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Abstract
The conception of memristor lead to a new approach in nonlinear circuit design. In
this paper, the compound synchronization of the fourth-order memristor oscillator is
studied. The proposed scheme of compound synchronization is described by three
drive systems (a scaling drive system, two base drive systems) and one response
system. The version of synchronization is advantageous in circuit application due to
the novel structure. As a generalization of the obtained results, secure
communication via compound synchronization is discussed in detail.
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1 Introduction
Recently, lots of nonlinear memristor oscillators based on Chua’s circuits have been pro-
posed [–]. The feature of pinched hysteresis in memristor oscillators has directed a
lot of attention to this exciting field. In these circuit implementations, the conventional
Chua diode is replaced by nonlinear memristors. The analytical and emulational results
demonstrate unprecedented phenomena in the field of memristor oscillators, which may
represent a new paradigm in the theory, design and application of electronic circuits [–
, , , ]. The unprecedented phenomena have successfully been applied into chaotic
circuits, sensitive control systems, etc. [, , ]. Many researchers are exploring a vari-
ety of technologies to accelerate the development of memristor oscillators. The nonlinear
characteristic of memristor inhibits the complexity of the analysis [–]. A number of
scholars are rethinking new theories, techniques and methods to analyze and investigate
such two-terminal passive element. With the flourishing applications, they had to uncork
new bottlenecks.
Based on the works in [] and [], in this paper, consider a fourth-order memristor os-

cillator with its dynamics described by the following equations:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕ̇(t) = v(t),
v̇(t) = 

CR
v(t) – 

CR
v(t) – 

C
W (ϕ(t))v(t),

v̇(t) = 
CR

v(t) – 
CR

v(t) – 
C

�(t),
�̇(t) = 

Lv(t),

()

where v(t) and v(t) denote voltages, C and C represent capacitors, W (ϕ(t)) is mem-
ductance function, ϕ(t), �(t), R, and L are magnetic flux, current, resistor, and inductor,
respectively.
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Using the mathematical model of the cubic memristor [, , ], the memductance func-
tion is given by

W
(
ϕ(t)

)
= a + bϕ(t), ()

where a and b are parameters. Similarly as in Reference [], a and b denote slope. Accord-
ing to the characteristic of the two-terminal memristor circuit (see, e.g., Itoh and Chua [],
p., p.), the values of a and b could be positive or negative.
The synchronization of memristor oscillator plays an important role in chaos control

and its application [, ].Wenotice that synchronization of complex systems and complex
networks has received significant attention [–]. In particular, complete synchroniza-
tion [, –], anti-synchronization [–], phase synchronization [, –], lag syn-
chronization [, –], projective synchronization [, –], and combination syn-
chronization [, ] have attracted phenomenal worldwide attention in view of many
potential applications. On applying the memristor oscillator to secure communication,
the typical approach is to transmit the information signal by means of one chaotic sys-
tem. This way is a simple approach that can be used in some cases, but definitely not in
all. An optimal design of secure communication via the memristor oscillator needs to im-
prove the complexity level of the driving signal and the modulation scheme used. Can we
compoundmultiple memristor oscillators to transmit the information signal?With such a
target in mind, it would be extremely helpful to develop some effective methods capturing
the behaviors of distinct memristor oscillators, in order to strengthen the security of com-
munication. Meanwhile, theoretical investigation can help to interpret the experimental
observations and predict complex circuit behavior.
Motivated by the above discussions, based on some ideas borrowed from the compound

design approach [], our aim in this paper is to explore the compound synchronization of
the fourth-ordermemristor oscillator (). Some new and effective synchronization criteria
are proposed for fourth-order memristor oscillator (). The derived results show that the
compound synchronization is an efficient solver for chaos control and its application. In
fact, the compound synchronization is capable to capture a wide class of memristor dy-
namics. In the scheme of compound synchronization, the drive systems are divided into
two categories: scaling drive system and base drive system, which is entirely different from
the conventional synchronization scheme. The scheme of compound synchronization is
then successfully extended to the study of secure communication.
The remaining part of this paper consists of four sections. Section  describes some

preliminaries. Themain theoretical results are stated in Section . Secure communication
via compound synchronization is given in Section . Finally, concluding remarks aremade
in Section .

2 Preliminaries
It is useful to first introduce the scheme of compound synchronization that is needed later.
Generally, compound synchronization is based on a scaling drive system, multiple base

drive systems and one response system. In some engineering applications and hardware
implementations, compound synchronization constituting of a scaling drive system, two
base drive systems and one response system is usually considered. Figure  describes a
schematic of compound synchronization scheme. In fact, compound synchronization has
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Figure 1 A schematic of compound synchronization scheme.

its particular physicalmeaning. For example, in Figure , the scaling drive system scales the
synthetic signals of two base drive systems, generating resultant signals, then the response
system tracks the resultant signals.
Next, we give specificmathematical descriptions of compound synchronization scheme.
Consider the scaling drive system

χ̇ = f(χ). ()

The two base drive systems are given by

χ̇ = f(χ), ()

χ̇ = f(χ), ()

and one response system is described by

χ̇ = f(χ) + u, ()

where we have the state vectors χ = (χ,χ, . . . ,χn)T , χ = (χ,χ, . . . ,χn)T , χ =
(χ,χ, . . . ,χn)T , χ = (χ,χ, . . . ,χn)T , the vector functions f(·), f(·), f(·), f(·) : �n →
�n, and u = (u,u, . . . ,un)T : �n × �n × · · · × �n → �n is the appropriate control input
that will be designed in order to obtain a certain control objective.

Definition  The drive systems ()-() are said to compound synchronize with the re-
sponse system () if there exist n-dimensional constant diagonal matrices A, A, A, and
A �=  such that

lim
t→+∞‖e‖ = lim

t→+∞
∥∥AX(AX +AX) –AX

∥∥ = , ()

where ‖ · ‖ is the vector norm, and e = (e, e, . . . , en)T is the synchronization error vector;
we have X = diag(χ,χ, . . . ,χn), X = diag(χ,χ, . . . ,χn), X = diag(χ,χ, . . . ,χn),
X = diag(χ,χ, . . . ,χn).

http://www.advancesindifferenceequations.com/content/2014/1/100


Wu and Zhang Advances in Difference Equations 2014, 2014:100 Page 4 of 16
http://www.advancesindifferenceequations.com/content/2014/1/100

Remark  As stated earlier, according to Definition , the physical implication of com-
pound synchronization is rather intuitive. The synthetic signals of two base drive systems
() and () are scaled via the scaling drive system (), then the response system () tracks
the resultant signals of drive systems ()-().

Remark InDefinition ,matricesA,A,A, andA are often called the scalingmatrices.
It is not hard to find that compound synchronization contains the multiplication of the
scaling drive system and multiple base drive systems. Moreover, the drive systems in the
scheme of compound synchronization can be completely identical or different.

Remark  The scheme of the compound synchronization is an improvement and exten-
sion of the existing synchronization schemes in the literature. When the scaling matri-
ces A �= , A =  or A = , the compound synchronization will degrade into a kind of
function projective synchronization. When the scaling matrices A =  or A = A = ,
the compound synchronization will change into chaos control. In addition, if the scal-
ing drive system () is removed, then the compound synchronization will be reduced to
combination synchronization. If the base drive systems () and () are removed, then the
compound synchronization will be reduced to complete synchronization.

3 Theoretical results
In this section, we are in the position to investigate our main theoretical results.
From () and (), it follows that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕ̇(t) = v(t),
v̇(t) = 

CR
v(t) – 

CR
v(t) – a

C
v(t) – b

C
ϕ(t)v(t),

v̇(t) = 
CR

v(t) – 
CR

v(t) – 
C

�(t),
�̇(t) = 

Lv(t).

()

By merging similar items,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕ̇(t) = v(t),
v̇(t) = 

CR
v(t) – [ 

CR
+ a

C
]v(t) – b

C
ϕ(t)v(t),

v̇(t) = 
CR

v(t) – 
CR

v(t) – 
C

�(t),
�̇(t) = 

Lv(t).

()

In order to facilitate discussion, wewould need tomake a rewrite for (). Let x(t) = ϕ(t),
x(t) = v(t), x(t) = v(t), x(t) = �(t), α = 

CR
, α = 

CR
+ a

C
, α = b

C
, α = 

CR
, α = 

C
,

α = 
L , then () is equivalent to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ẋ = x,
ẋ = αx – αx – αxx,
ẋ = αx – αx – αx,
ẋ = αx.

()

Remark System () is a vectorization system. To facilitate the discussion, by abandoning
dimension, in the subsequent discussion, we will study the rewritten system (). Mean-
while, since C and C represent capacitors, R denotes resistor, L denotes inductor, the
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Figure 2 Dynamics of Lyapunov exponents from the fourth-order memristor oscillator.

values of α, α, α, and α must be positive numbers. Generally, as the most characteris-
tic feature of the two-terminal memristor circuit (see, e.g., Itoh and Chua [], p.), the
slopes a and b are positive numbers, then the values of α and α are also positive.

Choosing the parameters α = ., α = ., α = ., α = , α = , α = , the
initial state x() = , x() = , x() = , x() = ., by means of a computer pro-
gram of MATLAB, the corresponding Lyapunov exponents of system () are .,
, –., –.. The numerical result is described in Figure . Clearly, there
is one positive Lyapunov exponent, which implies that system () is chaotic. In fact, sys-
tem () indeed generates chaotic behavior. Using MATLAB, we get the results shown in
Figure .

Remark  Sun et al. [] have discussed the compound design of memristor chaotic oscil-
lator system and obtained some interesting results. In [], the memristor oscillator model
is based on the circuit model in []. Thus, the scaling drive system is as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ẏ = y,
ẏ = �y + �y – �yy,
ẏ = y – y + y,
ẏ = –�y – �y.

By comparing the scaling drive system in [] with the scaling drive system () in this pa-
per, it is easy to find that the scale factors on the third equation of the scaling drive system
in [] are not imported. Conversely, in this paper, the introduced memristor oscillator
system is based on the circuit model in [], the scale factors are fully considered. What
is more, the circuit of () has more superior structure performances than the memristor
chaotic oscillator system in []. And then the scaling drive system () in this paper has
more a comprehensive and practical meaning. In fact, these scale factors play a significant
role in the design and implementation of the control scheme.
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Figure 3 3D Projections of the attractor from the fourth-order memristor oscillator.

Considering () as the scaling drive system, according to compound synchronization
scheme, obviously, we can choose the first base drive system described by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ẋ = x,
ẋ = βx – βx – βxx,
ẋ = βx – βx – βx,
ẋ = βx,

()

the second base drive system is given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ẋ = x,
ẋ = γx – γx – γxx,
ẋ = γx – γx – γx,
ẋ = γx,

()

and the response system is described by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ẋ = x + u,
ẋ = ηx – ηx – ηxx + u,
ẋ = ηx – ηx – ηx + u,
ẋ = ηx + u,

()

http://www.advancesindifferenceequations.com/content/2014/1/100
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where β, β, β, β, β, β, γ, γ, γ, γ, γ, γ, η, η, η, η, η, and η are parameters,
and u, u, u, and u are the control inputs to be designed.
In our synchronization scheme, denote A = diag(a,a,a,a), A = diag(a,a,

a,a), A = diag(a,a,a,a), and A = diag(a,a,a,a), thus

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
e = ax(ax + ax) – ax,
e = ax(ax + ax) – ax,
e = ax(ax + ax) – ax,
e = ax(ax + ax) – ax.

()

Obviously, we have

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ė = aẋ(ax + ax) + ax(aẋ + aẋ) – aẋ,
ė = aẋ(ax + ax) + ax(aẋ + aẋ) – aẋ,
ė = aẋ(ax + ax) + ax(aẋ + aẋ) – aẋ,
ė = aẋ(ax + ax) + ax(aẋ + aẋ) – aẋ.

()

Combining with ()-(), the synchronization error system () can be transformed
into the following form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ė = ax(ax + ax) + ax(ax + ax) – a(x + u),
ė = a(αx – αx – αxx)(ax + ax)

+ ax[a(βx – βx – βxx) + a(γx – γx – γxx)]
– a(ηx – ηx – ηxx + u),

ė = a(αx – αx – αx)(ax + ax)
+ ax[a(βx – βx – βx) + a(γx – γx – γx)]
– a(ηx – ηx – ηx + u),

ė = aαx(ax + ax) + ax(aβx + aγx)
– a(ηx + u).

()

Theorem  The drive systems ()-() compound synchronize with the response system
() if the control input is designed as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u = 
a

[ax(ax + ax + ax + ax) + ax(ax + ax)
+ αax(ax + ax) – ηax(ax + ax)
– (a + αa)x + ηax],

u = 
a

(
 – α[ax(ax + ax) – ax]
+ [ax(ax + ax) – ax]
+ α[ax(ax + ax) – ax]),

u = 
a

(
̃ – α[ax(ax + ax) – ax]
+ [ax(ax + ax) – ax]
+ α[ax(ax + ax) – ax]),

u = 
a

[ηax(ax + ax) – αax(ax + ax)
+ αax(ax + ax)
+ ax(βax + ax) + ax(γax + ax)
– ηax – αax – ηax – ax],

()

http://www.advancesindifferenceequations.com/content/2014/1/100
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where


 = a
(
αx – αx – αxx

)
(ax + ax)

+ ax
[
a

(
βx – βx – βxx

)
+ a

(
γx – γx – γxx

)]
– aηx + aηx + aηxx,


̃ = a(αx – αx – αx)(ax + ax) + ax
[
a(βx – βx – βx)

+ a(γx – γx – γx)
]
– aηx + aηx + aηx.

Proof For simplicity, we rewrite system () as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ė =� – ax – au,
ė =� – aηx + aηx + aηxx – au,
ė =� – aηx + aηx + aηx – au,
ė =� – aηx – au,

()

where

� = ax(ax + ax) + ax(ax + ax),

� = a
(
αx – αx – αxx

)
(ax + ax)

+ ax
[
a

(
βx – βx – βxx

)
+ a

(
γx – γx – γxx

)]
,

� = a(αx – αx – αx)(ax + ax)

+ ax
[
a(βx – βx – βx) + a(γx – γx – γx)

]
,

� = aαx(ax + ax) + ax(aβx + aγx).

()

Consider the following Lyapunov function:

V
(
e(t)

)
= V (e, e, e, e) =



(
e + e + e + e

)
.

Calculating the upper right Dini derivative of V along the trajectory of (), we have

D+V = eė + eė + eė + eė

= e(� – ax – au) + e
(
� – aηx + aηx + aηxx – au

)
+ e(� – aηx + aηx + aηx – au)

+ e(� – aηx – au). ()

On the basis of (), by direct computing, we have

� – ax – au = –e – αe + ηe,

� – aηx + aηx + aηxx – au = –e – αe + αe,

� – aηx + aηx + aηx – au = –e – αe + αe,

� – aηx – au = –e – ηe + αe.

()

http://www.advancesindifferenceequations.com/content/2014/1/100
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Together with () and (),

D+V = e(–e – αe + ηe) + e(–e – αe + αe) + e(–e – αe + αe)

+ e(–e – ηe + αe)

= –e – e – e – e

= –eTe, ()

where e = (e, e, e, e)T .
Let t >  be arbitrarily given; integrating the above equation () from  to t, we have

∫ t



∥∥e(s)∥∥ ds =
∫ t


–V̇ ds = V

(
e()

)
–V

(
e(t)

) ≤ V
(
e()

)
,

where ‖ · ‖ is the Euclidean vector norm.
Applying Barbalat’s lemma, we have ‖e(t)‖ →  as t → +∞. Hence, (e, e, e, e) →

(, , , ) as t → +∞. It implies that the drive systems ()-() compound synchronize
with the response system (). �

Remark  In Theorem , since we have the unique structural design in compound syn-
chronization, hence the control input used in Theorem  is a little more complicated. Just
as in [], the nonlinearity of the designed control law in the compound synchronization
scheme is high. How to design some less conservative criteria for compound synchroniza-
tion scheme? This issue will be the topic of future research.

Next, some corollaries follow easily from Theorem . These corollaries provide simpler
criteria for selecting the applicable control laws with easy implementation.

Corollary  The drive systems () and () function projective synchronize with the re-
sponse system () if the control input is designed as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u = 
a

[ax(ax + ax) + aaxx + αaaxx
– ηaaxx – (a + αa)x + ηax],

u = 
a

(
 – α[aaxx – ax] + [aaxx – ax] – αax),
u = 

a
(
̃ – α[aaxx – ax] + [aaxx – ax]

+ α[aaxx – ax]),
u = 

a
[ηaaxx – αaaxx + αaaxx

+ ax(βax + ax) – ηax – αax – ηax – ax],

where


 = aax
(
αx – αx – αxx

)
+ aax

(
βx – βx – βxx

)
– aηx + aηx + aηxx,


̃ = aax(αx – αx – αx) + aax(βx – βx – βx)

– aηx + aηx + aηx.

http://www.advancesindifferenceequations.com/content/2014/1/100


Wu and Zhang Advances in Difference Equations 2014, 2014:100 Page 10 of 16
http://www.advancesindifferenceequations.com/content/2014/1/100

Corollary  The drive systems () and () function projective synchronize with the re-
sponse system () if the control input is designed as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u = 
a

[ax(ax + ax) + aaxx + αaaxx
– ηaaxx – (a + αa)x + ηax],

u = 
a

(
 – α[aaxx – ax] + [aaxx – ax]
+ α[aaxx – ax]),

u = 
a

(
̃ – α[aaxx – ax] + [aaxx – ax]
+ α[aaxx – ax]),

u = 
a

[ηaaxx – αaaxx + αaaxx
+ ax(γax + ax) – ηax – αax – ηax – ax],

where


 = aax
(
αx – αx – αxx

)
+ aax

(
γx – γx – γxx

)
– aηx + aηx + aηxx,


̃ = aax(αx – αx – αx) + aax(γx – γx – γx)

– aηx + aηx + aηx.

Corollary  System () is asymptotically stabilizable if the control input is designed as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u = 
a

[–(a + αa)x + ηax],
u = 

a
[–aηx + aηx + aηxx – ax – ax – ax],

u = 
a

[–aηx + aηx + aηx – ax – ax – ax],
u = 

a
[–ηax – αax – ηax – ax].

Remark  It is well known that one common problem on the compound of multiple drive
systems is that the compound signal often is asymptotically stable or emanative. As a re-
sult, the dynamic behaviors would definitely do harm for the engineering designers, since
dynamic evolution evoked by the compound of multiple drive systems is either too easy
or completely useless. However, it is worth noting that the compound of multiple drive
systems in this paper can be still chaotic; accordingly, the dynamic evolution has the abil-
ity of being pseudorandom and sensitive to the initial value, and it has unpredictability of
path. This can be well applied to secure communication.

Remark  As is well known, the memristive oscillator system is still quite incipient and
to the best of our knowledge there is not a lot of results for exploring the synchronization
control. The proposed control scheme in this paper can offer some valuable guidance to
the research and application of memristor devices.

Now, we give a numerical example to illustrate the superiority of theoretical results via
computer simulations. Assume α = β = γ = η = ., α = β = γ = η = ., α = β =
γ = η = ., α = β = γ = η = , α = β = γ = η = , α = β = γ = η = . Choose
A = diag(a,a,a,a) = diag(, , , ), A = diag(a,a,a,a) = diag(, , , ), A =
diag(a,a,a,a) = diag(, , , ), A = diag(a,a,a,a) = diag(, , , ), then the
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control input in the scheme of compound synchronization can be designed as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u = x(x + x + x + x) + x(x + x + .x + .x)
– .x(x + x) – .x + .x,

u =
 – .[x(x + x) – x] + [x(x + x) – x]
+ .[x(x + x) – x],

u = 
̃ – .[x(x + x) – x] + [x(x + x) – x]
+ .[x(x + x) – x],

u = .x(x + x) – .x(x + x) + x(x + x)
+ x(x + x) + x(x + x) – .x – x – x,

where


 =
(
.x – .x – .xx

)
(x + x) + x

[(
.x – .x – .xx

)
+

(
.x – .x – .xx

)]
– .x + .x + .xx,


̃ = (x – x – x)(x + x) + x
[
(x – x – x) + (x – x – x)

]
– x + x + x.

Remark  Here we express an added illustration on the parameters selection αi, βi, γi,
ηi (i = , , . . . , ) in the numerical example above. These values used as parameters have
many benefits. One of the most evident features is that the nonlinear dynamics of mem-
ristor oscillator () are very rich.

Simulation result of the compound of three drive systems ()-() is depicted in Fig-
ure . The computer simulation suggests the compound of three drive systems ()-()
has a strange attractor, as shown in Figure , which has verified that the compound of drive
systems ()-() remains chaotic. Meanwhile, according to Theorem , the compound of
three drive systems ()-() can achieve synchronization of the response system (). Fig-
ure  depicts the time response of the synchronization error e(t) = (e(t), e(t), e(t), e(t))T .

4 The application in secure communication
As an application of the results obtained in the preceding section, secure communication
via compound synchronization is discussed in this section.
Let ζ (t) = r(t)[r(t) + r(t)] be the message signal to be received. Corresponding to this

message signal, adding it to the right of the first equation for the transmitter (three drive
systems), we have

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ẋ = x + r,
ẋ = αx – αx – αxx,
ẋ = αx – αx – αx,
ẋ = αx,

()

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ẋ = x + r,
ẋ = βx – βx – βxx,
ẋ = βx – βx – βx,
ẋ = βx,

()
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Figure 4 3D Projection of the attractor from the compound of multiple drive systems.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ẋ = x + r,
ẋ = γx – γx – γxx,
ẋ = γx – γx – γx,
ẋ = γx.

()

Select the output x of system (), the output x of system (), the output x of sys-
tem () as the transmitted signals. In our designed scheme, denote A = diag(a,a,a,
a), A = diag(a,a,a,a), A = diag(a,a,a,a), A = diag(a,a,a,a),
then construct the receiver as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋ = x + r + u,
ẋ = ηx – ηx – ηxx + u,
ẋ = ηx – ηx – ηx + u,
ẋ = ηx + u,
ṙ = k[ax(ax + ax) – ax],

()

where r is the message signal to be recovered, k is a parameter.
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Figure 5 Time response curve for synchronization error e(t) = (e1(t),e2(t),e3(t),e4(t))T .

Let the tracking error be

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

e = ax(ax + ax) – ax,
e = ax(ax + ax) – ax,
e = ax(ax + ax) – ax,
e = ax(ax + ax) – ax,
e = r(r + r) – r,

()

then the error dynamics is

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ė = aẋ(ax + ax) + ax(aẋ + aẋ) – aẋ,
ė = aẋ(ax + ax) + ax(aẋ + aẋ) – aẋ,
ė = aẋ(ax + ax) + ax(aẋ + aẋ) – aẋ,
ė = aẋ(ax + ax) + ax(aẋ + aẋ) – aẋ,
ė = dr(r+r)

dt – ke.

()

Since the eigenfrequency of the message signal ζ (t) = r(t)[r(t) + r(t)] is much smaller
than the oscillating frequency of the chaotic system in practice, then dr(r+r)

dt –ke ≈ –ke.

Theorem  If control input is designed as Theorem , and the message update law of r
satisfies

dr
dt

=


a – k

[
a

dr(ax + ax)
dt

+ a
dx(ar + ar)

dt
– k

dr(r + r)
dt

]
, ()
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then (e, e, e, e, e) → (, , , , ) as t → +∞. It implies that r can recover the message
signal ζ (t) = r(t)[r(t) + r(t)].

Proof Let

V
(
e(t)

)
= V (e, e, e, e, e) =



(
e + e + e + e + e

)
,

then the proof of Theorem  is very similar to the proof of Theorem  and thus is omitted
here for brevity. �

Remark  In the preceding discussion, we only touch upon the secure communication
via compound synchronization from a theoretical analysis point. As for how to encode
the message for secure communication via compound synchronization, one might con-
duct further research. Of course, this is another issue, which is on the level of engineering
practice.

Remark  In the existing literature, the secure communication via compound synchro-
nization has rarely been studied. By the above discussions in this paper, it is easy to see
that in theory, compound synchronization can greatly improve the complexity level of the
driving signal and themodulation schemeused. In [], secure communication via the com-
pound design of the memristor chaotic oscillator system has been discussed. It is worth
noting that the result of Theorem  in [] leaves room for improvement. In [], the mes-
sage update law of the message signal to be recovered is described as the first and second
derivatives of the states and the message signals to be received. The message update law
in our criterion contains just the first derivative of the states and the message signals to be
received. And consequently, the condition, which depends only on the first derivative of
the states and the message signals to be received, is easy to check. Therefore, our method
may be good in theory. In addition, the function V (e(t)) in Theorem  of Sun et al. [] is
V (e(t)) = V (e, e, e, e, e) = 

 (e

 + e + e) +


 (e + e). Obviously, strictly speaking, this

function V (e(t)) = V (e, e, e, e, e) = 
 (e


 + e + e) +


 (e + e) is a nonnegative func-

tion, not a Lyapunov function, since it fails tomeet positive definiteness. Thus, the derived
corresponding results based on the Lyapunov theory in [] are considered conservative.

5 Concluding remarks
In this paper, we have applied the compound of multiple drive systems to investigate the
synchronization control of a class of fourth-ordermemristor oscillator. The proposed con-
trol scheme theoretically guarantees the good control performance. The main disadvan-
tage of the obtained results lies in the highly nonlinear nature of the designed controller.
Finally, we have suggested an approach for a potential application of memristor oscillators
in secure communication. Therefore, the derived results may offer useful and broad-range
applications in electronics.
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