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1 Introduction and main results

Let f(z) be a meromorphic function in the complex domain. Assume that the reader is
familiar with standard symbols and fundamental results of Nevanlinna theory [1, 2]. Re-
call that a(z) is a small function with respect to f(2), if T(r,a) = S(r,f), where S(r,f) is
used to denote any quantity satisfying S(r,f) = o(T(r,f)) as r — oo outside of a possible
exceptional set of finite logarithmic measure. Denote by p(f) and p,(f) the order and the
hyper-order of f. In this paper, ¢ is a non-zero complex constant, #, k are positive integers,
unless otherwise specified.

Hayman [3] conjectured that if f is a transcendental meromorphic function, then f”f’
takes every finite non-zero value infinitely often. In fact, Hayman [3] proved that if f is
a transcendental meromorphic function and # > 3, then f”f’ takes every finite non-zero
value infinitely often. Later, the case n = 2 was settled by Mues [4]. Bergweiler and Ere-
menko [5], Chen and Fang [6, Theorem 1] proved the case of n = 1, respectively. In the
past years, the topic on the zeros of differential polynomials has always been an important
research problem in value distribution of meromorphic functions. With the development
of the difference analogues of Nevanlinna theory, some authors paid their attention to the
zeros of difference polynomials. Laine and Yang [7, Theorem 2] firstly considered the ze-
ros distribution of f(z)"f(z + ¢) — a, where a is a non-zero constant, which can be seen as a
difference analogue of Hayman conjecture. Recently, many authors were interested in the
zeros distribution of difference polynomials of different types, such as [8-13].

A polynomial Q(z,f) can be called a differential-difference polynomial in f whenever
Q(z,f) is a polynomial in f(z), its shifts f(z + ¢) and their derivatives, with small functions
of f(z) as the coefficients. It is interesting to consider the zeros of differential-difference
polynomials. The aim of the paper is to explore the differences or analogues among the
zeros of differential polynomials, difference polynomials, differential-difference polyno-
mials. Liu et al. [14, Theorems 1.1 and 1.3] considered this problem and obtained the fol-
lowing result, where A f = f(z + ¢) — f(z).
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Theorem A Let f be a transcendental entire function of finite order and a(z) be a non-zero
small function with respect to f(z). If n > k + 2, then [f(2)"f(z + ¢)]% — a(z) has infinitely
many zeros. If f is not a periodic function with period c and n > k + 3, then [f(z)" A f]® —

a(z) has infinitely many zeros.

If a(z) = 0 in Theorem A, some results can be found in [15]. In this paper, we will
consider the zeros of differential-difference polynomials of f(z)"f®(z + ¢) — a(z) and

f@"(ANP - al2).

Theorem 1.1 Let f be a transcendental entire function of hyper-order py(f) < 1. If n > 3,
then f(2)"f®(z + ¢) — a(z) has infinitely many zeros, where a(z) is a non-zero small function

with respect to f(z).

Remark 1 (1) The condition that a(z) is a non-zero small function cannot be removed,
which can be seen by f(z) = ¢* and e° = 2. Thus we get f(2)"f®(z + ¢) = 2¢"*Y? has no
Zeros.

(2) The condition py(f) < 1 cannot be deleted, which can be seen by f(z) = e of py (=1,
thus f(2)"f"(z + ¢) + ne* + P(z) = P(z) has finitely many zeros, where e‘ = —n and P(z) is a
non-zero polynomial. In fact, for any integer k, we can choose appropriate o(z) to make
f@)"f®(z+c) + a(z) + P(z) = P(z), a(z) is a polynomial in .

If f is a finite order transcendental entire function, we prove the following result.

Theorem 1.2 Let f be a finite order transcendental entire function. If n > 2, then
f@)"f®(z + ¢) — alz) has infinitely many zeros, where a(z) is an entire function with

p(a) < p(f).

Definition1 Define that a polynomial p(z) is a Borel exceptional polynomial of f(z) when

log" N(r, 7z5)
1(f(@) - pla)) = limsup ———LELE < o),
r—>0o0 ogr

where A(f(z) — p(z)) is the exponent of convergence of zeros of f(z) — p(z).

Theorem 1.3 Letf be a finite order transcendental entire function with a Borel exceptional
polynomial d(z). If n > 1, then f(2)"f X (z + ¢) — b has infinitely many zeros, where b is a non-

zero constant.

Remark 2 (1) The condition that b is a non-zero constant cannot be removed, which can
be seen by f(z) = ¢ which has a Borel exceptional value 0. Thus, we get f(z)"f®(z + ¢) =
e’ has no zeros.

(2) From the above three theorems, we can reduce the value of # with additional condi-
tions. However, we hope that the condition # > 3 can be reduced to # > 1 in Theorem 1.1.

Unfortunately, we have not succeeded in doing that.

If f(2) is a transcendental meromorphic function, we obtain the next result.
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Theorem 1.4 Let f be a transcendental meromorphic function of hyper-order p,(f) < 1. If
n > 2k + 6, then f(2)"'f®(z + ¢) — a(z) has infinitely many zeros, where a(z) is a non-zero
small function with respect to f(z).

Using the similar method of proofs of Theorems 1.1 and 1.4 below, we can get the fol-
lowing result.

Theorem 1.5 Let f be a transcendental meromorphic (entire) function of hyper-order
po(f) <L If n > 4k +9 (n > 4), then f(2)"(AS)® — a(z) has infinitely many zeros, where
a(z) is a non-zero small function with respect to f(z).

Finally, we recall the classical results due to Hayman [3, Theorems 8 and 9], which can
be combined as follows.

Theorem B Let f be a transcendental meromorphic function and a # 0, b be a finite com-
plex constant. Then f" + af’ — b has infinitely many zeros for n > 5. If f is transcendental
entire, this holds for n > 3, resp. n > 2, if b= 0.

We then proceed to consider the zeros of f(z)" + a(z)f ¥ (z + ) — b(z), which can be seen
as the differential-difference analogues of Theorem B.

Theorem 1.6 Let f be a transcendental entire function with finite order, let a(z), b(z) be
small functions with respect to f. Then f(2)" + a(z)f ¥ (z + ¢) + b(2) has infinitely many zeros
forn=>3,resp.n>2,ifb(z) =0.

Remark 3 The condition # > 3 cannot be improved if b(z) # 0, which can be seen by the
function f(z) = € + 1 and € = 2, thus f(2)> — f'(z + ¢) — 1 = €% has no zeros. The condition
n > 2 cannot be improved if b(z) = 0, which can be seen by the function f(z) = ¢* and
e =2, thus f(2) — f'(z + ¢) = —€* has no zeros.

2 Some lemmas

The difference analogue of logarithmic derivative lemma, given by Chiang and Feng [16,
Corollary 2.5], Halburd and Korhonen [17, Theorem 2.1], plays an important part in con-
sidering the difference analogues of Nevanlinna theory. Afterwards, Halburd, Korhonen
and Tohge improved the condition of growth from p < co to px(f) < 1 as follows.

Lemma 2.1 [18, Theorem 5.1] Letf be a transcendental meromorphic function of p,(f) < 1,
¢ <1, € is a number small enough. Then

flz+¢) T(r.f)
m(r, e ) = 0( pr— ) =S(r.f), (2.1)

for all r outside of a set of finite logarithmic measure.

Lemma 2.2 [18, Lemma 8.3] Let T : [0, +00) — [0, +00) be a non-decreasing continuous
function and let s € (0,00). If the hyper-order of T is strictly less than one, i.e.,

. loglog T'(r)

lim sup “loer c<l1, (2.2)

r—00 ogr
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and § € (0,1 - ¢), then

T(r+s)=T(r)+ o(%) (2.3)

for all r runs to infinity outside of a set of finite logarithmic measure.
From Lemma 2.2, then we get the following lemma.
Lemma 2.3 Let f(z) be a transcendental meromorphic function of p>(f) < 1. Then
T(r,f(z+c)) = T(r,f) +S(r.f) (2.4)

and
1 1
N(r,f(z+ c)) =N(rf) + S(r,f),N(r,m) = N(V,f—) +S(r.f). (2.5)

Lemma 2.4 Let f be a transcendental meromorphic function of pa(f) < 1. Then

fPz+e)
m(r, f(—z)> =S(r,f) (2.6)

for all r outside of a set of finite logarithmic measure.

Proof Combining the lemma of logarithmic derivative with Lemma 2.1, Lemma 2.3, we

get
fOz+c) fOz+c) flz+o)\

() =) el T ) s B
Lemma 2.5 [2, Theorems 1.22 and 1.24] Let f(z) be a transcendental meromorphic func-
tion. Then

T(r.f") < T(r,f) + nN(r.f) + S(r.f), (2.7)

N(r,j%) §N<r,}) +nN(r,f) + S(r,f). (2.8)

Lemma 2.6 Let f(z) be a transcendental meromorphic function of po(f) <1, and let F(z) =
f@)"f®(z+c). Then

(n—k=1)T(r.f) +S(r.f) <T(r,F) < (n+k+1)T(r.f) +S(r.f). (2.9)
Iff(2) is a transcendental entire function of py(f) < 1, then

nT(r,f) +S(r.f) < T(r,F) < (n+1)T(r,f) + S(r.f). (2.10)
Proof Remark that

1 lf(k)(z+c)

f T F f(2)
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From Lemma 2.1, Lemma 2.3 and the standard Valiron-Mohon’ko theorem [2, 19] and f
is a transcendental meromorphic function, then we obtain

(m+1)T(r.f) = T(r,ﬁ) +S(r.f)

(k)
< T(r,ll:) + T(r,%) +S(r.f)

fOz+c)
f(2)

<T(r,F)+N(rf) + kﬁ(r,f) +N<r,fl) +S(r.f)

< T(r,F)+N<r, ) +S(r.f)
< T(r,F)+ (k+2)T(r,f)+ S(r,f). (2.11)
On the other hand, using Lemma 2.3, we have

T(r,F) < nT(r,f) + T(r,f®(z + ¢)) + S(r.f)
<uT(r,f)+T(rf)+ kﬁ(r,f) +S(r.f)
< (n+k+1)T(r,f)+S(r.f). (2.12)

Thus, (2.9) follows from (2.11) and (2.12). If f is a transcendental entire function with
p2(f) <1, then

(n+ DT(rf) +S(r.f) = T(rf (") = m(r.f()"")

Ff(2)
: ’”(V’ﬂ“(z n c))
(k)
<T(rF)+ T(H%) +S(rf)
< T(r,F)+ N(r,}) +S(r,f)
<T@ F)+ T(rf)+S(r[). (2.13)
Thus, (2.10) follows from (2.12) and (2.13). O

Using the similar method as the proof of Lemma 2.6, we get the following result, which

is important in the proof of Theorem 1.5.

Lemma 2.7 Let f(z) be a transcendental meromorphic function of p2(f) < 1, and let G(z) =
f@)"(AS)P. Then

(n=2k=2)T(r,f)+S(r.f) <T(r,G) < (n+2k +2)T(r,f) + S(r,f). (2.14)
Iff(2) is a transcendental entire function of p(f) < 1, then

nT(r,f) + S(r,f) < T(r, G) < (n+ 1) T(r,f) + S(r,f). (2.15)

Page 5 of 11
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Remark (1) The right inequality of (2.14) cannot be improved, which can be seen by f(z) =
L, e = -1, thus f(2)2(Af) = ufgﬁjﬁ%,which implies that T(r,f(2)*(Af)) = 6 T(r,f) +
S, f).

(2) Inequality (2.15) cannot be improved. If f(z) = €° + 2%, €° = 1, thus f(2)"(Af) =
2¢(e? + z2)", which implies that T(r,f(2)"(Af)') = nT(r,f) + S(r,f). If f(2) = €%, €° = 2, thus
F@)"(Af) =e”V%, which implies that T(r,f(2)"(Af)) = (n + V)T (r,f) + S(r,f).

The following two results are due to Yang and Yij, see [2].

Lemma 2.8 [2, Theorem 1.56] Let fi, f2, f3 be meromorphic functions such that f is not a
constant. If fi + fo + fs =1 and if

3 3
D N1 +2) N(rf) < (2 +0(1) T(r),

j=1 =1
where A <1 and T(r) := max,<j<3 T(r,f), then either f, =1 or f3 = 1.

Lemma 2.9 [2, Theorem 1.52] Iffi(2) (j=1,2,...,n) (n > 2), gi(2) (j=1,2,...,n) are entire
functions satisfying
() Yiifi@es? =o,
(ii) the order of f; is less than that of €@~ for1 <j<n,1 <h<k <n, thenfi(z) =0
(j=12,...,n).

3 Proofs of Theorem 1.1 and Theorem 1.4

Denote F(z) = f(2)"f®(z + ¢). From Lemma 2.6, then F(z) is not a constant. Assume that
F(z) — a(z) has only finitely many zeros, from the second main theorem for three small
functions [1, Theorem 2.5] and Lemma 2.5, then we get

T(r,F) < N(r,F) +ﬁ<r,1%) +N<r, %ﬂ(z)) +S(r,F)

< N(,f) +N(r,f(k)(z+ c)) +ﬁ<r,}> +ﬁ(r,m> +S(r,f)

< (k+4)T(r.f) + S(r.f). (3.1)
From Lemma 2.6, if f(z) is a transcendental meromorphic function, we get
(n—k-1)T(r.f) < (k+4)T(r,f) + S(r,f),
which is a contradiction with n > 2k + 6. If f(z) is a transcendental entire function, we get
nT(r.f) < T(r,F) <2T(r.f) + S(r.f);
which is a contradiction with 7 > 3.
4 Proof of Theorem 1.2

From Theorem 1.1, we just need to prove the case that n = 2. Suppose contrary to the
assertion that £(2)%f¥)(z + ) — a(z) has finitely many zeros, where a(z) is an entire function
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with p(a) < p(f). Then from the Hadamard factorization theorem, we have
F@* Pz +¢) - alz) = H(z)e??, (4.1)

where H(z), Q(z) are non-zero polynomials and deg Q < p(f). Differentiating (4.1) and
eliminating e2®, we obtain

f@F(@f) =q" ) (4.2)
where

Fz.f) =2 @f “(z + OH(2) + HRf @f “V(z +0) - p*@)f (2)f Wiz + o),
and

P'@=H@+H@Q @), q'(2)=d(2H(2)-alz)H (2) - a(z)H(z)Q (2).
We affirm that F(z,f) cannot vanish identically. Indeed, if F(z,f) = 0, then

a'(2)H(z) — a(2)H'(2) — a(z)H(2)Q (2) = 0,

which implies that

4@ H()

a0 He ~ @

By integrating the above equation, we have

a(z) _ AEQ(Z),

H(z)

where A is a non-zero constant. Since a(z) is an entire function with p(a) < p(f) and
H(z) is a non-zero polynomial. Thus, we get degQ < p(f). Therefore f(z)>f®(z + ¢) =
(A +1)H(z)e??, from Lemma 2.1 and Lemma 2.5 we get

H(z)e??
fOz+c)
= O(r*D7) + T(r,f) + S(r, ), (4.3)

2T f) = T(r, ) +0()

which contradicts the assumption that f(z) is transcendental of finite order p(f). From
(4.2), we get

T(rf QF (@) = S0-1). (4.4)
From the Clunie lemma [19, Theorem 2.4.2], we get
m(r, F(z,f)) =S(r.f), (4.5)

obviously, F(z,f) is an entire function. Thus, from (4.4) and (4.5), we get T(r,f) = S(r,f),
which is a contradiction.
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5 Proof of Theorem 1.3

If d(z) # 0 is a Borel exceptional polynomial of f(z), thus the value 1 is a Borel exceptional
value of %, if d(z) = 0, then the value 0 is a Borel exceptional value of f(z), then f(z) must
have positive integer order [2, p.106, Corollary]. Without loss of generality, assume that
p(f) = s, s is a positive integer, then the transcendental entire function f(z) can be written
asf(z) =d(z)+ h(z)e*® , where « is a nonzero constant and /(z) is a nonzero entire function
with A(h) < p(h) < p(f) = s. Hence,

flz+c)=d(z+c) +h(z+ )’ = d(z+c)+ I (2)e*?, (5.1)
where
hl(Z) _ h(Z+ C)ea(Cslzs’lc+Cszzs’2cz+m+Cg’lzcs’1+cs). (52)

From Theorem 1.2, we need to prove the case of # = 1 only. Suppose that f(z)f®(z + ¢) - b
has finitely many zeros, from the Hadamard factorization theorem, then we assume that

F@f Pz +c)-b=A)e, (5.3)

where A(z) is an entire function with order p(A) < s and has finitely many zeros, 8 is a
nonzero constant. Thus, we get

(d(@) + h(@)e* ) [dz + ¢) + m(@)e** |“ = b = A(2)e?. (5.4)

Let B (z) = sahi(2)2°™" + H; (2), B2 (2) = saBy(2)z° + B{(2), ..., Bk(2) = saBi_1(2)z" " + B} _,(2).
Thus, we have

[1(2)d® (z + ¢) + d(2)Bi(2) |e** + h(z)Bi(2)e*** - A(2)ef” =b—d(2)d®(z +¢).  (5.5)

Since d(z) is a nonzero polynomial then we get d(z)d®P(z + ¢) — b # 0. Let f; =

[h(z)d(k)(z+c)+d(z)Bk( )]e _ Bk z)ez"‘zs )eﬂzs _ .
b—d(z)d® (z+c) f b d(2)d® (z+c) fS b— d(z d(k (z+c) Thus, we getﬁ +f2 +f3 = 1. Since

o(h(2)) <s, p(A(z)) < s, which 1mp11es that p(Bk(2)) < s, we get fi, f2, f3 are not constants,

which is a contradiction with Lemma 2.8. The proof of Theorem 1.3 is completed.

6 Proof of Theorem 1.6

(k
Let y 1= 2 E000

f@)"+ a(z)f(k) (z+¢) + b(z) has infinitely many zeros. If f is a transcendental entire function

. We proceed to proving that ¥ + 1 has infinitely many zeros, thus

with finite order, we will prove

T(r,y) > n-1)T(r,f)+Sr.f). (6.1)

Applying the first main theorem and Lemma 2.3, Lemma 2.5, we observe that

10 @) =T(r o o) OO

(z+¢)+b(2)
<T(r,y) + T(r,a)f®(z + c) + b(z)) + O(1)
< T(r¥) + T(r.f) + S(r.f). (6.2)
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From (6.2), we easily obtain (6.1). We will estimate the zeros and poles of ¥,

N(r,¥) < N(r, }) + S(rf), 63)

and

— 1 — 1
N(r, J) < N(r, PETCIE b(z)) +8(r,f). (6.4)

Using the second main theorem, Lemma 2.3, Lemma 2.5, we get

(n=1T(r.f) < T(r,¥)+S(r.f)
< N(r 1//)+]T](r i) +ﬁ(r
< f " f

()50
1

’ ﬁ(r’ a@)f®(z+c)+ b(z))
1) +8(r,.f). (6.5)

1
v +1

>+S(r,f)

+S(r.f)

<2T(r,f) +N<r, Wl+

Since n > 4, then (6.5) implies that ¢ + 1 has infinitely many zeros. In what follows, we
will prove that if f is a transcendental entire function with finite order and b(z) # 0, then
n can be reduced to n > 3.

We suppose that f(2)" + a(z)f ®)(z + c) + b(z) has finitely many zeros, from the Hadamard
factorization theorem, then there exist two polynomials r(z) and p(z) such that

f@)" +a@)f®(z+c) + bz) = r(z)e’?. (6.6)

Differentiating (6.6) and eliminating e”', we obtain

r'(2)
r(z2)

flz)" <nf’(z) - (p/(z) + > f(z)) +d @)fP(z+c) + al2)f *V(z+c) + b (2)

Y @ (k)
= (p (2) + @ )(a(z)f (z+c)+ b(z)). (6.7)
If nf’ — (p/ + ' /r)f =0, then f(2)" = Cr(z)e?@. Thus, from (6.6), we get

Cg 1 F(2)" +az)f®(z+c) + b(z) = 0. (6.8)

Thus C = 1, otherwise, nT(r,f) = T(r,a(z)f®(z + ¢) + b(z)) < T(r,f) + S(r,f), which is a
contradiction with # > 3. Hence a(z)f®(z + ¢) + b(z) = 0, which is also a contradiction.
Thus nf’ - (p' +7'/r)f # 0. Since n > 3, we may apply the Clunie lemma [19, Lemma 2.4.2],
Lemma 2.4 and (6.7) to conclude that

T<r, nf' — <p’ + %)/) =S(r.f)
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and

oo+ 2)) s

Combining the above two estimates, we obtain T(r,f) = S(r,f), a contradiction.
It remains to prove the case n = 2 and b(z) = 0. Thus (6.7) now takes the form

@) (2f’<z) - (p’(z) . @)ﬂz))
r(z)

- A @ N+ ) - a@f Vo) + <p (2) + %) (a(z)f(k)(z + c)) (6.9)

Similarly as the case n > 3, we also conclude that ¢ := 2f" — (¢’ + r'/r)f # 0. We have
T(r,$() = S(r.f).

Differentiating ¢(z), we obtain

1 ’ r ! / r ' _ /_¢, _(rb/ 4 ’ r
A e e e T T G (S8 )

and so

R R AT

This can be written as

) A5 () )e) e o

We proceed to show that N(r,1/f) = S(r,f). Suppose that zy is a zero of f with multiplicity .
If k > 2, then zy is a zero of ¢, the contribution to N (r, 1/f) is S(r,f). If the zero of f is simple
and we must have that p’ + ’7/ + 2% vanishes at zy, which implies N(r, }) = S(r,f). Therefore,

~
~—
|
~
N
1
e

we can assume that f(z) takes the form f(z) = ¢(2)e®?, where ¢(z) is a polynomial and
N(r, é) = S8(r,f) and p(p) < s. Substituting this expression into (6.6), we obtain

0(2)% + a(2)[p(z + )e* @Y = H(2)e"? = g(z)e"”

where g(z) is an entire function with p(g) <s, 8 is a constant. If 8 = 2«, which implies
that [p(z + ¢)e*®" 1% = 0, which is impossible. If 8 = a, then ¢(z) = 0, which also is
impossible Thus, 8 # 2 and B # «, from Lemma 2.9, we get ¢(z)%¢*** = 0, a(z)[¢(z +
¢)e?@ 9’10 = 0 and g(z)eﬁzs = 0, which are impossible. Thus, we have completed the proof
of Theorem 1.6.

Remark 4 Inequality (6.1) is not valid for f(z) is a transcendental meromorphic func-
tion, which can be seen by f(z) = tanz, thus ¢ := ta“;;;’; 1 tan” - Thus, T(r,vy) =
(n=2)T(r,f) + S(r.f).
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