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Abstract
This paper discusses the global exponential stability of a class of difference equations.
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1 Introduction
Inmathematics and automatic control, an equation system is discussed as discrete or con-
tinuous one with the type of input variables and linear or nonlinear one according to the
relationship between the input and output. The stability of the equation systems always
catches researchers’ eyes. The Lyapunov function is important for stability theory and con-
trol theory, and its existence is a necessary and sufficient condition of stability for many
differential equation systems. Linear systems received more attention than nonlinear sys-
tems because of simplicity and controllability, and many good results are shown in the
textbooks and literature. Bastinec [] gives the sufficient condition for exponential stabil-
ity and estimation of solutions of linear differential systems with delay-dependence. Non-
linear systems are of interest to researchers and engineers because most physical systems
are inherently nonlinear in nature and difficult to solve. The converse Lyapunov problem
on the stability of nonlinear discrete dynamical systems is developed and studied by many
researchers (Gordon []; Ortega []; Mousa et al. []; Jiang andWang []; Wang et al. []).
Diblik [] considers a particular critical case and gives conditions for the stability of a zero
solution of difference systemswith quadratic nonlinearities using themethod of Lyapunov
functions and derives classes of stable systems. Furthermore, the author estimates the sta-
bility domains as well. Berezansky [] considers the asymptotic convergence of solutions
in discrete and difference equations with delay and gives strong sufficient conditions of the
asymptotic convergence of all solutions without computing the limits of the solutions as
n → ∞. It demonstrates that a difference equation is of exponential stability in Rn if and
only if there is a Lyapunov function which is an abstract presentation of system energy
(Mousa et al. []; Jiang andWang []; Wang et al. []; Wang et al. []). The inverse prob-
lem of exponential stability instead of the inverse Lyapunov function has been considered
from a different view in the recent literature (Wang et al. []; Wang and Xu []).
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Consider the following difference equation (Wang et al. []; Wang and Xu []):

xk+ = Txk , x ∈ D,k = , , , . . . , ()

where D ⊂ Rn is a bounded closed set, T :D → D is nonlinear and continuously differen-
tiable in D. Then T is a Lipschitz continuous operator. x∗ ∈ D is the unique equilibrium
point (fixed point). Wang et al. [], Wang and Xu [] show that system () is of expo-
nential stability in D if and only if T is contractive in D with a certain strongly equivalent
metric and also present a converse not only to the exponential stability of system () dif-
ferent from the Lyapunov function, but also to the Banach contraction theorem different
from the ones in Meyers [], Leader [], Opoitsev []. In other words, the two works
show that T is contractive in D with a certain strongly equivalent metric if its iterative se-
quence {xk} exponentially converges to x∗ for any initial point x ∈D. The result is helpful
to understand the exponential stability of x* from a different view. However, Wang et al.
[], Wang and Xu [] only consider nonlinear discrete dynamical systems in the bounded
set D. The problem whether the result can be extended to difference equations in an un-
bounded set still remains open. It is hard to answer for general difference equations.
This paper focuses on a class of important difference equations in Rn shown as follows:

xk+ = Txk , x ∈ Rn,k = , , , . . . , ()

where x∗ ∈ Rn is the unique equilibrium point and T : Rn → Rn is a continuous differ-
entiable nonlinear operator in Rn, and lim‖x‖→∞ sup‖T ′(x)‖ = λ <  holds for a positive
constant λ (e.g.,  < λ < ). System () includes the discrete-time neural network model in
Wang andXu [] and difference equations inWang et al. [],Wang andXu [] as the spe-
cial cases. The exponential stability of system () is developed and necessary and sufficient
conditions to be exponentially stable in Rn (namely, globally exponentially stable) are de-
rived. Particularly, we give the result that system () is of global exponential stability if and
only if T is contractive in Rn with a certain strongly equivalent metric. A simple method
to distinguish global exponential stability from global asymptotic stability is proposed.
The results in this paper are helpful to discover some properties of the global exponential
stability of system ().

2 Definition andmain results
A nonlinear operator T is Lipschitz continuous if ‖Tx – Ty‖ ≤ M · ‖x – y‖ is satisfied for
any x, y ∈ D and the given constant M (M > ), and contractive in E ⊂ Rn with a strongly
equivalentmetric d(·, ·) if there is a constant  < β <  such that d(Tx,Ty) ≤ β ·d(x, y) holds
for any x, y ∈ E. A metric function d(·, ·) : E × E → R+ is a strongly equivalent metric with
the vector norm ‖ · ‖ (or strongly equivalent with ‖ · ‖) in the set E ⊂ Rn if there are two
constants C ≥ C >  such that for any x, y ∈ E, the following inequalities hold (Wang and
Xu []):

C · d(x, y) ≤ ‖x – y‖ ≤ C · d(x, y). ()

The equilibrium point of some operator (for example, () or ()) is globally asymptotically
stable in Rn if it is stable in the sense of Lyapunov and limk→∞ xk = x∗ holds for any x ∈ Rn.
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And it is exponentially stable in the set E ⊂ Rn if there are constants M >  and  < α < 
such that for any initial point x in E and the positive integer k,

∥∥xk – x∗∥∥ ≤ M · αk · ∥∥x – x∗∥∥. ()

Let � be the set of all equivalent norms of ‖ · ‖, � be the set of all strongly equivalent
metrics of ‖ · ‖ in E ⊂ Rn and � be the set of all topologically equivalent metrics of ‖ · ‖
in E. Then the inclusion relationship � ⊂ � ⊂ � is satisfied. In other words, each equiva-
lent norm of ‖ · ‖ is also a strongly equivalent metric, and each strongly equivalent metric
is a topologically equivalent metric. Generally, T maybe is not contractive in Rn with any
equivalent norm even if system () is of exponential stability. Besides, system () is possibly
not of exponential stability in Rn even if T is contractive with certain topologically equiv-
alent metric (Wang and Xu []). In this paper, we show that strongly equivalent metrics
are a class of appropriate equivalent metric functions describing the exponential stability
of system ().
Suppose F : E → E is a Lipschitz continuous nonlinear operator in the arbitrary subset

E ⊂ Rn. Then the lub Lipschitz constants of F with ‖ · ‖ ∈ � and d(·, ·) ∈ � are defined as
follows, respectively (Wang and Xu []; Soderlind []):

L‖ ‖(F ,E) = sup
x,y∈E,x �=y

‖Fx – Fy‖
‖x – y‖ , Ld(F ,E) = sup

x,y∈E,x �=y
d(Fx,Fy)
d(x, y)

, ()

where L‖ ‖(F ,E) and Ld(F ,E) are two functions determined by F ,E and ‖·‖ or d(·, ·). Hence,
for any x, y ∈ E, one obtains

‖Fx – Fy‖ ≤ L‖ ‖(F ,E) · ‖x – y‖, d(Fx,Fy)≤ Ld(F ,E) · d(x, y).

Wang and Xu [] give the result that limk→∞ L‖ ‖(Fk ,E)/k and limk→∞ Ld(Fk ,E)/k exist
and the following formulas hold:

lim
k→∞

Ld
(
Fk ,E

)/k = lim
k→∞

L‖ ‖
(
Fk ,E

)/k = inf
k
L‖ ‖

(
Fk ,E

)/k .

Denote Lip(F ,E) = limk→∞ L‖ ‖(Fk ,E)/k . Then Lip(T ,E) is a constant independent of dif-
ferent equivalent norms or strongly equivalent metrics. L‖ ‖(F ,E) and Lip(T ,E) can be
regarded as nonlinear generalizations of the matrix norm and matrix spectral radius. By
Wang and Xu [], one can have

Lip(F ,E) = inf
d(·,·)∈�

Ld(F ,E). ()

Namely, Lip(T ,E) is a minimum Lipschitz constant. Furthermore, F is contractive in
E with respect to a certain strongly equivalent metric in � if and only if Lip(F ,E) <  or
L‖ ‖(Tm,E) <  holds for a positive integer m.

Lemma  In system (), L‖ ‖(T ,Rn) < ∞ holds. And for any x ∈ Rn and a positive integer j,
one obtains ‖(Tj)′(x)‖ ≤ L‖ ‖(Tj,Rn) ≤ L‖ ‖(T ,Rn)j.

http://www.advancesindifferenceequations.com/content/2013/1/9


Fu et al. Advances in Difference Equations 2013, 2013:9 Page 4 of 10
http://www.advancesindifferenceequations.com/content/2013/1/9

Hence, the nonlinear operator T in system () is Lipschitz continuous in Rn. The main
results of this paper are presented below.

Theorem  In system (), the following five conditions are equivalent:
(A) x* is globally exponentially stable in Rn.
(B) x* is globally asymptotically stable in Rn and ρ(T ′(x∗)) < .
(C) Lip(T ,Rn) < .
(D) T is contractive in Rn with certain strongly equivalent metrics of ‖ ‖.
(E) The power of T is contractive in Rn with the norm ‖ ‖, i.e., there exist a positive

integer m and a constant  < β <  such that ‖Tmx – Tmy‖ ≤ β · ‖x – y‖ holds for
any x, y ∈ Rn.

As long as system () is of global exponential stability, we have Lip(T ,Rn) < α, and for
any sufficiently small ε ∈ (,  – Lip(T ,Rn)), Lip(T ,Rn) + ε is an exponential bound. Here,
α =max{λ,ρ(T ′(x∗))} and ρ(T ′(x∗)) is the spectral radius of the Jacobian matrix T ′(x∗).
Theorem  shows thatwe can distinguish global exponential stability fromglobal asymp-

totic one for system () by calculating the spectral radius of the Jacobian matrix at the
equilibrium point x∗, namely, ρ(T ′(x∗)). It tells us that the global exponential stability of
system () is equivalent to the contractive property of the nonlinear operator T with cer-
tain strongly equivalent metrics of the norm ‖ · ‖. It actually describes a new converse
to the Banach contraction theorem differing from the ones in Meyers [], Leader [],
Opoitsev [].

Theorem  In system (), assume lim‖x‖→∞ sup‖T ′(x)‖ ≤ ρ(T ′(x∗)). If x∗ is globally ex-
ponentially stable in Rn, then Lip(T ,Rn) = ρ(T ′(x∗)) and ρ(T ′(x∗)) is the infimum of all
exponential bounds of convergent trajectories. Particularly,

∥∥xk – x∗∥∥ ≤ C(ε)
C(ε)

· (ρ(
T ′(x∗)) + ε

)k · ∥∥x – x∗∥∥

holds for any ε >  and x ∈ Rn, where C(ε) > C(ε) >  are the same constants as in The-
orem .

Theorem  shows that exponential bounds of convergent trajectories describing the
global property of trajectory motion in the whole space actually can be determined by
the local information at the equilibrium point, namely ρ(T ′(x∗)).

3 Proofs
In this section, the proofs of results and theorems will be given.

Proof of Lemma  Since lim‖x‖→∞ sup‖T ′(x)‖ = λ, for any ε > , there is b >  such that
‖T ′(x)‖ ≤ λ + ε as ‖x – x∗‖ ≥ b. Let F(b) = {x ∈ Rn : ‖x – x∗‖ ≤ b}. Since T is continuously
differentiable in Rn, ‖T ′(x)‖ is a continuous function in the compact set F(b). Thus, we
have supz∈F(b) ‖T ′(z)‖ < ∞. This implies that M = supz∈Rn ‖T ′(z)‖ < ∞ holds. From the
mid-value theorem, for any x, y ∈ Rn, one obtains

‖Tx – Ty‖ ≤ sup
z∈Rn

∥∥T ′(z)
∥∥ · ‖x – y‖ ≤ M · ‖x – y‖.
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This implies that L‖ ‖(T ,Rn) ≤ M < ∞ holds. Since Tj is continuously differentiable, with
the definition of the Gateaux differential, for any x ∈ Rn and any h ∈ Rn with ‖h‖ = ,

∥∥(
Tj)′(x) · h∥∥ = lim

t→+
‖Tj(x + t · h) – Tjx‖

t
= lim

t→+
‖Tj(x + t · h) – Tjx‖

‖t · h‖ ≤ L‖ ‖
(
Tj,Rn).

This implies that

∥∥(
Tj)′(x)

∥∥ = sup
‖h‖=

∥∥(
Tj)′(x) · h∥∥ ≤ L‖ ‖

(
Tj,Rn) ≤ L‖ ‖

(
T ,Rn)j.

The proof is done. �

Proof of Theorem  The equivalent relationships between (C), (D) and (E) can be easily
gotten fromWang and Xu []. And it is also easy to deduce (B) from (A). Next, we mainly
prove (C) ⇒ (A) and (B) ⇒ (C).
Firstly, prove (C) ⇒ (A).
If Lip(T ,Rn) < , then system () is of global exponential stability in Rn. With equation

(), for any sufficiently small ε ∈ (,  – Lip(T ,Rn)), there is a strongly equivalent metric
dε(·, ·) ∈ � such that Ldε (T ,Rn) ≤ Lip(T ,Rn) + ε < . Assume that dε(·, ·) and ‖ · ‖ have the
following strongly equivalent relationships:

C(ε) · dε(x, y)≤ ‖x – y‖ ≤ C(ε) · dε(x, y) ∀x, y ∈ Rn, ()

where C(ε) > C(ε) >  are two constants. For any positive integer k and any x ∈ Rn, we
have

∥∥Tkx – x∗∥∥ =
∥∥Tkx – Tkx∗∥∥ ≤ C(ε) · dε

(
Tkx,Tkx∗)

≤ C(ε) · Ldε

(
T ,Rn)k · dε

(
x,x∗)

≤ C(ε) · (Lip(T ,Rn) + ε
)k · dε

(
x,x∗)

≤ C(ε)
C(ε)

· (Lip(T ,Rn) + ε
)k · ∥∥x – x∗∥∥. ()

Thus, system () is of global exponential stability in Rn with the exponential bound
Lip(T ,Rn) + ε.
Secondly, prove (B) ⇒ (C); namely, if system () is of global exponential stability in Rn

and ρ(T ′(x∗)) < , then Lip(T ,Rn) < .
Since lim‖x‖→∞ sup‖T ′(x)‖ = λ ≤ α < , for any ε ∈ (,  – α), there is a constant b > 

such that ‖T ′(x)‖ ≤ α + ε <  as ‖x – x∗‖ ≥ b. Let E(b) = {x ∈ Rn : ‖x – x∗‖ > b}, F(b) = {x ∈
Rn : ‖x – x∗‖ ≤ b}, B(b) = {x ∈ Rn : ‖x – x∗‖ ≤ b}. For any z ∈ E(b) and any given positive
integer m, if Tiz ∈ E(b) holds for any positive integer i = , , . . . ,m – , then by the chain-
rule of derivative, one gets

∥∥(
Tm)′(z)

∥∥ =

∥∥∥∥∥
m∏
i=

T ′(Tm–iz
)∥∥∥∥∥ ≤

m∏
i=

∥∥T ′(Tm–iz
)∥∥ ≤ (α + ε)m. ()

For the fixed ε ∈ (, –α), there exists an equivalent norm ‖·‖ε such that the subordinated
matrix norm ‖T ′(x∗)‖ε ≤ ρ(T ′(x∗)) + ε/. Since T is continuously differentiable, ‖T ′(x)‖ε
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is a continuous function of x ∈ Rn. It implies that there exists a spherical neighborhood
U(r) = {x ∈ Rn : ‖x – x∗‖ε ≤ r} such that for any x ∈U(r),

∥∥T ′(x)
∥∥

ε
≤ ∥∥T ′(x∗)∥∥

ε
+ ε/ ≤ ρ

(
T ′(x∗)) + ε.

By the mid-value theorem, for any x, y ∈U(r), we have

‖Tx – Ty‖ε ≤ sup
z∈U(r)

∥∥T ′(z)
∥∥

ε
· ‖x – y‖ε ≤ (

ρ
(
T ′(x∗)) + ε

) · ‖x – y‖ε . ()

If system () is of global exponential stability in Rn, it is globally uniformly asymptotically
stable in Rn as well (Elaydi []). Therefore, there exists a positive integer N such that for
any positive integer k ≥ N and any x ∈ B(b), Tkx ∈U(r) holds. With equation (), for any
x, y ∈ B(b), if k >N , we have

∥∥Tkx – Tky
∥∥

ε
≤ (

ρ
(
T ′(x∗)) + ε

) · ∥∥Tk–x – Tk–y
∥∥

ε
≤ · · ·

≤ (
ρ
(
T ′(x∗)) + ε

)k–N · ∥∥TNx – TNy
∥∥

ε

≤ (
ρ
(
T ′(x∗)) + ε

)k–N · L‖ ‖ε

(
T ,Rn)N · ‖x – y‖ε .

It implies that for any positive integer k >N , one obtains

L‖ ‖ε

(
Tk ,B(b)

) ≤ (
ρ
(
T ′(x∗)) + ε

)k–N · L‖ ‖ε

(
T ,Rn)N .

Since L‖ ‖ε (T ,Rn) <∞, then

Lip
(
T ,B(b)

)
= lim

k→∞
L‖ ‖ε

(
Tk ,B(b)

)/k

≤ lim
k→∞

(
ρ
(
T ′(x∗)) + ε

)(k–N)/k · lim
k→∞

L‖ ‖ε

(
T ,Rn)N/k

≤ (
ρ
(
T ′(x∗)) + ε

)
.

Lip(T ,B(b)) ≤ ρ(T ′(x∗)) holds for ε is an arbitrary positive number. Thus, there exists a
positive integerN such that L‖ ‖(Tk ,B(b))≤ (ρ(T ′(x∗))+ε)k for the fixed ε >  as a positive
integer k ≥ N. For any positive integer k ≥ N, Tk is continuously differentiable, and for
any x ∈ F(b)⊂ B(b), x is an inner point ofB(b). By the definition of theGateaux differential,
for any x ∈ F(b), k ≥ N and h ∈ Rn with ‖h‖ = , one can obtain

∥∥(
Tk)′(x) · h∥∥ = lim

t→+
‖Tk(x + t · h) – Tkx‖

t
= lim

t→+
‖Tk(x + t · h) – Tkx‖

‖t · h‖
≤ L‖ ‖

(
Tk ,B(b)

)
.

It implies that for any x ∈ F(b) and k ≥ N,

∥∥(
Tk)′(x)

∥∥ = sup
‖h‖=

∥∥(
Tk)′(x) · h∥∥ ≤ L‖ ‖

(
Tk ,B(b)

)

≤ (
ρ
(
T ′(x∗)) + ε

)k ≤ (α + ε)k ()
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holds. For any z ∈ Rn, either z ∈ F(b) or z ∈ E(b), the result that if z ∈ F(b), then
‖(Tk)′(z)‖ ≤ β holds for any positive integer k ≥ N is shown above. Next, we will prove
that a similar result exists for any z ∈ E(b). For any given z ∈ E(b) and any given positive
integer k ≥ N, there are the following two different cases.
Case : Tiz ∈ E(b) for any positive integer i < k. From equation (), one may have

‖(Tk)′(z)‖ ≤ (α + ε)k .
Case : There exists a positive integer j < k such that Tiz ∈ E(b) for any positive integer

i < j and Tjz ∈ F(b). If k – j ≥ N, then by the chain-rule of derivative and equations ()
and (), we have

∥∥(
Tk)′(z)

∥∥ =
∥∥(
Tk–j)′(Tjz

) · (Tj)′(z)
∥∥

≤ ∥∥(
Tk–j)′(Tjz

)∥∥ · ∥∥(
Tj)′(z)

∥∥
≤ (α + ε)k–j · (α + ε)j ≤ (α + ε)k .

If k – j <N, then from equation () and Lemma , one gets

∥∥(
Tk)′(z)

∥∥ =
∥∥(
Tk–j)′(Tjz

) · (Tj)′(z)
∥∥ ≤ ∥∥(

Tk–j)′(Tjz
)∥∥ · ∥∥(

Tj)′(z)
∥∥

≤ L‖ ‖
(
T ,Rn)k–j · (α + ε)j ≤ (α + ε)k ·

(
L‖ ‖(T ,Rn)

α + ε

)k–j

. ()

Since ε >  is an arbitrary positive number, with equation (), we have ‖(Tk)′(z)‖ ≤ αk ·
( L‖ ‖(T ,Rn)

α
)k–j. And since ‖T ′(x)‖ ≤ L‖ ‖(T ,Rn) holds for any x ∈ Rn (Wang et al. []), we have

λ ≤‖ ‖ L(T ,Rn) and ρ(T ′(x∗)) ≤ L‖ ‖(T ,Rn). It implies that L‖ ‖(T ,Rn)
α

≥  and ‖(Tk)′(z)‖ ≤
αk · ( L‖ ‖(T ,Rn)

α
)N .

From the above two cases, for any k ≥ N and z ∈ E(b),

∥∥(
Tk)′(z)

∥∥ ≤ (α + ε)k ·
(
L‖ ‖(T ,Rn)

α

)N

. ()

By combining equations () and (), one can conclude that for any positive integer k ≥ N

and any z ∈ Rn,

∥∥(
Tk)′(z)

∥∥ ≤ (α + ε)k ·
(
L‖ ‖(T ,Rn)

α

)N

.

For any x, y ∈ Rn and k ≥ N,

L‖ ‖
(
Tk ,Rn) = sup

x,y∈Rn ,x �=y
‖Tkx – Tky‖

‖x – y‖ ≤ sup
z∈Rn

∥∥(
Tk)′(z)

∥∥ ≤ (α + ε)k ·
(
L‖ ‖(T ,Rn)

α

)N

.

It implies that

Lip
(
T ,Rn) = lim

k→∞
L‖ ‖

(
Tk ,Rn)/k ≤ (α + ε) · lim

k→∞

(
L(T ,Rn)

α

)N
k
= α + ε < .

Since ε is an arbitrary positive number, Lip(T ,Rn) ≤ α holds. �
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Proof of Theorem  Since system () is of global exponential stability in Rn, there are con-
stants M >  and  < α <  such that for any x ∈ Rn and any positive integer k, we have
‖xk – x∗‖ ≤ M · αk · ‖x – x∗‖. With Lemma , for any positive integer k and x ∈ Rn, then
‖(Tk)′(x∗)‖ ≤ L‖ ‖(Tk ,Rn). By the chain-rule of derivative, for any given positive integer k,
one obtains (Tk)′(x∗) =

∏k
i=T ′(Tk–ix∗) = T ′(x∗)k . This implies that

ρ
(
T ′(x∗)) = lim

k→∞
∥∥T ′(x∗)k∥∥/k = lim

k→∞
∥∥(
Tk)′(x∗)∥∥/k

≤ lim
k→∞

L‖ ‖
(
Tk ,Rn)/k = Lip

(
T ,Rn).

Lip(T ,Rn) ≤ α = ρ(T ′(x∗)) holds from Theorem  and Lip(T ,Rn) = ρ(T ′(x∗)) if system ()
is globally exponentially stable in Rn. And from equation (), for any ε >  and k, we have

∥∥Tkx – x∗∥∥ ≤ C(ε)
C(ε)

· (Lip(T ,Rn)+ ε
)k ·∥∥x – x∗∥∥ =

C(ε)
C(ε)

· (ρ(
T ′(x∗))+ ε

)k ·∥∥x – x∗∥∥,

where C(ε) ≥ C(ε) >  are the same constants as in equation (). It implies that ρ(T ′(x∗))
is not less than the infimum of exponential bounds of convergent trajectories. Moreover,
from Wang et al. [], Wang and Xu [] if system () is of global exponential stability in
Rn with an exponential bound α, then α ≥ ρ(T ′(x∗)). Therefore, ρ(T ′(x∗)) is not larger
than the infimum of exponential bounds of convergent trajectories. Finally, ρ(T ′(x∗)) is
the infimum of exponential bounds of convergent trajectories. �

4 Examples
In this section, we present two examples to clarify the concepts introduced in this paper
and apply the obtained results to several concrete nonlinear discrete systems.

Example  Consider the following recurrent neural network model studied in Jin []:

xk+ = –Axk +WF(Bxk) + u, x ∈ Rn, ()

where x* ∈ Rn is an equilibriumpoint,A = diag{a,a, . . . ,ann} is a diagonal state feedback
coefficient matrix, B = diag{b,b, . . . ,bnn} with bii >  is the activation gain matrix; the
interconnection matrixW is the lower triangular given by

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

w   · · · 
w w  · · · 
w w w · · · 
...

...
... · · · ...

wn wn wn · · · wnn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

F(x) = (f(x), f(x), . . . , fn(xn))T is the activationmapping that is diagonally nonlinear, con-
tinuously differentiable in Rn, and each fi satisfies  < fi′(xi) <  for any xi ∈ R.
In Jin et al. [], it has been shown that () will be of global asymptotical stability in Rn

if |aii|+ |wii|bii <  for any  ≤ i ≤ n. In Wang and Xu [], () is proven to be of the global
exponential stability of x* in a bounded convergence region. Since the global exponential
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stability in the whole space is more interesting than in a bounded region, we will focus on
it in the following.
Denote T(x) = –Ax+WF(B(x))+u, x ∈ Rn. Then it is easy to see that the Jacobianmatrix

of T at x* is given by T ′(x*) = –A +WF ′(B(x*))B and its eigenvalues are given by

–aii +wii · f ′
i
(
bii · x*i

) · bii :  ≤ i ≤ n.

Thus, whenever |aii|+ |wii|bii < , we have ρ(T ′(x*)) <  and lim‖x‖→∞ sup‖T ′(x)‖ < ; thus
system () is of global exponential stability.

Example  Consider a general class of discrete-time dynamic neural networks with con-
tinuous states described in (Jin []) as follows:

x(k + ) = –Ax(k) +Wσ
[
ψx(k)

]
+ s, ()

where x = (x,x, . . . ,xn)T is the neural state vector,W = (wij)n×n is the synaptic weightma-
trix, s = (s, s, . . . , sn)T is the constant threshold vector, A = diag{a,a, . . . ,an} with |ai| < 
is the feedback coefficient matrix,ψ = diag{μ,μ, . . . ,μn} is the matrix of activation gains
for controlling state decaying, and σ (ψx) = (σ (μx),σ (μx), . . . ,σ (μnxn))T is the vector-
valued activation function with a gain matrix ψ .
The nonlinear neural activation function σ (·) may be chosen as a continuous and differ-

entiable nonlinear sigmoid function satisfying the following conditions: () σ (x)→ ± as
x → ±∞; () σ (x) is boundedwith the upper bound  and the lower bound –; () σ (x) = 
at a unique point x = ; () σ ′(x) >  and σ ′(x)→  as x→ ±∞; and () σ ′(x) has a global
maximal value one.
Jin [] only shows the global asymptotic stability of system (). The global exponential

stability is discussed as follows.
Denote T(x) = –Ax + Wσ (ψx) + s, x ∈ Rn, then T ′(x) = –A + Wσ ′(ψx)ψ . From

‖T ′(x)‖ ≤ ‖A‖ + ‖Wσ ′(ψx)ψ‖ and σ ′(x) →  as x → ±∞, it is easy to know that
lim‖x‖→∞ sup‖T ′(x)‖ <  as  < |ai| < . If ρ(T ′(x*)) <  is obtained at x*, then system ()
is of global exponential stability.
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