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1 Introduction

The aim of this paper is to consider a kind of neutral Duffing differential systems as follows:

(u(t) - Cult - )" + Bt)x (&) + g(u(t - y (2))) = p(2), (1)

where B € CY(R,R) with B(t + T) = B(¢t), g € C(R",R"), p € C(R,R"), and y(¢) is a contin-
uous T-periodic function with y(¢£) > 0; T > 0 and 7 are given constants; C = [c;],x, is a
constant symmetrical matrix and §(t) is allowed to change sign.

As is well known, a solution u(t) of Eq. (1.1) is called homoclinic (to O) if u(¢) — 0 and
u'(t) — 0 as |¢t| — +00. In addition, if u# # 0, then u is called a nontrivial homoclinic solu-
tion.

Under the condition of C = O, system (1.1) transforms into a classic second-order Duft-
ing equation

u"(£) + B(OX' () + g(6,u(t - v (0)) = p(t), 1.2)

which has been studied by Li et al. [1] and some new results on the existence and unique-
ness of periodic solutions for (1.2) are obtained. Very recently, by using Mawhin’s contin-

uation theorem, Du [2] studied the following neutral differential equations:
)
(u(t) — Cu(t - r)) + EVF(M(”) + VG(u(t)) =e(t), (1.3)
where F € C2(R",R); G € CY(R",R); e € C(R,R"); C = diag(ci,¢2,...,¢u), ¢; (i =1,2,...,1)

and 7 are given constants, obtaining the existence of homoclinic solutions for (1.3).
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In this paper, like in the work of Rabinowitz in [3], Izydorek and Janczewska in [4] and
Tan and Xiao in [5], the existence of a homoclinic solution for (1.1) is obtained as a limit
of a certain sequence of 2kT -periodic solutions for the following equation:

(u(t) - Cult - 7))" + B (&) + g(u(t - ¥ (1)) = pi(2), (14)
where k € N, pix : R — R" is a 2kT -periodic function such that

p(2), t e [-kT,kT - &),
PKT = eg) + PEKD=PUT=00) (p _ jT 4 00), ¢ € [KT — £0,kT),

€0

pi(t) = (1.5)

€0 € (0,T) is a constant independent of k. However, the approaches to show /() — 0
as |t| - +oo are different from the corresponding ones used in the past and the exis-
tence of 2kT -periodic solutions to Eq. (1.4) is obtained by using an extension of Mawhin’s
continuation theorem, which is quite different from the approach of [3-5]. Furthermore,
C = [cijluxn is a constant symmetrical matrix and §(¢) is allowed to change sign, different
from the corresponding ones of [2].

2 Preliminary

Throughout this paper, (-, ) : R* x R” — R denotes the standard inner product, and
| | denotes the absolute value and the Euclidean norm on R”. For each k € N, let
Cor = {xlx € C(R,R"),x(t + 2kT) = x(t)}, Clyp = {xlx € CH(R,R"),x(t + 2kT) = x(¢)} and
lxlo = maxejo,2xr |%(2)|. If the norms of Cyr and C%kT are defined by || - ¢, = | - lo and

I-llet,, = max{lxlo, |x'|o}, respectively, then Cyir and C}, ;- are all Banach spaces. Further-

k 1
more, for ¢ € Cyr, @l = (f_(kTT lo(t)|" dt)r, r>1.

Define the linear operator
A:Cr— Cr, [Ax](t) = x(f) — Cx(t - 7).

Lemma 2.1 [6] Suppose that 2 is an open bounded set in X such that the following condi-
tions are satisfied:

[A1] Foreach ) € (0,1), the equation

(u(t) - Cu(t — )" + B0/ () + Ag(u(t — v (£))) = Api(£)

has no solution on 9.
[Ay] The equation

kT
8@ =gz [ le@-peto]dz =0

-kT

has no solution on 02 N R".
[As] The Brouwer degree

dg{A,QNR",0} #0.

Equation (1.4) has a 2kT -periodic solution in Q.
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Lemma 2.2 [7] If set Py = {x|x € C(R,R),x(t + T) = x(t)} and Ao : Py — Pr, [Aox](¢) =
x(t) — cx(t), where ¢ € R is a constant with |c| # 1, then operator Ay has continuous inverse

Ag! on Pr, satisfying

A Xm0 df(E=jT), el <LYf €Pr,
[Ao f](t) ) {_]X:j>1 cIf(t+jt), el >LVf € Pr.

Lemma 2.3 [5] Ifu:R— R" is continuously differentiable on R,a >0, u > 1,and p > 1 are
constants, then for every t € R, the following inequality holds:

|u(t)] < (2a) 77 (/Ha|u(s)|”ds>M +a(2a)? (/t+u|u/(s)|p ds)p.

This lemma is a special case of Lemma 2.2 in [5].

Lemma 2.4 [6] Suppose that c,c,...,c, are eigenvalues of matrix C. If |¢;| #1 (i =
1,2,...,n), then A has a continuous bounded inverse with the following relationships:

D 1Al = L e IF 1L Vf € Cr,

@) [ (A@Pdt <a [, [f@©Fdt, ¥f € Cr, p =1, where

_1 p—
max(oep) o P=2
w4
o= (Z:?:l 1 2p ) 2, PE [172):
(1_‘51‘)m
14
L e pel2,+),
q is a constant with 117 + é =1

(3) (Ax) = Ax',Vx e Cl.

Lemma 2.5 [7] Let s € C(R,R) with s(t + w) = s(t) and s(t) € [0,w], Vt € R. Suppose p €
(1, +00), |slo = Maxe(o,w] $(t) and u € CY(R, R) with u(t + w) = u(t). Then

fw|u(t) —u(t-s@) | dt < sl /w|u/(t) |? dt.
0 0

Throughout this paper, we suppose in addition that ¢, = max{|¢l|}, i = 1,2,...,n,
where c¢j,¢,...,¢, are eigenvalues of matrix C with |¢;| # 1 and let ; = min|8'(¢)],
By = max |B(¢t)|, Ve € [0, T].

For convenience, we list the following assumptions which will be used to study the ex-

istence of homoclinic solutions to Eq. (1.1) in Section 3.

[H;] There are constants L > 0 and m > 0 such that
|g(x1) —g(x2)| < Llxy — x5, for all x1,x5 € R,
and

((E - C)x,g(x)) <-m|x|?, forallxeR",
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[Hy] p € C(R,R") is a bounded function with p(¢) # O = (0,0,...,0) " and

= (/ ’P(t)fzdt)z +sup|p(£)| < +o0.
R teR

Remark 2.1 [8] From (1.5), we see that |p(¢)| < sup,z |p(¢)]. So if assumption [H;] holds,
for each k €N, (ff,?T Ip(®)* d)? <B.

3 Main results
In order to investigate the existence of 2kT-periodic solutions to system (1.4), we need to
study some properties of all possible 2kT -periodic solutions to the following system:

(x() = Cx(t = 1)) + AB(OX (O) + rg(x(t -y (2))) = Ape(t), 1 €(0,1]. (3.1)

For each k € N, let & C C},, represent the set of all the 2kT-periodic solutions to sys-
tem (3.1).

Theorem 3.1 Suppose assumptions [H,]-[H,] hold, B; > —2m, and

1 1
aleiL(lylo +1T]) + Llylo + ciaBml?

1/ <1,
(jﬂL +m)

then for each k € N, if u € X, then there are positive constants Ay, A1, po, and p1 which are
independent of k and A, such that

llull2 < Ao, |||, <A, lulo < po, /|, < pr.
Proof For each k € N, if u € ¥, then u must satisfy
(u(t) = Cu(t — )" + B0/ () + Ag(u(t — v (£))) = Api(t),  » € (0,1]. (3.2)

Multiplying both sides of Eq. (3.2) by [A#](¢) and integrating on the interval [-kT, kT], we

have
s kT kT
—||Au’ H2 + A/ <[Au](t),,3(t)u’(t))dt + A/ ([Au] (t),g(u(t - y(t))))dt
—kT —kT
kT
Y / ([Aul(8), pe(®)) dt. (3.3)
kT
Clearly, f_kkTT(u(t),ﬁ(t) =—3 fkTﬂ t) dt, then we have
kT
[ (auo.po)ar
kT
_ 7112 l kT / 2 kT 't /
=—|Ad|; - Az [kT B’ ()u(t) dt + A[kT(Cu (t-1), B (t))dt

+A /_kT(u(t)’g(u(f -y (0)) - g(u(®)))dt + 2 /_Z(”(t)’g(u(t)))dt

kT
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—A /_kT<Cu(t - T),g(u(t - y(t))) —g(u(t - r)))dt

kT

kT
- A/ <Cu(t - r),g(u(t - r)))dt

kT

and from (3.4) and [H;] that
112 1 ’ 2
|| + 2 E,BL +m | ||ull3

kT
gx/n|Kmu—rLﬂuﬁmﬂHdt

kT

o gl - v 0)) - g (o) de

kT

A / * l(Cute = 0 g(u(t - y(©) —glute - )| de

kT

kT
+A/ ‘(Au(t),pk(t))|dt.

kT

By using [H;] and Lemma 2.5, we get

/:kT|<u(t),g(u(t - J/(t))) —g(u(t))>| dt

kT
kT 3/ kT 1
< (/ |u(t)|2dt> (f |g(u(t—y(t)))—g(u(t))|2dt>
—kT —kT
<Llylollulla |«

In a similar way as in the proof of (3.6), we have

kT 1
/kT|(Cu(t— 0),(u(t - y(®)) - g(ut - )| dt < caL(lylo + [2]) lull ]|,

By using [H;], we get

kT |
/  140010),peC0)] e < Necla bl + el el
kT

1
<B(1+cp)llull

and

kT 1
/ (Cut = o), Beyu (0))| dt < el o]

kT

By applying (3.6)-(3.9), we see that

1 1 1
a2 585+ m Yl < ALeh {1y Io+ 171 + Ly + chpue e,

+AB(1+ci)HuH}

Page 5of 13
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Thus, from (3.10)
1 / 2 % % /
EﬁL +m | ull; < [emL(lylo +171) + Liylo + coBu] w2 ||,
+B(1 +c,%,,)||u||2. (3.11)

By using Lemma 2.4, we have |||, = |[A A ||, < ab |Au'|2, and from (3.10)-(3.11)

1 1
o afenL(lylo + I7]) + Llylo + cmBu)? 2
|aw' [, < T Jlaw'
(2/3L + m)
11 1
N 20" B(1 + clemL(1ylo + |T1) + LIy lo + cmPBum] aw|
(3B] +m) >
1
B%(1+c2)? (3.12)
(381 +m)
Since
1 1o
afeuL(lylo +171) + LIy lo + cmPBuml <1
(38, +m) ’
there is a constant M > 0 such that
|aw], =M, (3.13)
”u’”2 < a’ HAu’ Hz < P M= A, (3.14)
and by (3.11)
3 3 3
L +|t])+L + A+ B(1+
lull, < emL(lylo +1T]) + Llylo + cinPumlAr + B + cin) Ay, (3.15)

(3B, +m)

Obviously, Ag and A; are constants independent of k and A. Thus by using Lemma 2.2, for
all £ € [-kT, kT], we get

1 t+T % 1 t+T %
lu()| < 2T)"? (/ |u(s)|2ds) + T(2T)2 (/ |u/(s)|2ds>
t-T t-T
t+kT % 1 t+kT %
< (2T)‘% (/ . |u(s)|2ds> +T(2T) 2 (/ . |u/(s)|2ds)

kT 3 kT 3
=(2T)%</kT|u(s)|2ds> +T(2T)%(/kT|u/(s)|2ds> .

From (3.14) and (3.15), we obtain

1

lulo < @T) Hlulla + TRT) 2 |u||, < RT) Ao + T(T) 3 A, := po, (3.16)

where py is a constant independent of k and A.

Page 6 of 13
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Fori=-k,—k+1,...,k -1, from the continuity of [Au/](¢), one can find that there is a
t; € [iT,(i + 1)T] such that

((+DT) - [AW)(T) | _

2 1
T ?(l +Cm) Pos

(i+1)T
[aw)(e)] - ‘% fT (44 ](5) ds‘ _ )[A“]

and it follows from (3.14) that for ¢t € [iT,(i + 1)T], i = -k, -k +1,..., k-1,

Ao -

/t vt[Au]”(s) ds + [Au’](ti)‘

< / [ @] ds + 2 (14 k)

< f :+1)T| [Au"(5)| ds + %(1 +ch)po

< / (HMIﬂ(S)u’(S)I ds + / (M)T|g(u(s— v(s)))|ds

iT iT

(i+1)T 2 1
+] ‘pk(s)|ds+ —(1+c,%,)p0
iT T

L/ kT , \? 2 1
§,BMT7</ | (s)| ds> +TgM+TB+?(1+c,2,,)po
-kT

2 1
< ﬁMT%Al + Tgy + TB + ?(1 + c,z,,),oo = p,

|Ad|, < p, (3.17)

where gy = maxyj, <, [g(u(t - (1)))].
By Lemma 2.4 and (3.17), we get

A -1 / . 1 , " 1 .
o=, = (Z |1—|c,»||)|A” o (Z |1—|c,»||>p'_ .

i=1 i=1

Clearly, p; is a constant independent of k and A. Hence the conclusion of Theorem 3.1
holds. O

Theorem 3.2 Assume that the conditions of Theorem 3.1 are satisfied. Then for each k € N,
Eq. (3.2) has at least one 2kT -periodic solution uy(t) such that

lurlz <Ao,  |uill, <AL lmlo<po,  |wi], < o1

where Ay, A1, po, and p; are constants defined by Theorem 3.1.

Proof In order to use Lemma 2.1, for each k € N, we consider the following equation:
(u(t) - Cult - 7)) + A0 (®) + rg(u(t - y(©))) = Api(t), 1€ (0,1). (3.18)

Let 2, C C%kT represent the set of all the 2kT-periodic of system (3.18), since (0,1) C
(0,1], then ©; C X, where X is defined by Theorem 3.1. If # € €3, by using Theorem 3.1,

Page 7 of 13
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we have
lulo < po, ||, < 1.

Let Q5 = {x:x € Ker L, QNx = 0}, where
L:D(L) C Coyy — Copr, Lu = (AM)//,
N: Cor — Copry Nu = —B(6)ud' (¢) - g(ult — y () + pi(0),
Q: Cour — Cour/ImL, Qy = 5= [ 5(s) ds.
If x € Q5, then x = a € R” (constant vector) and by [H;], we see that

kT 1
2Tnlal’ < [ (€~ Chapu(o)| de = Blal(t + e, ) KT)Y,

—kT

la| <m BT 7 (1 +¢,):= Bo.

Now, if weset Q ={x:x € C;kT, |x]o < po + Bo, |¥'|g < o1 +1}, then Q D Q1 U Q5. So condi-
tion [A;] and condition [A;] of Lemma 2.1 are satisfied. What remains is verifying condi-
tion [A3] of Lemma 2.1. In order to do this, let

H(x,p): (QNRY) x [0,1] — R": H(x, ) = —ux + (1 - n) Ax),

where A(x) = 21+T f_kkTT [g(x) — pi(2)] dt is determined by Lemma 2.1. From assumption [H;],
we have

H(x,u) #0, V(x,u)e [8(9 ﬂR”)] x [0,1].
Hence

deg{/QN, 2 NKerL,0} = deg{H(x,0), 2 N KerL,0}
= deg{H(x, 1),QnN KerL,O}
#0.

So condition [A3z] of Lemma 2.1 is satisfied. Therefore, by using Lemma 2.1, we see that
Eq. (1.2) has a 2kT-periodic solution u; € 2. Evidently, u(¢) is a 2kT-periodic solution to
Eq. (3.1) for the case of & =1, so u; € X. Thus, by using Theorem 3.1, we get

lukll2 < Ao, ||, <Aw luklo < po ], < o1 (3.19)
O

Theorem 3.3 Suppose that the conditions in Theorem 3.1 hold, then Eq. (1.1) has a non-
trivial homoclinic solution.

Proof From Theorem 3.2, we see that for each k € N, there exists a 2kT-periodic solution
ui(t) to Eq. (1.2). So for every k € N, uy(¢) satisfies

(u(8) = Cur(t = 1)) + BOUO) + g(uic(t - y (1)) = pr(). (3.20)
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Let yx = (Auy) for k > ko. By (3.17),

lyklo < p

and, by (3.20),
klo = Baalosiy + gar + Stu113|19(t)| = pa.
€

Obviously, p, is a constant independent of k. Similar to the proof of Lemma 2.4 in [5],
we see that there exists a #y € C'(R,R") such that for each interval [c,d] C R, there is a
subsequence {u} of {ux} with R, uk].(t) — uo(t) and u;(]_(t) — uy(t) uniformly on [c, d].

For all a,b € R with a < b, there must be a positive integer j, such that for j > jo,
[-kT, kT —g0]l D la—|ylo,b+1ylol.Sofortea—|ylo,b+]|ylol, from (1.5) and (3.20) we
see that

(w1 (8) = Cuagy (= 1)) " = =B(O)uaf () - g (g (£ = ¥ (1)) + p(B). (3.21)

By (3.21),

V= (Auy)
= ~BOu (1) - g (ur, (t - v () + p(®)
— =BOug(t) - g(uo(t - v () +p(0)
= x(6),
uniformly on [, b].
By the fact that y}(/,(t) is a continuous differential on (a, b), for j > jo, y}(}_(t) — x () uni-
formly [a, b]. We have x (t) = (uo(t) — Cuo(t —7))", t € R, in view of a, b € R being arbitrary,

that is, uy(¢) is a solution to system (1.1).

Now, we will prove uy(t) — 0 and ug(t) — 0 for [t] — +00. We have

+0Q0 ir
[ oo oy e = tim [ ot + o)
oo 1—>+00 —iT
iT 9 2
= Jim tim | (g O + |uy @OF ) .

Clearly, for every i € N if k; > i, by (3.14) and (3.15), we get

iT kT
[ (@ + [ O de < [ (0 + a0 ) e < 43 + 42

t J

Let i > +00 and j — +00; we have

/ (luo(®)|* + [ (0)|) dt < A2 + A2, (3.22)

Page9of 13
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and then
f (|uo ()| + |up()|) dt — o, (3.23)
[t]=r

asr — +0Q.

From (3.13), in a similar way we get

+00
/ |1t (8) — Cutf (¢ — 7)|* de < M. (3.24)
So, by using Lemma 2.3,

t+T % 1 t+T %
|uo(t)| < (2T)73 (/ |u0(s)|2ds> + TQT) 2 (/ |u;)(s)|2ds>
t-T =T

t+T
< max{(2T)’%, T(2T)’% }/ (’uo(t)|2 + ‘u6(t)}2) dt— 0, |t| — +oo.
=T

Finally, in order to obtain
lug(H)] — 0, [t] — +oo,
we show that
[[Au'],®)] := |ug(®) - Cug(t—1)| > 0,  [t] —> +o0. (3.25)
From (3.16), we have |u|o < po and by (1.1), we get
[([Auo]@)'] = [BEuo(®)] + [g (ot - v 1)) | + sup|p(e)|

< Bumpo + sup |g(u)| +sup|p(t)| :=M, forteR.
[ul<po ter

If (3.25) does not hold, then there exist gy € (0, %) and a sequence {f;} such that
] <|ta| < |3l <+ - < |t + 1< |tgal, k=1,2,...,

and
[Auy](t)| = 280, k=1,2,....

From this, we have, for ¢ € [t tx + go/(1 + M),

)] =[]0+ [ (o) as

73

> (Ao [ (A ]00) | ds = eo.

It follows that
+00 0 tk+so/(1+A7I) 5
/ [Aup)e0)*de =" |[Au ] @) dt = o0,

o] k=1 173

which contradicts (3.24), so (3.25) holds.

Page 10 0of 13
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Since C is symmetrical, it is easy to see that there is an orthogonal matrix 7" such that
TCTT = E, = diag(cy, ¢y, .. ,c,,)

Let y; (8) = Tup (1) = 01 @57 @) 9 " ©) = TG 0,42 (@) .., " ()7, then we
gety,(t) = (yo”(t), Y2, ..., yO"’(t)) = Tuy(t) = T(up (@), ug” (8), ..., uy"(£))T asj — 00. By

(3.25), we have

¥5(8) =Ecyy(t =) > 0, [t] > +o0. (3.26)

1 .
By using (3.19), we see that |Au;| < (1 + ¢5)p1 := B, which implies

Nl

| TAup| = |(TAuy, TAw)|? < B,
ie.,
¥ (&) —Eyi(t—7)|<B, VteR (3.27)
e(1-1il)

Forall & > 0, there exists N = [log|cl.|2‘§ ] >0such that Y ;2. lail” < 55 (il <1), for £ > N.
Similarly, by (3.26), we see that there is a constant G > 0 such that Iy()i(t) - ciy()i (t-1)| <
2(N L ,fort>G.

Then, by using Lemma 2.2 and (3.27), when |¢;| < 1, we get

b’ @] = tim [[45' 40y |0

N oo
< |lim Y c[Aoy (6= ko) + Y Aoy (¢ )
7% =0 h=N+1

,limz Aoyk ](t ht)| + llim Z Aykt)](t ht)

h=0 h=N+1
< 11rnZ|c,| [409"](t = ho)] + B Z lc:|"
h>0 h=N+1
N ’ ’ [e'9)
= Z |ci|h’(ygl)(t —ht) - ciygl) (t-(h+1D)1))| + B Z leil”. (3.28)
h>0 h=N+1

Now, by (3.27) and (3.28), we conclude that Ve > 0, there exists N = G + N such that for
t>N,

N
Y@ =D 1| (057 = ) — ey (¢ = G+ D7) | +

h>0

~ &

<(N+1)2(N+1)+

=Eé.

/(i)

Thus, we get |y,” (£)| — 0, as [t| = +0o0.

Page 11 0f 13
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In the similar way, when |¢;| > 1, we can proof |y6(i)(t)| — 0, as [t| > +o0.
Therefore, |y,(t)| — 0, as |t| - +0o0; ie.,
. /(1) . /(2) . /(n) T
T( lim " (t), im wuy”(¢),..., lim (t)) =0,
|t]—+00 |t]—+00 |t]—+00

we know T is an orthogonal matrix, then ugi)(t) — 0 as || = +o0.
Thus, we have

’ug(t)’ —0, |t|— +00.

Clearly, uo(z) # 0; otherwise, p() = 0, which contradicts the assumption [H].
As an application, we consider the following equation:

(u(t) — Cu(t - 0.01))// + sin(£)x/ () +g(u(t - cos? t)) = p(2), (3.29)

where C = (% %), u(t) = (n(®),m(2))", gx) = x = (x1,%) " and p(t) = (p1(), pa(£)" =
(\/11?, \/12?)T. Clearly, A1 5 = @ # %1. Also, ((E — C)x, g(x)) = =25x% — 6x1x7 — 1612 <
-10(x? + x3) and g(x) = x, which implies that assumption [H;] is satisfied with L = 2,

m = 10. p(t) = ( )" is a bounded function and (f}, |p(¢)[* ) + sup,z |p(2)| =

_1 2
Vie2” V12
V5(1 + *gn), which implies that assumption [H;] holds. Furthermore, we can choose

a= ﬁ,cm = 43%@, [¥lo =1, B =1and B} > -20, then

1 1
Cﬁiﬁﬁuﬁéﬁﬁﬁ2a+oon+2+(ﬂ%ﬁﬁfF<1

-1+10

By applying Theorem 3.3, we see that Eq. (3.29) has a nontrivial homoclinic solution. O
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