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Abstract
In this paper, the modified Kudryashov method is proposed to solve fractional
differential equations, and Jumarie’s modified Riemann-Liouville derivative is used to
convert nonlinear partial fractional differential equation to nonlinear ordinary
differential equations. The modified Kudryashov method is applied to compute an
approximation to the solutions of the space-time fractional modified
Benjamin-Bona-Mahony equation and the space-time fractional potential
Kadomtsev-Petviashvili equation. As a result, many analytical exact solutions are
obtained including symmetrical Fibonacci function solutions, hyperbolic function
solutions, and rational solutions. This method is powerful, efficient, and it can be used
as an alternative to establish new solutions of different types of fractional differential
equations applied in mathematical physics.

Keywords: modified Kudryashov method; fractional partial differential equations;
the space-time fractional modified Benjamin-Bona-Mahony equation; the space-time
fractional potential Kadomtsev-Petviashvili equation

1 Introduction
Nonlinear partial differential equations of integer order play an important role in describ-
ing many nonlinear phenomena such as mathematical biology, electromagnetic theory,
fluid mechanics, signal processing, engineering, solid state physics, and other fields of
science. With the help of computerized symbolic computations many researchers imple-
mented variousmethods to establish the solutions to different nonlinear differential equa-
tions. For example, the Exp-function method [–], the Jacobi elliptic function expansion
method [, ], the first integral method [, ], (G′/G)-expansion method [, ], the direct
algebraic method [], the Cole-Hopf transformation method [], and others.
Nonlinear fractional differential equations (FDEs) are a generalization of classical dif-

ferential equations of integer order. Recently, FDEs have attracted great interest, using
the fractional derivatives. It is caused both by the development of the theory of fractional
calculus itself and by the applications of such constructions in various real life problems.
In the past decades the theory of fractional derivatives was represented principally as a
pure theoretical field of mathematics effective only for mathematicians. However, in re-
cent years many authors have noticed that derivatives of non-integer order are convenient
for the description of the properties of various physical phenomena. It has been shown that
fractional-order models are more sufficient than the formerly used integer-order models.
Some physical considerations by means of the models based on derivatives of non-integer
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order are given in [–]. New exact solutions for fractional differential equations may
help to understand better the corresponding wave phenomena they describe. In order to
obtain the solutions for fractional differential equations, many numerical and analytical
methods have been proposed so far (e.g. see [–]). But the application of a modified
Kudryashov method to fractional differential equations has not been researched.
In this paper, we will apply the modified Kudryashov method for solving fractional par-

tial differential equations in the sense of the modified Riemann-Liouville derivative as
given by Jumarie [, ]. To illuminate the utility and validness of the method, we will
apply it to the space-time fractional modified Benjamin-Bona-Mahony (mBBM) equation
and the space-time fractional potential Kadomstev-Petviashvili (PKP) equation.

2 Preliminaries and themodified Kudryashovmethod
Jumarie’s modified Riemann-Liouville derivative is defined as
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Moreover, some properties for the proposed modified Riemann-Liouville derivative are
given in [] as follows:
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which are direct results of the equality Dαx(t) = �( + α)Dx(t), which holds for non-
differentiable functions.
We present the main steps of the modified Kudryashov method as follows [–].
For given nonlinear FDEs for a function u of independent variables, X = (x, y, z, . . . , t):

P
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where Dα
t u, Dα

x u, Dα
y u, and Dα

z u are the modified Riemann-Liouville derivatives of u with
respect to t, x, y and z. P is a polynomial in u = u(x, y, z, . . . , t) and its various partial deriva-
tives, in which the highest-order derivatives and nonlinear terms are involved.
Step . We investigate the traveling wave solutions of Eq. (.) of the form

u(x, y, z, . . . , t) = u(ξ ), ξ =
kxβ

�( + β)
+

nyγ
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mzδ
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where k, n,m and λ are arbitrary constants. Then Eq. (.) reduces to a nonlinear ordinary
differential equation of the form

G = (u,uξ ,uξξ ,uξξξ , . . .) = . (.)

Step . We suppose that the exact solutions of Eq. (.) can be obtained in the following
form:

u(ξ ) =
N∑
i=

aiQi(ξ ), (.)

where Q = 
±aξ and the function Q is the solution of the equation

Qξ = lna
(
Q –Q

)
. (.)

Step . According to the method, we assume that the solution of Eq. (.) can be ex-
pressed in the form

u(ξ ) = aNQN + · · · . (.)

In the calculation of the value of N in Eq. (.) we have the pole order for the general
solution of Eq. (.). In order to determine the value of N we balance the highest-order
nonlinear terms in Eq. (.), analogously as in the classical Kudryashovmethod. Supposing
ul(ξ )u(s)(ξ ) and (u(p)(ξ ))r are the highest-order nonlinear terms of Eq. (.) and balancing
the highest-order nonlinear terms we have

N =
s – rp
r – l – 

. (.)

Step . Substituting Eq. (.) into Eq. (.) and equating the coefficients ofQi to zero, we
get a system of algebraic equations. By solving this system, we obtain the exact solutions
of Eq. (.). The obtained solutions can depend on the symmetrical hyperbolic Fibonacci
functions proposed by Stakhov and Rozin []. The symmetrical Fibonacci sine, cosine,
tangent, and cotangent functions are, respectively, defined as

sFs(x) =
ax – a–x√


, cFs(x) =

ax + a–x√


,

tanFs(x) =
ax – a–x

ax + a–x
, cotFs(x) =

ax + a–x

ax – a–x
.

3 Applications
3.1 Space-time fractional modified Benjamin-Bona-Mahony (mBBM) equation
We first apply the method to the space-time fractional mBBM equation in the form

Dα
t u +Dα

x u – vuDα
x u +Dα

t
(
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t
(
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t u
))

= , (.)

where  < α ≤ , t > , u is the function of (x, t) and v is a nonzero positive constant.
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This equation was first derived to describe an approximation for surface long waves in
nonlinear dispersive media. It can also characterize the hydromagnetic waves in a cold
plasma, acoustic waves in harmonic crystals, and acoustic gravity waves in compressible
fluids.
We proceed by considering the traveling wave transformation,

u(x, t) = u(ξ ), ξ =
kxα

�( + α)
+

ctα

�( + α)
+ ξ, (.)

where k, c, ξ are constants.
Equation (.) can be reduced to the following ordinary differential equation:

cu′ + ku′ – vkuu′ + ku′′′ = . (.)

Also we take

g(ξ ) = u(ξ ) =
N∑
i=

aiQi, (.)

whereQ = 
±aξ .We note that the functionQ is the solution ofQξ = lna(Q –Q). Balancing

g ′′ and g in Eq. (.), we compute

N = . (.)

Thus, we have

g(ξ ) = u(ξ ) = a + aQ, (.)

and substituting derivatives of u(ξ ) with respect to ξ in Eq. (.) we obtain
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)
, (.)

uξξ = (lna)
(
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)
. (.)

Substituting Eq. (.) and Eq. (.) into Eq. (.) and collecting the coefficients of each
power of Qi, setting each of the coefficients to zero, solving the resulting system of alge-
braic equations we obtain the following solutions (see Figures -).
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Inserting Eq. (.) into Eq. (.), we obtain the following solutions of Eq. (.):
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Figure 1 Solitary wave solutions of Eq. (3.1) are shown at k = v = ξ0 = 1, a = 10, α = 1.

Figure 2 Solitary wave solutions of Eq. (3.1) are shown at k = v = ξ0 = 1, a = 10, α = 0.5.

Figure 3 Solitary wave solutions of Eq. (3.1) are shown at k = v = ξ0 = 1, a = 10, α = 0.25.
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Figure 4 Solitary wave solutions of Eq. (3.1) are shown at k = v = ξ0 = 1, a = 10, α = 0.1.

Figure 5 Solitary wave solutions of Eq. (3.1) are shown at k = v = ξ0 = 1, a = e, α = 1.

Figure 6 Solitary wave solutions of Eq. (3.1) are shown at k = v = ξ0 = 1, a = e, α = 0.5.
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Figure 7 Solitary wave solutions of Eq. (3.1) are shown at k = v = ξ0 = 1, a = e, α = 0.25.

Figure 8 Solitary wave solutions of Eq. (3.1) are shown at k = v = ξ0 = 1, a = e, α = 0.1.

Case :
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√
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Inserting Eq. (.) into Eq. (.), we obtain the following solutions of Eq. (.):

u(x, t) = –(lna)
√
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3.2 The space-time fractional potential Kadomstev-Petviashvili (PKP) equation
Wenext consider the following the space-time fractional potential Kadomstev-Petviashvili
(PKP) equation:



Dα

t
(
Dα

t
(
Dα

t
(
Dα

t u
)))

+


Dα

x uD
α
x
(
Dα

x u
)
+


Dα

y
(
Dα

y u
)
+Dα

t
(
Dα

x u
)
= , (.)

where  < α ≤ , t > .
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We proceed by considering the traveling wave transformation,

u(x, t) = u(ξ ), ξ =
kxα

�( + α)
+

lyα

�( + α)
+

ctα

�( + α)
+ ξ, (.)

where k, l, c, ξ are constants.
Equation (.) can be reduced to the following ordinary differential equation:



ku′′′ +



k

(
u′)u′′ +



lu′ + kcu′ = . (.)

Also we take

g(ξ ) = u(ξ ) =
N∑
i=

aiQi, (.)

where Q = 
±aξ .

We note that the function Q is the solution of Qξ = lna(Q – Q). Balancing the linear
term of the highest order with the highest-order nonlinear term in Eq. (.), we compute

N = . (.)

Thus, we have

g(ξ ) = u(ξ ) = a + aQ, (.)

and substituting derivatives of u(ξ ) with respect to ξ in Eq. (.) we obtain

uξ = lna
(
aQ – aQ

)
, (.)

uξξ = (lna)
(
aQ – aQ + aQ

)
, (.)

uξξξ = (lna)
(
aQ – aQ + aQ + aQ

)
. (.)

Substituting Eq. (.), Eq. (.), and Eq. (.) into Eq. (.) and collecting the coef-
ficient of each power of Qi, setting each of the coefficients to zero, solving the resulting
system of algebraic equations we obtain the following solutions (see Figures -):

a = , a = –k(lna), c =
–(lna)k – l


. (.)

Inserting Eq. (.) into Eq. (.), we obtain the following solution of Eq. (.):

u(x, y, t) = –k
(



± a
kxα

�(+α) +
lyα

�(+α) +
ctα

�(+α) +ξ

)
. (.)
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Figure 9 Solitary wave solutions of Eq. (3.15) are shown at k = l = i
√
3, ξ0 = 1, a = 10, α = 1.

Figure 10 Solitary wave solutions of Eq. (3.15) are shown at k = l = i
√
3, ξ0 = 1, a = 10, α = 0.5.

Figure 11 Solitary wave solutions of Eq. (3.15) are shown at k = l = i
√
3, ξ0 = 1, a = 10, α = 0.25.
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Figure 12 Solitary wave solutions of Eq. (3.15) are shown at k = l = i
√
3, ξ0 = 1, a = 10, α = 0.1.

Figure 13 Solitary wave solutions of Eq. (3.15) are shown at k = l = i
√
3, ξ0 = 1, a = e, α = 1.

Figure 14 Solitary wave solutions of Eq. (3.15) are shown at k = l = i
√
3, ξ0 = 1, a = e, α = 0.5.
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Figure 15 Solitary wave solutions of Eq. (3.15) are shown at k = l = i
√
3, ξ0 = 1, a = e, α = 0.25.

Figure 16 Solitary wave solutions of Eq. (3.15) are shown at k = l = i
√
3, ξ0 = 1, a = 10, α = 0.1.

4 Conclusion
We have extended the modified Kudryashovmethod to solve fractional partial differential
equations. As applications, for the space-time fractional potential Kadomstev-Petviashvili
equation we found similar solutions to the ones previously obtained in [, ]. How-
ever, for the space-time fractional modified Benjamin-Bona-Mahony equation we have
obtained new symmetrical hyperbolic Fibonacci function solutions with differences from
the solutions obtained before []. If we take a = e, we can also find the other hyperbolic
solutions similar to [, , ]. Themethod is based on the homogeneous balancing prin-
ciple. Therefore, it can also be applied to other fractional partial differential equations
where the homogeneous balancing principle is satisfied.We can easily conclude that sym-
metrical hyperbolic Fibonacci function solutions for the space-time fractional modified
Benjamin-Bona-Mahony equation have not been reported in the previous studies.
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