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Abstract
In this paper, we employ the complex method to obtain all meromorphic solutions of
an auxiliary ordinary differential equation at first, and then find all meromorphic
general solutions of in combination the Newell-Whitehead equation, the NLS
equation, and the Fisher equation with degree three. Our result shows that all rational
and simply periodic exact solutions of the combined the Newell-Whitehead equation,
NLS equation, and Fisher equation with degree three are solitary wave solutions, and
the method is simpler than other methods.
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1 Introduction andmain results
Nonlinear partial differential equations (NLPDEs) are widely used as models to describe
many important dynamical systems in various fields of sciences, particularly in fluid
mechanics, solid state physics, plasma physics, and nonlinear optics. Exact solutions of
NLPDEs of mathematical physics have attracted significant interest in the literature. Over
the last years, much work has been done on the construction of exact solitary wave so-
lutions and periodic wave solutions of nonlinear physical equations. Many methods have
been developed by mathematicians and physicists to find special solutions of NLPDEs,
such as the inverse scattering method [], the Darboux transformation method [], the
Hirota bilinear method [], the Lie group method [], the bifurcation method of dynamic
systems [–], the sine-cosine method [], the tanh-function method [, ], the Fan-
expansionmethod [], and the homogeneous balancemethod []. Practically, there is no
unified technique that can be employed to handle all types of nonlinear differential equa-
tions. Recently, the complex method was introduced by Yuan et al. [, ]. It is shown
that the complex method provides a powerful mathematical tool for solving a great many
nonlinear partial differential equations in mathematical physics.
Recently, Yuan et al. [] derived all traveling wave exact solutions by using the complex

method for a type of ordinary differential equations (ODEs):

Aw′′ + Bw +Cw +D = , ()

where A, B, C, and D are arbitrary constants.
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In order to state this result, we need some concepts and notations.
A meromorphic function w(z) means that w(z) is holomorphic in the complex plane C

except for poles. α, b, c, ci and cij are constants, which may be different from each other
in different places. We say that a meromorphic function f belongs to the classW if f is an
elliptic function, or a rational function of eαz , α ∈C, or a rational function of z.

Theorem . [] Suppose that AC �= , then all meromorphic solutions w of an Eq. ()
belong to the class W . Furthermore, Eq. () has the following three forms of solutions:
(I) The elliptic function solutions

wd(z) = ± 


√
–
A
C

(–℘ + c)(℘c + ℘c + ℘ ′d –℘g – cg)
((c – g)℘ + c – cg)℘ ′ + (℘ + c℘ – g℘ – cg)d

.

Here B = , D = , g = , d = c – gc, g, and c are arbitrary.
(II) The simply periodic solutions

ws,(z) = α

√
–

A
C

(
coth

α


(z – z) – coth

α


(z – z – z) – coth

α


z

)

and

ws,(z) = α

√
–

A
C

tanh
α


(z – z),

where z ∈ C, B = Aα(  +


 sinh α
 z

), D =
√
– A

C
tanh α

 z
sinh α

 z
, z �=  in the former formula, or

B = Aα

 , D = .
(III) The rational function solutions

wr,(z) = ±
√
–
A
C


z – z

and

wr,(z) = ±
√
–
A
Cz

(
z

z – z
–

z
z – z – z

– 
)
,

where z ∈C, B = , D =  in the former case, or given by z �= , B = A
z
, D =∓C( –ACz

)/.

Equation () is an important auxiliary equation, becausemany nonlinear evolution equa-
tions can be converted to Eq. () using the travelingwave reduction. For instance, themod-
ified ZK equation, the modified KdV equation, the nonlinear Klein-Gordon equation, and
the modified BBM equation can be converted to Eq. () [].
In this paper, we employ the complex method to obtain first all meromorphic solutions

of Eq. () below,

Aw′′ + Bw′ +Cw +Dw = , ()

where A, B, C, D are arbitrary constants.
Our main result is the following theorem.
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Theorem. Suppose that AD �= , then Eq. () is integrable if and only if B = ,± √


√
AC.

Furthermore, the general solutions of Eq. () are of the following form.
(I) []When B = , we have the elliptic general solutions of Eq. (),

wd,(z) = ±
√
–
A
D

℘ ′(z – z : g, )
℘(z – z : g, )

,

where z and g are arbitrary. In particular, it degenerates to the simply periodic solutions
and rational solutions,

ws,(z) = α

√
–

A
D

tanh
α


(z – z)

and

wr(z) = ±
√
–
A
D


z – z

,

where C = Aα

 and z ∈ C.
(II)When B =± √



√
AC, we have the general solutions of Eq. (),

wg,(z) = ± 

exp

{
∓ √



√
C
A
z
}℘ ′(

√
–D

C exp{∓ √


√
C
A z} – s; g, )

℘(
√
–D

C exp{∓ √


√
C
A z} – s; g, )

,

where ℘(s : g, ) is the Weierstrass elliptic function, and both s and g are arbitrary con-
stants. In particular, wg,(z) degenerates to the one parameter family of solutions,

wf ,(z) = ±
√
–
C
D



 – exp{∓ √


√
C
A (z – z)}

,

where z ∈C.

This paper is organized as follows: In the next section, the preliminary lemmas and the
complex method are given. The proof of Theorem . will be given in Section . All exact
solutions of the auxiliary Eq. () are derived by complex method. In Section , we obtain
all exact solutions of the Newell-Whitehead equation, the nonlinear Scrödinger equation
(NLS), and the Fisher equation, which can be converted to Eq. () making use of the trav-
eling wave reduction. Some conclusions and discussions are given in the final section.

2 Preliminary lemmas and the complexmethod
In order to give our complex method and the proof of Theorem ., we need some nota-
tions and results.
Set m ∈ N := {, , , . . .}, rj ∈ N = N ∪ {}, r = (r, r, . . . , rm), j = , , . . . ,m. We define a

differential monomial denoted by

Mr[w](z) :=
[
w(z)

]r[w′(z)
]r[w′′(z)

]r · · · [w(m)(z)
]rm .
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p(r) := r + r + · · · + rm is called the degree of Mr[w]. A differential polynomial is defined
by

P
(
w,w′, . . . ,w(m)) :=∑

r∈I
arMr[w],

where ar are constants, and I is a finite index set. The total degree is defined by
degP(w,w′, . . . ,w(m)) :=maxr∈I{p(r)}.
We will consider the following complex ordinary differential equations:

P
(
w,w′, . . . ,w(m)) = bwn + c, ()

where b �= , c are constants, n ∈N.
Let p,q ∈ N. Suppose that Eq. () has a meromorphic solution w with at least one pole,

we say that Eq. () satisfies the weak 〈p,q〉 condition if substituting the Laurent series

w(z) =
∞∑

k=–q

ckzk , q > , c–q �=  ()

into Eq. (), we can determine p distinct Laurent singular parts as below,

–∑
k=–q

ckzk .

In order to give the representations of elliptic solutions, we need some notations and
results concerning elliptic functions [].
Letω,ω be two given complex numbers such that Im ω

ω
> , L = L[ω, ω] be discrete

subset L[ω, ω] = {ω | ω = nω + mω,n,m ∈ Z}, which is isomorphic to Z × Z. The
discriminant is � =�(c, c) := c – c and we have

sn = sn(L) :=
∑

ω∈L\{}


ωn .

The Weierstrass elliptic function ℘(z) := ℘(z, g, g) is a meromorphic function with
double periods ω, ω, satisfying the equation

(
℘ ′(z)

) = ℘(z) – g℘(z) – g, ()

where g = s, g = s, and �(g, g) �= .

Lemma . [, ] The Weierstrass elliptic functions ℘(z) := ℘(z, g, g) have two succes-
sive degeneracies and we have the addition formula:
(I)Degeneracy to simply periodic functions (i.e., rational functions of one exponential ekz)

according to

℘
(
z, d, –d) = d –

d


coth
√
d

z ()

if one root ej is double (�(g, g) = ).
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(II) Degeneracy to rational functions of z according to

℘(z, , ) =

z

if one root ej is triple (g = g = ).
(III)We have the addition formula

℘(z – z) = –℘(z) –℘(z) +



[
℘ ′(z) +℘ ′(z)
℘(z) –℘(z)

]

. ()

In the proof of our main result, the following lemmas are very useful, which can be
deduced by Theorem  in [].

Lemma . [] The differential equation

Aw′′ + Bw +Cw = 

has elliptic solutions, a simply periodic solution, and a rational solution with pole at z = ,

w(z) = ± 


√
–
A
C

℘ ′(z : g, )
℘(z : g, )

,

w(z) = α

√
–

A
C

tanh
α


z

and

w(z) = ±
√
–
A
C


z
,

respectively, where ℘(z : g, ) is the Weierstrass elliptic function with g =  and g arbi-
trary and B = Aα

 .

By the above lemmas and results, we can give a new method below, let us call it the
complex method, to find exact solutions of some PDEs.
Step . Substituting the transform T : u(x, t)→ w(z), (x, t)→ z into a given PDE gives a

nonlinear ordinary differential equation ().
Step . Substitute () into Eq. () to determine that the weak 〈p,q〉 condition holds, and

pass the Painlevé test for Eq. ().
Step . Find the meromorphic solutions w(z) of Eq. () with a pole at z = , which have

m –  integral constants.
Step . By the addition formula of Lemma . we obtain the general meromorphic

solutions w(z – z).
Step . Substituting the inverse transform T– into these meromorphic solutions

w(z – z), we get all exact solutions u(x, t) of the original given PDE.

3 Proof of Theorem 1.2
Proof Substituting () into Eq. () we have q = , p = , c– = ±

√
–A
E , c = ∓ 



√
–B
AE , c =

±
√
–


AC–B
A

√
AE

, c =±
√
–


AC–B
A√AE

, and

× c + B
(
B –

√


√
AC

)(
B +

√


√
AC

)
= .
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For the Laurent expansion () to be valid B satisfies this equation and c is an arbitrary
constant. Therefore, B = ,± √



√
AC. For otherB it would be necessary to add logarithmic

terms to the expansion, thus giving a branch point rather than a pole.
For B = , Eq. () is completely integrable by standard techniques and the solutions are

expressible in terms of elliptic functions (cf. []), i.e., by Lemmas . and ., the elliptic
general solutions of Eq. ()

wd,(z) = ±
√
–
A
D

℘ ′(z – z : g, )
℘(z – z : g, )

,

where z and g are arbitrary. In particular, it degenerates to the simply periodic solutions
and rational solutions,

ws,(z) = α

√
–

A
D

tanh
α


(z – z)

and

wr(z) = ±
√
–
A
D


z – z

,

where C = Aα

 and z ∈C.
For B = ± √



√
AC, we transform Eq. () into the second Painlevé type equation. In this

way we find the general solutions.
Setting w(z) = f (z)u(s), s = g(z), and substituting in Eq. (), we find that the equation for

u(s) is

–
A
D

(
g ′)u′′ =

u′g ′

D

{
A

f ′

f
+A

g ′′

g ′ + B
}
+
u
D

{
A
f ′′

f
+ B

f ′

f
+C

}
+ f u. ()

If we take f and g such that

A
f ′′

f
+ B

f ′

f
+C = , A

f ′

f
+A

g ′′

g ′ + B = , ()

then Eq. () for u is integrable. By (), one takes f (z) = exp{αz} and

g(z) = β exp

{
–
(
B
A
+ α

)
z
}
,

where α =∓ √


√
C
A , β

 = –D
C .

Thus Eq. () reduces to

u′′ = u. ()

Both Lemmas . and . show that the general solutions of Eq. () are of the form

u(s) = ± 


℘ ′(s – s; g, )
℘(s – s; g, )

,

where ℘(s) is the Weierstrass elliptic function, s and g are two arbitrary constants.
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Therefore, when B =± √


√
AC, by Lemma ., we have the general solutions of Eq. (),

wg,(z) = ± 

exp

{
∓ √



√
C
A
z
}℘ ′(

√
–D

C exp{∓ √


√
C
A z} – s; g, )

℘(
√
–D

C exp{∓ √


√
C
A z} – s; g, )

,

where both s and g are arbitrary constants. In particular, by Lemma . and g = ,wg,(z)
degenerates to the one parameter family of solutions,

wf ,(z) = ±
√
–
C
D



 – exp{∓ √


√
C
A (z – z)}

,

where z ∈C.
This completes the proof of Theorem .. �

4 Some applications of Theorem 1.2
Equation () include many well-known nonlinear equations that are with applied back-
ground as special examples, such as Newell-Whitehead equation, NLS equation, Fisher
equation with degree three. In this section, the Newell-Whitehead equation, NLS equa-
tion, and Fisher equation with degree three are considered again and the exact solutions
are derived with the aid of Eq. ().

4.1 Newell-Whitehead equation
The Newell-Whitehead equation (Vitanov [], Liu [], Newell and Whitehead [] and
Wazwaz []) has the form

uxx – ut – ru + su = , (A)

where r, s are constants.
Substituting

u(x, t) = w(z), z = x +ωt ()

into Eq. (A) gives

w′′ –ωw′ + sw – rw = . ()

Equation () is converted to Eq. (), where

A = , B = –ω, C = , D = –.

4.2 NLS equation
The NLS equation [, ] has the form

iut + αuxx + β|u|u = , (B)

where α, β are nonzero constants.

http://www.advancesindifferenceequations.com/content/2014/1/147
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Substituting

u(x, t) = w(z)ekx–ωt , z = x + ct ()

into Eq. (B) gives

αw′′ + i(αk – c)w′ +
(
ω – αk

)
w + βw = . ()

Equation () is converted to Eq. (), where

A = α, B = i(αk – c), C = ω – αk, D = β .

4.3 Fisher equation with degree three
The Fisher equation with degree three [] has the form

ut = uxx + u
(
 – u

)
. (C)

Substituting

u(x, t) = w(z), z = x – ct, ()

into Eq. (C) gives

w′′ + cw′ +w
(
 –w) = . ()

Equation () is converted to Eq. (), where

A = , B = c, C = , D = –.

Apparently, if we set appropriate coefficients in Eq. (), certain well-known equations will
be converted to it.

5 Conclusions
The complex method is a very important tool in finding the exact solutions of nonlin-
ear evolution equation, and Eq. () is one of the most important auxiliary equations, be-
cause many nonlinear evolution equations can be converted to it. In this article, we em-
ploy the complex method to obtain all meromorphic solutions of an auxiliary ordinary
differential equation at first, and then find all meromorphic exact solutions of the com-
bined Newell-Whitehead equation, nonlinear Scrödinger equation, and Fisher equation
with degree three. Our result shows that all rational and simply periodic exact solutions of
the combined theNewell-Whitehead equation, nonlinear Scrödinger equation, and Fisher
equation with degree three are solitary wave solutions, and the method is simpler than
other methods.
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