(t) and v(t) denote voltages, C and C represent capacitors, W (ϕ(t)) is a mem-
ductance function, andϕ(t), �(t),R, andL aremagnetic flux, current, resistor, and inductor,
respectively.
Using themathematical model of a piecewise-linear memristor [, ], thememductance

functionW (ϕ) is characterized by

W (ϕ) =

{
a, |ϕ| < ,
a, |ϕ| > ,

()

where a and a are parameters.
Choose parameters C = . nF, C = . nF, L = . mH, R = , �, a = –. ×

–, a = –.×–, and set the initial condition ϕ() = ., v() = ., v() = ., �() =
.; we can see that system () indeed generates chaotic behavior. Simulated results are de-
picted in Figures  and . Figure  displays the projections of the chaotic attractor of system
() in the three-dimensional space. To get a better view of this chaotic attractor, Figure 
shows the projections of the chaotic attractor of system () in the two-dimensional space.
To solve the state-dependent nonlinearity of system (), fuzzy logic has attracted much

attention as a powerful tool. The memristive oscillator system () can be represented as
the following fuzzy model:
Rule : If |ϕ| < , then⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ϕ̇(t) = v(t),
v̇(t) = 

CR
v(t) – 

CR
v(t) – 

C
av(t),

v̇(t) = 
CR

v(t) – 
CR

v(t) – 
C

�(t),
�̇(t) = 

Lv(t).

()

Figure 1 Phase portraits of the chaotic system (1) in the three-dimensional space.
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Figure 2 Phase portraits of the chaotic system (1) in the two-dimensional space.

Rule : If |ϕ| > , then⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ϕ̇(t) = v(t),
v̇(t) = 

CR
v(t) – 

CR
v(t) – 

C
av(t),

v̇(t) = 
CR

v(t) – 
CR

v(t) – 
C

�(t),
�̇(t) = 

Lv(t).

()

With a center-average defuzzier, the over-fuzzy system in () and () is represented as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ϕ̇(t) = v(t),
v̇(t) = 

CR
v(t) – 

CR
v(t) – 

C
(
∑

i= ηi(t)ai)v(t),
v̇(t) = 

CR
v(t) – 

CR
v(t) – 

C
�(t),

�̇(t) = 
Lv(t),

()
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where

η(t) =

{
, |ϕ| < ,
, |ϕ| > ,

η(t) =

{
, |ϕ| < ,
, |ϕ| > .

Notwithstanding the vast literature on nonlinear dynamical systems, the majority of
the existing studies focus on memristive oscillator systems whose inner mechanisms have
never been thoroughly studied and expounded. This canmainly be attributed to themem-
ristor nonlinearity. One such challenge in thememristive system is a state-dependent non-
linear network cluster []. As a result, themonitoring, control, and optimization inmem-
ristive systems will be extremely difficult.
An important research problem is to develop some rigorous algorithm theories and de-

sign tactics for solving memristive oscillator systems. Algorithm theories represent the
structure common to a class of algorithms, which can provide the basis for designing
tactics-specialized methods for analyzing memristive oscillator systems. The memris-
tive differential system which is described by a state-dependent nonlinear network clus-
ter presents a difficulty in numerical integration, since the conventional processing ap-
proaches make it hard to achieve satisfactory results. In general, solving these problems
requires overcoming a number of theoretically challenging issues and even developing en-
tirely new analyticalmethods. A key open problem is how to devise effective algorithms for
dealing with the characteristics of memristive system. Generally, to the best of our knowl-
edge, no relevant work as regards the algorithms and their convergence for memristive
oscillator systems has been reported.
The objective of this paper is to develop some algorithms and analyze their correspond-

ing convergence properties. This consideration does not only have theoretical value but
also practical meaning. For the numerical solution of complex systems and networks, of
the many methods available, a parallel algorithm and a partial difference method show
good feasibility and advantages. Thus, these two algorithms are chosen for memristive
oscillator systems. The constructive proofs in this paper are able to fully demonstrate that
the parallel algorithm and the partial difference method have a general applicability that
can make them popular in a wide variety of cases. We believe the basic algorithm and
convergence in theory for memristive systems should be a significant research topic due
to the potential in a variety of emerging applications.

2 Parallel algorithm
In this section, we give a constructive proof on the parallel algorithm and its convergence
for system ().
By the theories of differential inclusions and set-valued maps, from (), it follows that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ϕ̇(t) = v(t),
v̇(t) ∈ 

CR
v(t) – 

CR
v(t) – 

C
(co{a,a})v(t),

v̇(t) = 
CR

v(t) – 
CR

v(t) – 
C

�(t),
�̇(t) = 

Lv(t),

()

where co{a,a} denotes a closure of the convex hull generated by real numbers a and a.
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Transform () into the compact form as follows:

�̇ ∈

⎛⎜⎜⎜⎝
   
 – 

CR
– 

C
co{a,a} 

CR


 
CR

– 
CR

– 
C

  
L 

⎞⎟⎟⎟⎠� := A�, ()

where the vector � = (ϕ(t), v(t), v(t),�(t))T ,

matrixA =

⎛⎜⎜⎜⎝
   
 – 

CR
– 

C
co{a,a} 

CR


 
CR

– 
CR

– 
C

  
L 

⎞⎟⎟⎟⎠ .

In (), split the matrix A into matrices B and C, i.e., A = B +C, where

B =

⎛⎜⎜⎜⎝
   
 – 

CR
– 

C
co{a,a}  

  – 
CR


   

⎞⎟⎟⎟⎠ ,

C =

⎛⎜⎜⎜⎝
   
  

CR


 
CR

 – 
C

  
L 

⎞⎟⎟⎟⎠ .

Obviously, according to the Jacobi iterative scheme,{
ẏ = By +C�k , y() = �(),
�k+ = �k +ω(y –�k),

()

where y = y(t) = (y(t), y(t), y(t), y(t))T , �k = �k(t) = (ϕk(t), vk (t), vk(t),�k(t))T , ω �=  is a
constant.
Let t = , tn = t + nh, denote yn = y(tn) = (y(tn), y(tn), y(tn), y(tn))T , �k

n = �k(tn) =
(ϕk(tn), vk (tn), vk(tn),�k(tn))T , and applying the Euler polygonal method, by (), it follows
that {

yn–yn–
h = Byn +C�k

n,
�k+

n = �k
n +ω(yn –�k

n),
()

then{
(I – hB)yn = yn– + hC�k

n,
�k+

n = ( –ω)�k
n +ωyn,

()

where I is the ×  identity matrix.
Through the first equation of (),

yn = (I – hB)–yn– + h(I – hB)–C�k
n =Dyn– + hDC�k

n, ()
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where matrix D = (I – hB)–. Besides, for (), if the matrix I – hB is invertible, then D =
(I – hB)– is the general inverse matrix, otherwise D = (I – hB)– is the generalized inverse
matrix.
Substitute () into the second equation of (),

�k+
n = ( –ω)�k

n +ω
(
Dyn– + hDC�k

n
)

=
[
( –ω)I +ωhDC

]
�k

n +ωDyn– = F�k
n +ωDyn–, ()

where the matrix F = ( –ω)I +ωhDC. Therefore, we get

�k+
 = F�k

 +ωDy, when n = , ()

�k+
 = F�k

 +ωDy, when n = . ()

On the other hand, by (),

y =Dy + hDC�k
 , ()

thus

�k+
 = F�k

 +ωD
(
Dy + hDC�k


)
= F�k

 +ωhDC�k
 +ωDy, ()

through using the method of induction, and then

�k+
n = F�k

n +ωhDC�k
n– + · · · +ωhDnC�k

 +ωDny. ()

In fact, it is not difficult to find that

F = ( –ω)I +ωhDC

= ( –ω)I +ωh(I – hB)–C

= ( –ω)I +ωh

⎛⎜⎜⎜⎝
   
  + h

CR
+ h

C
co{a,a}  

   + h
CR


   

⎞⎟⎟⎟⎠
–⎛⎜⎜⎜⎝

   
  

CR


 
CR

 – 
C

  
L 

⎞⎟⎟⎟⎠

= ( –ω)I +ωh

⎛⎜⎜⎜⎜⎜⎝
   
 

+ h
CR

+ h
C

co{a,a}  

  
+ h

CR


   

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝
   
  

CR


 
CR

 – 
C

  
L 

⎞⎟⎟⎟⎠

= ( –ω)I +ωh

⎛⎜⎜⎜⎜⎜⎝
   
  

+ h
CR

+ h
C

co{a,a}


CR


 
+ h

CR


CR

 – 
+ h

CR


C

  
L 

⎞⎟⎟⎟⎟⎟⎠
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= ( –ω)I +

⎛⎜⎜⎜⎜⎜⎝
 ωh  
  

+ h
CR

+ h
C

co{a,a}
ωh
CR



 
+ h

CR

ωh
CR

 – 
+ h

CR

ωh
C

  ωh
L 

⎞⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎝
 –ω ωh  
  –ω 

+ h
CR

+ h
C

co{a,a}
ωh
CR



 
+ h

CR

ωh
CR

 –ω – 
+ h

CR

ωh
C

  ωh
L  –ω

⎞⎟⎟⎟⎟⎟⎠ . ()

Clearly, by the iterative scheme (), we can draw the conclusion of Theorem .

Theorem  If ρ(F) < , then the iterative scheme () is convergent, i.e., () converges to a
fixed state, where ρ(F) denotes spectral radius of the matrix F .

Theorem  If ‖F‖ < , then the iterative scheme () is convergent, i.e., () converges to a
fixed state, where ‖F‖ denotes the norm of the matrix F .

Proof Since ρ(F)≤ ‖F‖ < , according to Theorem , it follows that Theorem  holds. �

Theorem  The fixed state of iterative scheme () is the solution of system ().

Proof When limk→+∞ �k = �∗, take the limit of (), then

{
ẏ = By +C�∗,
�∗ = �∗ +ω(y –�∗),

thus y = �∗, which satisfies (). �

3 Partial differencemethod
In this section, we present a constructive proof to illustrate the partial difference method
and the related convergence analysis for system ().
Through the theories of the Taylor formula and the partial difference method, from (),

it follows that

ϕ(tk + h) = ϕ(tk) + hϕ̇(tk) +
h


ϕ̈(tk) = ϕ(tk) + hv(tk) +

h


dv(t)
dt

∣∣∣∣
t=tk

= ϕ(tk) + hv(tk) +
h


[
h
dv(t)
dt

∣∣∣∣
t=tk

]

= ϕ(tk) + hv(tk) +
h

[
v(tk + h) – v(tk)

]
, ()

v(tk + h) = v(tk) + hv̇(tk) +
h


v̈(tk)

= v(tk) + h

[


CR
v(tk) –


CR

v(tk) –

C

( ∑
i=

ηi(tk)ai

)
v(tk)

]

http://www.advancesindifferenceequations.com/content/2014/1/160
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+
h



[


CR
dv(t)
dt

∣∣∣∣
t=tk

–


CR
dv(t)
dt

∣∣∣∣
t=tk

–

C

( ∑
i=

ηi(tk)ai

)
dv(t)
dt

∣∣∣∣
t=tk

]

= v(tk) + h

[


CR
v(tk) –


CR

v(tk) –

C

( ∑
i=

ηi(tk)ai

)
v(tk)

]

+
h


[


CR
(
v(tk + h) – v(tk)

)
–


CR

(
v(tk + h) – v(tk)

)
–


C

( ∑
i=

ηi(tk)ai

)(
v(tk + h) – v(tk)

)]
, ()

v(tk + h) = v(tk) + hv̇(tk) +
h


v̈(tk)

= v(tk) + h
[


CR

v(tk) –


CR
v(tk) –


C

�(tk)
]

+
h



[


CR
dv(t)
dt

∣∣∣∣
t=tk

–


CR
dv(t)
dt

∣∣∣∣
t=tk

–

C

d�(t)
dt

∣∣∣∣
t=tk

]

= v(tk) + h
[


CR

v(tk) –


CR
v(tk) –


C

�(tk)
]

+
h


[


CR
(
v(tk + h) – v(tk)

)
–


CR

(
v(tk + h) – v(tk)

)
–


C

(
�(tk + h) – �(tk)

)]
, ()

�(tk + h) = �(tk) + h�̇(tk) +
h


�̈(tk) = �(tk) + h


L
v(tk) +

h



[

L
dv(t)
dt

∣∣∣∣
t=tk

]

= �(tk) +
h
L
v(tk) +

h
L

[
h
dv(t)
dt

∣∣∣∣
t=tk

]

= �(tk) +
h
L
v(tk) +

h
L

[
v(tk + h) – v(tk)

]
, ()

where h �=  is a constant.
Equations ()-() are a generic form of a first-order partial difference method for sys-

tem (). When h > , ()-() are said to be the forward partial difference method for
system (). When h < , ()-() are said to be the backward partial difference method
for system ().
In the following,we consider the convergence of the first-order partial differencemethod

for system ().
By ()-(), we obtain

ϕ(tk + h) –
h

v(tk + h) = ϕ(tk) +

h

v(tk), ()[

 +
h

CR
+

h
C

( ∑
i=

ηi(tk)ai

)]
v(tk + h) –

h
CR

v(tk + h)

=
h

CR
v(tk) +

[
 –

h
CR

–
h
C

( ∑
i=

ηi(tk)ai

)]
v(tk), ()
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–
h

CR
v(tk + h) +

(
 +

h
CR

)
v(tk + h) +

h
C

�(tk + h)

=
h

CR
v(tk) +

(
 –

h
CR

)
v(tk) –

h
C

�(tk), ()

�(tk + h) –
h
L

v(tk + h) = �(tk) +
h
L

v(tk). ()

Transform ()-() into the compact form as follows:

⎛⎜⎜⎜⎝
 – h

  
  + h

CR
+ h

C
(
∑

i= ηi(tk)ai) – h
CR


 – h

CR
 + h

CR
h

C

  – h
L 

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

ϕ(tk + h)
v(tk + h)
v(tk + h)
�(tk + h)

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
 h

  
  – h

CR
– h

C
(
∑

i= ηi(tk)ai)
h

CR


 h
CR

 – h
CR

– h
C

  h
L 

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

ϕ(tk)
v(tk)
v(tk)
�(tk)

⎞⎟⎟⎟⎠ , ()

then we have⎛⎜⎜⎜⎝
ϕ(tk + h)
v(tk + h)
v(tk + h)
�(tk + h)

⎞⎟⎟⎟⎠ = 	

⎛⎜⎜⎜⎝
ϕ(tk)
v(tk)
v(tk)
�(tk)

⎞⎟⎟⎟⎠ , ()

where

	 =

⎛⎜⎜⎜⎝
 – h

  
  + h

CR
+ h

C
(
∑

i= ηi(tk)ai) – h
CR


 – h

CR
 + h

CR
h

C

  – h
L 

⎞⎟⎟⎟⎠
–

×

⎛⎜⎜⎜⎝
 h

  
  – h

CR
– h

C
(
∑

i= ηi(tk)ai)
h

CR


 h
CR

 – h
CR

– h
C

  h
L 

⎞⎟⎟⎟⎠ . ()

Let

	̃ =

⎛⎜⎜⎜⎝
 – h

  
  + h

CR
+ h

C
co{a,a} – h

CR


 – h
CR

 + h
CR

h
C

  – h
L 

⎞⎟⎟⎟⎠
–

×

⎛⎜⎜⎜⎝
 h

  
  – h

CR
– h

C
co{a,a} h

CR


 h
CR

 – h
CR

– h
C

  h
L 

⎞⎟⎟⎟⎠ , ()
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where co{a,a} denotes the closure of the convex hull generated by the real numbers a
and a.
Obviously, by the iterative scheme (), we can draw the conclusions of Theorems 

and .

Theorem If ρ(	̃) = , and the eigenvalues of M(	̃) =  only correspond to the elementary
divisors of the matrix 	̃, then the iterative scheme () is convergent, i.e., () converges to
a fixed state, where ρ(	̃) and M(	̃) denote the spectral radius and matrix module of 	̃,
respectively.

Theorem  If ρ(	̃) < , then the iterative scheme () is convergent, i.e., () converges to
a fixed state, where ρ(	̃) denotes spectral radius of the matrix 	̃.

Theorem  If ‖	̃‖ < , then the iterative scheme () is convergent, i.e., () converges to
a fixed state, where ‖	̃‖ denotes the norm of the matrix 	̃.

Proof Since ρ(	̃) ≤ ‖	̃‖ < , according to Theorem , it follows that Theorem  holds.
�

Remark  In fact, in Theorems  and , according to the theory of stability for discrete dy-
namical systems, we find that the iterative scheme () is exponentially convergent when
ρ(	̃) <  or ‖	̃‖ < .

4 Conclusion
The area of memristive oscillator systems is ripe with open problems and challenges, and
more exploratory analyses will encourage and motivate researchers to enter this exciting
field of research. In this paper, we investigate the convergence analysis of two types of
algorithms for solving a class of memristive oscillator systems. Some preliminary results
have been shown. We hope that such theoretical analysis in this area will contribute to
further ignition of interest and promotion of multi-discipline studies.
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