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Abstract

In this paper we are concerned with a general form of the Henon map as a retarded
functional equation. The existence of a unique solution is proved. The continuous
dependence of the solution and the local stability of fixed points are investigated.
Chaos, bifurcation and chaotic attractor of the resulting system are discussed. In
addition, we compare our results with the discrete dynamical system of the Henon
map.
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1 Introduction

Discontinuous (sectionally continuous) dynamical systems have been defined as a prob-
lem of retarded functional equation and studied in [1-10]. The generalized time-delayed
Henon map was introduced in [11, 12]. In this work we study the discontinuous (section-
ally continuous) dynamical system of the Henon map as a problem of retarded functional
equation with two different delays

x(t) =1+ Bx(t —r) —ax* (t—ry), r,ra>0,t€(0,T], (1.1)
with
x(t) =x9, t=<0, (1.2)

where « > 0 and |B] < 1.

The existence of a unique continuous dependence solution is proved. The local stabil-
ity of fixed points is studied. The chaos, bifurcation and chaotic attractor are discussed.
Comparison with the corresponding discrete dynamical system of the Henon map

X1 = 1+ B,y —ax?, n=1,2,3,4,..., (1.3)

is given.
Letf:[0,T] x R" - Rand ry,ry,...,rx € R*.
Consider the problem of retarded functional equation

x(2) :f(x(t —r),x(t—ry),...,x(t - rk)), te(0,T], (1.4)
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with the initial condition
x(t)=¢(r), T=<0. (1.5)

If T is a positive integer, rx = k, $(0) = xp, and £ =n =1,2,3,..., then problem (1.4)-(1.5)
will be the discrete dynamical system

Xn :f(xn—lrxn—bu-,xn—k)» n=123,...,T, (1.6)

x(0) = xg. 1.7)

This shows that discrete dynamical system (1.6)-(1.7) is a special case of the problem of
retarded functional equation (1.4)-(1.5).
Consider also the singularly perturbed differential difference equation [13]

ex'(t) = —x(t) + f (x(t - 1)), (1.8)

and the singularly perturbed delay differential equation [14]
k
ex'(t) = aox(t) + Y _ x(t - m), (1.9)

Jj=1

m;>0,mel,j=1,...,k
The limiting cases as € — 0 of (1.8) and (1.7) are special cases of retarded functional
equation (1.4)-(1.5).
Let ¢ € (0,7], then ¢ — r € (-r,0], the solution of (1.4)-(1.5) (by the method of steps as in
[13-16]) is given by
x(t) =2 (t) = f((0)), £€(0,7].

For ¢ € (r,2r], then t — r € (0, r], the solution of (1.4)-(1.5) is given by
x(t) = 0(8) = f (11(6) = £ (F(#(0))) =/*((0)), £ € (r,2r].

Repeating the process we can easily deduce the solution of (1.4)-(1.5) which is given by
x(t) = x,(t) = f" (¢(0)), te ((n -1, nr],

which is continuous on each subinterval ((k —1)r, kr), k=1,2,3,...,n, but
Jim, g (0) = £ (8(0)) # %10

which implies that the solution of problem (1.4)-(1.5) is discontinuous (sectionally contin-
uous) on (0, T1].
Now we have the following definitions.

Definition 1 The discontinuous (sectionally continuous) dynamical system is the prob-
lem of retarded functional equation (1.4)-(1.5).
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Definition 2 The fixed points of discontinuous (sectionally continuous) dynamical sys-
tem (1.4)-(1.5) are the solution of the equation

x(t) =f(t,%,%,...,%). (1.10)

Remark 1 We should notice that the difference equations representing the Henon map

in its different cases,

2

Xps1 =1+ By —ax, ;, n=12,3,4,...,
2

Xpe1 =1+ Bx,—ax, ;, n=123,4,...,

Xpr1 =14+ Bxy, —otxfl, n=12,3,4,...,
are just special cases of our problem (1.1)-(1.2).

2 Existence and uniqueness
Now consider the discontinuous (sectionally continuous) dynamical system of the Henon
map (1.1)-(1.2). The existence of a unique solution as well as the continuous dependence
of the solution on the initial data are proved. We study also the continuous dependence of
the solution on the parameter «.

Let L' = L}[0, T], T < 0o, be the class of Lebesgue integrable functions on [0, T] with the

norm

T
Ilf||=/0 [foldt, fel.

LetD={xeR:|x| <k k= %W} c L0, 7).

Definition 3 By a solution of problem (1.1)-(1.2) we mean that the function x € L satisfies
problem (1.1)-(1.2).

Theorem 1 The sufficient condition for the existence of a unique solution of problem (1.1)-
(1.2) is |B] + 2ak < 1.

Proof Define the operator F: L' — L! on D by
Fx(t) =1 + Bx(t — r1) — ax®(t — 1),

then
|Fx(t)| <1+ Blxl <1+ |Blk <k.

This proves that F: D — D.
Now, for x,y € D, we have

|Fx — Fy| < |Bl|x(t — r1) = y(t — r1)| + a[6*(t = 12) = y*(t = 1)
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Thus we can get
1Fx = Fyll < 1Blllx = yll + 2akllx = yl|.
If M =|B| +2ak <1, then
lFx — Fyll = Mllx - yll.
So, problem (1.1)-(1.2) has, on D, a unique solution x € L!. (]

Continuous dependence on the initial conditions
Theorem 2 The solution of discontinuous (sectionally continuous) dynamical system (1.1)-
(1.2) is continuously dependent on the initial data.

Proof Let x(t) and x*(¢) be the solutions of dynamical system (1.1)-(1.2) and the dynamical
system of equation (1.1) with the initial data

x(0) = xg. (2.1)
Then

’

() — " (@)| < |Bl|a(t = r1) = x*(t = 1) | + ¥ (£ = 12) =&t — 1)

and we can get
[4(®) = x*(@) || < (r11B] + raet)|wo — x| + (18] + 20tk) | 2 — x* .
This implies that

N np +ro N
||x(t)—x (t)” < l—lT—ZZO[kPCO_xOL

That is,

np +ra

p-al=s = |sO-50] <e= 5 p57

Continuous dependence on the parameter «
Theorem 3 The solution of discontinuous (sectionally continuous) dynamical system (1.1)-

(1.2) is continuously dependent on the parameter o.

Proof Let x(t) and x*(¢) be the solutions of dynamical system (1.1)-(1.2) and the dynamical
system

x(t) =1+ Ba(t —r) — o*x*(t — 12), (2.2)
with the initial data (1.2), then

|[(t) = 2" (8)] < |aa™(t = rs) —a*x* (¢ — 1),
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which gives
20 =2 @] < 181} =] + 2e ] =27 + ke = e[ [27].
This implies that

. (Bl .
%) - x*(0)| < mm_a .

That is,

llx™ I

e-o'[=8 = a0 -x" O <= g

3 Fixed points and stability
Exactly like its discrete counter part, dynamical system (1.1)-(1.2) has two fixed points

which are the solutions of the equation

x=1+px—ax’

So, we have
() B-1)+/(1-pB)?+4a
fix)1 = % »
ey = BV =P da
e 20 '

Obviously, they exist only for (1 — 8)? + 4a > 0 [15]. To determine the stability of a fixed
point, consider a small perturbation from the fixed point by letting

x(t) = xay + €A,
Substituting in (2.2) we get
xhix + €0h =1+ B (% + €0A ) — o (xix + GOAHZ)Z,
which implies that the fixed points are asymptotically stable if all roots of the equation
1= BAT = 2o h " (3.1)
satisfy |A| < 1, where x(£) = xgx + €A, Here we study three cases:
« 11 =1y then (xq4); is stable if (1 — B)? + 4« < 4.
o 1y =2r; then (xgy); is stable if 28 + 4 < 3.
o 1 =2ry then (x5y); is stable if o« < 2(1 - B)*.
In all the simulations, r; and r, are rationally dependent.

Figure 1 illustrates the trajectories of (1.3), while Figure 2 illustrates the trajectories of
(1.1).
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Figure 1 Trajectories of (1.3) with = 1.2 and 8 =0.4.
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Figure 2 Trajectories of (1.1) witha =1.2, $=04,andri=r, =1.

4 Bifurcation and chaos
In this section we show, by numerical experiments illustrated by bifurcation diagrams,
that the dynamical behavior of discontinuous (sectionally continuous) dynamical system
(1.1)-(1.2) is completely affected by the change in both  and T [17]. We consider three
cases for different delays r; and r, as follows.

e Casel: 1y > rs.

Let B = 0.3 be fixed and vary « from 0 to 1.4 with step size 0.001 and the initial condition
(%0,%0) = (0.3,0).

Take 1 =2 and r, =1 and ¢ € [0,150] in (1.1)-(1.2) (Figure 3).

Take r; = 0.50 and 7, = 0.25 and ¢ € [0,38] in (1.1)-(1.2) (Figure 4).

Take r; = 0.3 and r, = 0.1 and ¢ € [0,20] in (1.1)-(1.2) (Figure 5).

Take r; = 0.25 and r, = 0.15 and ¢ € [0,15] in (1.1)-(1.2) (Figure 6).

Page 6 of 14
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Figure 3 Bifurcation of (1.1)-(1.2) whenr; =2
andr,=1andt €[0,150].
= j
14
Figure 4 Bifurcation of (1.1)-(1.2) when r; =0.50
andr, =0.25and t € [0,38].
= j
o o0z 04 08 08 1 12 14
o
Figure 5 Bifurcation of (1.1)-(1.2) when r; =0.3 (=0.3
andr, =0.1 and t € [0, 20]. 5 ‘ " ‘ ‘
1 -
x 05 1
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o
Figure 6 Bifurcation of (1.1)-(1.2) when r; =0.25 . p=-03
andr, =0.15and t € [0, 15].
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We see clearly in Figure 3 the bifurcation from a stable fixed point to a stable orbit of
period two at o = 0.4, and then the bifurcation from period two to period four at « = 0.9.

The further period doubling occurs at decreasing increments in «, and the orbit becomes

chaotic for o >~ 1.1.

e Case 2: 1| =15.

Take r; =r, =1 and ¢ € [0,100] in (1.1)-(1.2) (Figure 7).
Take 1 =, =2 and ¢ € [0,200] in (1.1)-(1.2) (Figure 8).
Take r; =r, =0.1and ¢ € [0,10] in (1.1)-(1.2) (Figure 9).
Take r; =r, =0.2 and ¢ € [0,15] in (1.1)-(1.2) (Figure 10).

Figure 7 Bifurcation of (1.1)-(1.2) when
ri=rp,=1andte[0,100].

0.2

Figure 8 Bifurcation of (1.1)-(1.2) when
ri=rp=2andt e [0,200].

0.2

Figure 9 Bifurcation of (1.1)-(1.2) when
ri=ry=0.1andte€[0,10].

0.2
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Figure 10 Bifurcation of (1.1)-(1.2) when p=-0.6
r=r;=0.2andte[0,15]. ® ‘ ‘
1
05
> a
05
-1
0 0z 04 06 08 1 12 14
o
Figure 11 Bifurcation of (1.1)-(1.2) whenr; =1 (=0.3

andr, =2andt €[0,200].

Figure 12 Bifurcation of (1.1)-(1.2) when r; = 0.1 p=0.3
and r; =0.2 and t € [0, 20]. ' " ' '

e Case3:r <.

Take r; =1and r, =2 and ¢ € [0,200] in (1.1)-(1.2) (Figure 11).
Take 1 = 0.1 and r, = 0.2 and ¢ € [0,20] in (1.1)-(1.2) (Figure 12).
Take 71 = 0.25 and r, = 0.75 and ¢ € [0,30] in (1.1)-(1.2) (Figure 13).
Take r; = 0.15 and r, = 0.25 and ¢ € [0,50] in (1.1)-(1.2) (Figure 14).

5 Chaotic attractor
In this section we are interested in studying the chaotic attractor for three different cases.

e Casel:ry>ry.
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Figure 13 Bifurcation of (1.1)-(1.2) when
ri=0.25andr, =0.75and t € [0, 30].

Figure 14 Bifurcation of (1.1)-(1.2) when
r1=0.15and r, =0.25 and t € [0, 50].

Figure 15 Chaotic attractor of (5.1)-(5.2).

Here we rewrite system (1.1)-(1.2) as follows:

x(2) = 1+ Bx(t —ry) —ay(t — ra), (5.1)
y(0) = &> (£—(r1—1)). (5.2)

It is worth here to mention what we get when we plot the chaotic attractor for system
(5.1)-(5.2) in this case. Figure 15 shows the chaotic attractor when r; =2 and r, = 1, while
Figure 16 shows the chaotic attractor of the same when r; = 0.25 and r, = 0.15.

eCase2:ri=ry=r.
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Figure 16 Chaotic attractor of (5.1)-(5.2). o=1.2p=-03

Figure 17 Chaotic attractor of (5.3)-(1.2) with a=1.2, p=0.4
rn=ra=1,tel0,75]. 05 ”""*::3' " " "

>
05 4
fil 0‘5 6 0.5 ;
X
Figure 18 Chaotic attractor of (5.3)-(1.2) with a=1.2, p=0.4
rn=r,=0.1,tel0,7.5]. 05 . " " " ]
0 J
>
05 4
fil 0‘5 6 0.5 ;
X
Here system (1.1)-(1.2) is rewritten as
x(t)=1—ax®(t—7) + Bx(t — 1) (5.3)
with
x(t) =x9, t=<O. (5.4)

In this case, the chaotic attractor for r; = r, =1 and r; = r, = 0.1 looks like in Figures 17
and 18.
e Case3:r; > 1.
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Figure 19 Chaotic attractor of (5.5)-(5.6). a=1.2,=0.4

Figure 20 Chaotic attractor of (5.5)-(5.6). =-03

005

015

025 1 L . 1 1 L s
02 03 0.4 05 06 o7 0s 09 1

X
Here we also rewrite system (1.1)-(1.2) as follows:
x(t)=1—ax’(t—r)+ y(t—r), (5.5)
y(t) = Bx(t — (rp — 11)). (5.6)

Here we show the chaotic attractor for system (5.5)-(5.6). Figure 19 shows the chaotic
attractor when r; = 1 and r, = 2, while Figure 20 shows the chaotic attractor of the same
system but with r, = 0.15 and r, = 0.25.

Since the Lyapunov exponent is a good indicator for the existence of chaos [18-21], we
compute the Lyapunov characteristic exponents (LCEs) via the Householder QR-based
methods described in [22]. LCEs play a key role in the study of nonlinear dynamical sys-
tems, and they are a measure of sensitivity of solutions of a given dynamical system to
small changes in the initial conditions. One feature of chaos is sensitive dependence on
initial conditions; for a chaotic dynamical system, at least one LCE must be positive. Since
for non-chaotic systems all LCEs are non-positive, the presence of a positive LCE has often
been used to help determine if a system is chaotic or not. Figure 21 shows the LCEs for sys-
tem (1.1)-(1.2) in the case r; > r; for B = 0.3 with the initial conditions (xo, y0) = (0, 0). With
these parameter values, we find that LCE1 = 0.3228 and LCE2 = -1.2461. While Figure 22
shows the LCEs for the same system in the case r; < r, for 8 = —0.5 with the same initial
conditions, we find that LCE1 = 0.1318 and LCE2 = —0.8153. Finally, Figure 23 shows the
LCE:s for system (1.1)-(1.2) in the case r; = r, for parameter values 8 = —0.6 with the same
initial conditions. We find that LCE1 = 0.3228 and LCE2 = -1.2460.
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Figure 21 LCEs of (5.1)-(5.2) when ry > r;.
w
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Figure 22 LCEs of (5.1)-(5.2) when ry <r;. 04
02 4
] ‘.’ﬂi
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o
Figure 23 LCEs of (5.1)-(5.2) when ry =r,.
w -
3}
-
14

6 Conclusion

The discontinuous (sectionally continuous) dynamical system of the Henon map describes
dynamical properties for different values of the parameters r,r, € R* when the time
t € [0, T is continuous. Indeed, the stability of fixed points depends on the values of delay
parameters r; and r, as we have seen. The bifurcation diagrams, as well, depend on the
values of delay parameters r; and r, and the time interval [0, T]. We have also noticed that
the chaotic attractor of the discontinuous (sectionally continuous) Henon system in its
different versions is also affected by the change in ry, r; and the time interval [0, T]. On
the other hand, from Figures 3-4, 7-8, and 11-12 it looks like there is a scale that gives iden-
tical chaotic behavior. To summarize, our analytical result (3.1) agrees with the numerical
simulations.
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