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Abstract
In this paper, we shall study the existence and uniqueness of solutions for the
multi-point boundary value problem of fractional differential equations
Dα
0+u(t) + f (t,u(t)) = 0, 0 < t < 1, 2 < α ≤ 3, with boundary conditions u(0) = 0,

Dβ

0+u(0) = 0, Dβ

0+u(1) =
∑m–2

i=1 biD
β

0+u(ξi), 1 ≤ β ≤ 2, involving Riemann-Liouville

fractional derivatives Dα
0+ and Dβ

0+ . We use the nonlinear alternative of Leray-Schauder
and the Banach contraction mapping principle to obtain the existence and
uniqueness of solutions. Some examples are given to show the applicability of our
main results.
MSC: 34A08; 34K10

Keywords: fractional differential equations; multi-point boundary value problem;
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1 Introduction
Fractional calculus is the study and application of arbitrary order differential and integral
theory; see [–]. It is consistent with integer order calculus and a natural extension of
the integer order calculus. Fractional differential equations are developed accompanied
by fractional calculus. In recent years, with the wide applications of fractional calculus in
the fields of physical, mechanical, biological, ecological, engineering, etc., the theory of
fractional calculus has been paid more and more attention. Especially the study of frac-
tional differential equations as abstracted from practical problems attractsmuch attention
of many mathematicians.
Boundary value problems for fractional differential equations belong to the impor-

tant issues for the theory of fractional differential equations. A lot of papers focused on
two-point boundary value problems of fractional ordinary differential equations [–],
boundary value problems of fractional difference equations [, ], and problems of frac-
tional functional differential equations [–].
However, the results dealing with multi-point boundary value problems of fractional

differential equations are relatively scarce [–].
In , Li et al. [] considered the existence and uniqueness for nonlinear fractional

differential equation of the type

Dα
+u(t) + f

(
t,u(t)

)
= ,  < t < ,  < α ≤ ,
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where Dα
+ is the standard Riemann-Liouville fractional order derivative, subject to the

boundary conditions

u() = , Dβ

+u() = aDβ

+u(ξ ), ≤ β ≤ .

They obtained the existence and multiplicity results of positive solutions by using some
fixed point theorems.
In , Yang et al. [] discussed the existence and uniqueness for amulti-point bound-

ary value problem of the fractional differential equation

Dα
+u(t) + f

(
t,u(t)

)
= ,  < t < ,  < α ≤ ,

u() = , Dβ

+u() =
m–∑
i=

biDβ

+u(ξi),  ≤ β ≤ ,

where Dα
+ and Dβ

+ are the Riemann-Liouville fractional derivatives. By fixed point theo-
rem, they obtained the existence and uniqueness results.
In the previous related studies, scholars mostly used a fixed point theorem in cones and

the Schauder fixed point theorem to solve some classes of boundary value problems. On
the other hand, the study of these classes of problems has been only limited to the low
order.
Motivated by their excellent results and the methods, in this paper, we investigate the

existence and uniqueness for the multi-point fractional differential equation

Dα
+u(t) + f

(
t,u(t)

)
= ,  < t < , (.)

u() = , Dβ

+u() = , Dβ

+u() =
m–∑
i=

biDβ

+u(ξi), (.)

where Dα
+ and Dβ

+ are the Riemann-Liouville fractional derivatives,  < α ≤ ,  ≤ β ≤ 
with α ≥ β + ,m ∈N

+ with m > ,  < ξ < ξ < · · · < ξm– < .
To the best of our knowledge, no one has studied the existence of positive solutions for

boundary value problems (.) and (.). Ourmain results of this paper are in extending the
results in [] from low order to high order case. Our problem allows the boundary con-
dition to depend on the lower fractional derivativeDβ

+ , which leads to extra difficulties. In
particular, the condition Dβ

+u() =  involves not only the properties of the function u(t)
at zero but also the slope of tangent which pass through zero if β = . Key tools in find-
ing our main results are the nonlinear alternative of the Leray-Schauder and the Banach
contraction mapping principle.
The plan of this paper is as follows. In Section , we shall give some definitions and lem-

mas to prove our main results. In Section , we establish the existence and uniqueness
of solutions to multi-point boundary value problems (.) and (.) by the Banach con-
traction mapping principle, and we investigate the existence of solutions for (.) and (.)
by the nonlinear alternative of Leray-Schauder. In Section , examples are presented to
illustrate the main results.
In order to facilitate our study, we make the following assumptions:
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(H) f : [, ]× [,∞)→ [,∞) is a continuous function;
(H) bi ≥  (i = , , . . . ,m – ),

∑m–
i= bi �= , and A =

∑m–
i= biξα–β–

i < .

2 Preliminaries
For the convenience of the reader, we present here some necessary definitions and lemmas
from the fractional calculus theory.

Definition. ([]) The fractional integral of orderα (α > ) of a function f : (, +∞) →R

is given by

Iα+ f (t) =


�(α)

∫ t



f (s)
(t – s)–α

ds,

where �(·) is the gamma function, provided that the right side is point-wise defined on
(,+∞).

Definition . ([]) The Riemann-Liouville fractional derivative of order α >  of a con-
tinuous function f : (, +∞)→R is given by

Dα
+ f (t) =


�(n – α)

(
d
dt

)n ∫ t


(t – s)n–α–f (s)ds,

where �(·) is the gamma function, provided that the right side is point-wise defined on
(,+∞) and n = [α] + , [α] stands for the largest integer less than α.

Lemma . ([]) Let α > –, β >  and t > . Then

Dβ

+ t
α =

�(α + )
�(α – β + )

tα–β .

Lemma . ([]) Assume that u(t) ∈ J(, )∩ L(, ), Dα
+u ∈ J(, )∩ L(, ) with the

Riemann-Liouville fractional derivative of order α > , then

Iα+D
α
+u(t) = u(t) + ctα– + ctα– + · · · + cNtα–N ,

where ci ∈ R, i = , , . . . ,N , and N is the smallest integer greater than or equal to α.

Lemma . For Riemann-Liouville fractional derivatives, we have

Dβ

+

∫ t


(t – s)α–f

(
s,u(s)

)
ds =

�(α)
�(α – β)

∫ t


(t – s)α–β–f

(
s,u(s)

)
ds,

where f ∈ C[, ], α, β are two constants with α > β ≥ .

Proof From

Dα
+ I

α
+ f (t) = f (t), Iα+ I

β

+ f (t) = Iα+β

+ f (t),
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we get

Dβ

+

∫ t


(t – s)α–f

(
s,u(s)

)
ds =Dβ

+�(α)


�(α)

∫ t


(t – s)α–f

(
s,u(s)

)
ds

=Dβ

+�(α)I
α
+ f

(
t,u(t)

)
= �(α)Dβ

+ I
α
+ f

(
t,u(t)

)
= �(α)Dβ

+ I
β

+ I
α–β

+ f
(
t,u(t)

)
= �(α)Iα–β

+ f
(
t,u(t)

)
= �(α)


�(α – β)

∫ t


(t – s)α–β–f

(
s,u(s)

)
ds.

Then we obtain the result. The proof is complete. �

The following lemma is fundamental in proofs of our main results.

Lemma . ([]) Let E be a Banach space with C ⊆ E closed and convex. Assume U is a
relatively open subset of C with  ∈U and T :U → E is a completely continuous operator,
T(U) is bounded. Then either

(c) T has a fixed point in U ; or
(c) there exist a u ∈ ∂U and λ ∈ (, ) with u = λTu.

3 Main results
For convenience, assume E = C[, ] is a Banach space with the maximum norm ‖x‖ =
max≤t≤ |x(t)| for x ∈ C[, ]. Let r >  and define Xr = {u : u ∈ C[, ],‖u‖ < r}, which is
the subset of C[, ]. LetM =max{|f (t,u)| : (t,u) ∈ [, ]× [–r, r]}.

Lemma . Let (H) and (H) hold. Then the boundary value problem of the following
fractional differential equation:

Dα
+u(t) + f

(
t,u(t)

)
= ,  < t < ,  < α ≤ ,

u() = , Dβ

+u() = , Dβ

+u() =
m–∑
i=

biDβ

+u(ξi),  ≤ β ≤ ,

has a unique solution:

u(t) = –
∫ t




�(α)

(t – s)α–f
(
s,u(s)

)
ds +


( –A)�(α)

∫ 


( – s)α–β–tα–f

(
s,u(s)

)
ds

–


( –A)�(α)

m–∑
i=

bi
∫ ξi


(ξi – s)α–β–tα–f

(
s,u(s)

)
ds.

Proof By Definition . and Lemma ., we get

u(t) = –
∫ t




�(α)

(t – s)α–f
(
s,u(s)

)
ds + ctα– + ctα– + ctα–

is the general solution of equation (.). By boundary condition u() = , we find that

c = .
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In view of Lemma . and Dβ

+u() = , we have

Dβ

+u(t) =Dβ

+

(
–

∫ t




�(α)

(t – s)α–f
(
s,u(s)

)
ds

)
+ c

�(α)
�(α – β)

tα–β–

+ c
�(α – )

�(α – β – )
tα–β–.

For α ∈ (, ], β ∈ [, ] and α ≥ β + , we have α – β –  ∈ [–, ]. Thus c = . By

Dβ

+u() =
m–∑
i=

biDβ

+u(ξi),

we get

c =


( –A)�(α)

∫ 


( – s)α–β–f

(
s,u(s)

)
ds

–


( –A)�(α)

m–∑
i=

bi
∫ ξi


(ξi – s)α–β–f

(
s,u(s)

)
ds.

Then the boundary value problem has a unique solution

u(t) = –
∫ t




�(α)

(t – s)α–f
(
s,u(s)

)
ds +


( –A)�(α)

∫ 


( – s)α–β–tα–f

(
s,u(s)

)
ds

–


( –A)�(α)

m–∑
i=

bi
∫ ξi


(ξi – s)α–β–tα–f

(
s,u(s)

)
ds.

The proof is completed. �

Set f (t,u(t)) = g(t) in Lemma .. Since f : [, ] × [, +∞) → [, +∞) is a continuous
function, we deduce that function u is a solution of the boundary value problem (.) and
(.) if and only if it satisfies

u(t) = –
∫ t




�(α)

(t – s)α–f
(
s,u(s)

)
ds +


( –A)�(α)

∫ 


( – s)α–β–tα–f

(
s,u(s)

)
ds

–


( –A)�(α)

m–∑
i=

bi
∫ ξi


(ξi – s)α–β–tα–f

(
s,u(s)

)
ds.

Let T : Xr → E be the operator defined by

Tu(t) = –
∫ t




�(α)

(t – s)α–f
(
s,u(s)

)
ds

+


( –A)�(α)

∫ 


( – s)α–β–tα–f

(
s,u(s)

)
ds

–


( –A)�(α)

m–∑
i=

bi
∫ ξi


(ξi – s)α–β–tα–f

(
s,u(s)

)
ds.
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Lemma . T : Xr → E is a completely continuous operator.

Proof For f (t,u) continuous, it is easy to see that T : Xr → E is continuous.
For  < α ≤ ,  ≤ β ≤  and Xr is bounded, then for any u ∈ Xr and t ∈ [, ],

∣∣Tu(t)∣∣ ≤
∣∣∣∣–

∫ t




�(α)

(t – s)α–f
(
s,u(s)

)
ds

+


( –A)�(α)

∫ 


( – s)α–β–tα–f

(
s,u(s)

)
ds

–


( –A)�(α)

m–∑
i=

bi
∫ ξi


(ξi – s)α–β–tα–f

(
s,u(s)

)
ds

∣∣∣∣
≤ M

�(α)

∫ t


(t – s)α– ds +

Mtα–

( –A)�(α)

∫ 


( – s)α–β– ds

+
Mtα–

( –A)�(α)

m–∑
i=

bi
∫ ξi


(ξi – s)α–β– ds

≤ M
( –A)�(α)

(
 –A

α
+


α – β

+


α – β

m–∑
i=

biξα–β

i

)
.

Thus

‖Tu‖ ≤ M
( –A)�(α)

(
 –A

α
+


α – β

+


α – β

m–∑
i=

biξα–β

i

)
for all u ∈ Xr .

Hence {Tu,u ∈ Xr} is bounded.
On the other hand, we will show that for any given ε > , there exists

δ =min

{
,

(
ε�(α + )( –A)(α – β)

M(( –A)(α – β) + α + α
∑m–

i= biξα–β

i )α

) 
α–

}
,

for any u ∈ Xr , t, t ∈ [, ], with  < t – t < δ, we get

∣∣Tu(t) – Tu(t)
∣∣ < ε.

Thus T : Xr is completely continuous.
In fact, for any u ∈ Xr , t, t ∈ [, ] with t < t, we have

∣∣Tu(t) – Tu(t)
∣∣

≤
∣∣∣∣
∫ t




�(α)

(t – s)α–f
(
s,u(s)

)
ds –

∫ t




�(α)

(t – s)α–f
(
s,u(s)

)
ds

∣∣∣∣
+

∣∣∣∣ tα–
( –A)�(α)

∫ 


( – s)α–β–f

(
s,u(s)

)
ds

–
tα–

( –A)�(α)

∫ 


( – s)α–β–f

(
s,u(s)

)
ds

∣∣∣∣

http://www.advancesindifferenceequations.com/content/2014/1/151
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+
∣∣∣∣ tα–
( –A)�(α)

m–∑
i=

bi
∫ ξi


(ξi – s)α–β–f

(
s,u(s)

)
ds

–
tα–

( –A)�(α)

m–∑
i=

bi
∫ ξi


(ξi – s)α–β–f

(
s,u(s)

)
ds

∣∣∣∣
≤M

∣∣∣∣
∫ t



(t – s)α– – (t – s)α–

�(α)
ds +

∫ t

t

(t – s)α–

�(α)
ds

∣∣∣∣
+
M|tα– – tα– |
( –A)�(α)

∫ 


( – s)α–β– ds

+
M

∑m–
i= bi|tα– – tα– |
( –A)�(α)

∫ ξi


(ξi – s)α–β– ds

=
M(tα – tα )
�(α + )

+
M|tα– – tα– |
( –A)�(α)

(


α – β
+


α – β

m–∑
i=

biξα–β

i

)

=
M(tα – tα )
�(α + )

+
M( +

∑m–
i= biξα–β

i )
(α – β)( –A)�(α)

∣∣tα– – tα–
∣∣.

() If δ ≤ t < t < , by the mean value theorem, we have

tα – tα ≤ α(t – t), tα– – tα– ≤ (α – )(t – t)≤ α(t – t).

() If  ≤ t < δ, t < δ, then

tα – tα ≤ tα < (δ)α , tα– – tα– ≤ tα– < (δ)α–.

So

max
{
tα– – tα– , tα – tα

} ≤ αδα–.

Thus

∣∣Tu(t) – Tu(t)
∣∣ < M(( –A)(α – β) + α + α

∑m–
i= biξα–β

i )α

�(α + )( –A)(α – β)
δα– < ε.

By the Arzela-Ascoli theorem, we conclude that T : Xr → E is a completely continuous
operator. �

Theorem . Assume that there exists a constant k >  such that

∣∣f (t,u) – f (t, v)
∣∣ ≤ k|u – v|,

where u, v ∈R. Then the boundary value problem (.)-(.) has a unique solution on [, ],
if

k(( –A)(α – β) + α + α
∑m–

i= biξα–β

i )
( –A)(α – β)�(α + )

< 

is satisfied.

http://www.advancesindifferenceequations.com/content/2014/1/151
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Proof By the definition of T , we have

∣∣(Tu)(t) – (Tv)(t)
∣∣ ≤ 

�(α)

∫ t


(t – s)α–

∣∣f (s,u(s)) – f
(
s, v(s)

)∣∣ds
+


( –A)�(α)

∫ 


( – s)α–β–tα–

∣∣f (s,u(s)) – f
(
s, v(s)

)∣∣ds
+


( –A)�(α)

m–∑
i=

bi
∫ ξi


(ξi – s)α–β–tα–

∣∣f (s,u(s)) – f
(
s, v(s)

)∣∣ds

≤ k‖u – v‖
(


�(α)

∫ t


(t – s)α– ds +


( –A)�(α)

∫ 


( – s)α–β– ds

+


( –A)�(α)

m–∑
i=

bi
∫ ξi


(ξi – s)α–β– ds

)

=
k[( –A)(α – β) + α + α

∑m–
i= biξα–β

i ]
( –A)(α – β)�(α + )

‖u – v‖.

Hence, by the Banach contraction mapping principle, boundary value problems (.) and
(.) have a unique solution on [, ]. The proof is completed. �

Now we study the existence of solutions for the boundary value problem of (.)-(.)
by the nonlinear alternative of Leray-Schauder.

Theorem . Suppose that the following condition are satisfied:

(a) There exist a nonnegative function g ∈ C[, ] such that g >  on the subset of [, ], and
a nondecreasing function h : [,∞) → [,∞) such that |f (t,u)| ≤ g(t)h(‖u‖), where
(t,u) ∈ [, ]×R.

(a)

sup
r∈(,∞)

r
gh(r)

> ,

where

g =


�(α)

∫ 


( – s)α–g(s)ds +


( –A)�(α)

∫ 


( – s)α–β–g(s)ds

+


( –A)�(α)

m–∑
i=

bi
∫ ξi


(ξi – s)α–β–g(s)ds.

Then boundary value problem (.)-(.) has at least one solution.

Proof In view of (a) and by the definition of supremum, we can choose a constant r ∈
(,∞) such that

r
gh(r)

> . (.)

http://www.advancesindifferenceequations.com/content/2014/1/151
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By Lemma ., we know thatT : Xr → E is completely continuous andT(Xr ) is bounded.
Suppose (c) in Lemma . holds, i.e. there exist a λ ∈ (, ), u ∈ ∂Xr such that

u = λTu.

Then

u(t) = λ

(
–


�(α)

∫ t


(t – s)α–f

(
s,u(s)

)
ds +


( –A)�(α)

∫ 


( – s)α–β–tα–f

(
s,u(s)

)
ds

–


( –A)�(α)

m–∑
i=

bi
∫ ξi


(ξi – s)α–β–tα–f

(
s,u(s)

)
ds

)
. (.)

In view of (a), (a), (.), and ‖u‖ = r, we obtain

r = ‖u‖ ≤ h(r)
�(α)

∫ 


( – s)α–g(s)ds +

h(r)
( –A)�(α)

∫ 


( – s)α–β–g(s)ds

+
h(r)

( –A)�(α)

m–∑
i=

bi
∫ ξi


(ξi – s)α–β–g(s)ds

≤ gh(r).

Hence we get r
gh(r)

≤ , which is in contradiction with (.). Therefore, Lemma . guar-
antees that T has at least a fixed point u ∈ Xr . Then boundary value problem (.)-(.)
has at least one solution. The proof is completed. �

4 Examples
In this section, we will present some examples to illustrate our main results.

Example . Consider the following boundary value problem:

D


+u(t) +

u(t)


+ sin t +  = ,  < t < , (.)

u() = , D


+u() = , D



+u() =

∑
i=

biD


+u(ξi), (.)

where b = 
 , b =


 , ξ =


 , ξ =


 .

Here

α =


, β =



, f (t,u) =

u


+ sin t + , for (t,u) ∈ [, ]× [,∞].

It is clear that |f (t,u) – f (t, v)| = 
 |u – v| and

k(( –A)(α – β) + α + α
∑m–

i= biξα–β

i )
( –A)(α – β)�(α + )

=

 (( –


 )(


 –


 ) +


 +


 × 

 )
( – 

 )(

 –


 )�(


 )× 



=



√

π
< .

By Theorem ., we see that boundary value problem (.)-(.) has a unique solution.

http://www.advancesindifferenceequations.com/content/2014/1/151
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Example . Consider the following boundary value problem:

D


+u(t) + tu(t) sinu(t) = ,  < t < , (.)

u() = , D


+u() = , D



+u() =

m–∑
i=

biD


+u(ξi), (.)

where b = 
 , ξ =


 .

Here α = 
 , β = 

 . Set g(t) = t and h(u) = u. It is easy to see that

∣∣f (t,u)∣∣ = ∣∣tu sinu∣∣ ≤ tu, for (t,u) ∈ [, ]× [,∞).

By simply calculating, we get

g =


�(α)

∫ 


( – s)α–g(s)ds +


( –A)�(α)

∫ 


( – s)α–β–g(s)ds

+


( –A)�(α)

m–∑
i=

bi
∫ ξi


(ξi – s)α–β–g(s)ds

=
,

,
√

π
≈ ..

Now

sup
r∈(,∞)

r
gh(r)

= sup
r∈(,∞)

r
,r
,

√
π

= +∞.

Hence by Theorem ., we obtain the result that boundary value problem (.)-(.) has
at least a solution.
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