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Abstract

In this paper, we rigorously prove the existence of chaos in a class of delay difference
equations, which can be viewed as a discrete analogue of a one-dimensional delay
differential equation by using the Euler discretization. We first transform this class of
delay difference equations into a high-dimensional discrete dynamical system. Then
we prove that the map of the system is chaotic in the sense of both Devaney and
Li-Yorke under some conditions, by employing the snap-back repeller theory. Finally,
we give some computer simulations to illustrate the theoretical result.
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1 Introduction

Time delay arises in many realistic systems with feedback in science and engineering. It is
well known that time delays in feedback systems can have a considerable influence on the
qualitative behavior of these systems. The existence of time delay may lead to some com-
plex dynamic behaviors such as oscillation, divergence, bifurcation and chaos; see [1-4],
and many references therein.

Recently, some researchers used the Euler discretization to explore the complex dynam-
ical behaviors of nonlinear differential systems, such as determining the bifurcation dia-
grams with Hopf bifurcation, observing stable or unstable orbits, and chaotic behavior;
see [3—6] etc. However, some complicated behaviors such as chaos which they observed
were obtained only by numerical simulations, and have not been proved rigorously. It is
noted that there could exist some false phenomena only by virtue of numerical simula-
tions. Therefore, the existence of chaotic behavior of these systems needs to be studied
rigorously.

In this paper, we study the chaotic behavior of the following delay difference equation:

x(n+1) = ax(n) + Bx(n — k) (1 —x*(n— k)), 1.1)

where o, § are nonzero real parameters, and k is a positive integer.
Equation (1.1) can be viewed as a discrete analogue of the following one-dimensional
delay differential equation by using the forward Euler scheme

x(t) = —pux(t) + yx(t — ‘L')(l —x2(t - l')), (1.2)
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where ¢ > 0 and y are real parameters, T > 0 is the delay. Equation (1.2) has been studied
by [7, 8] for the periodic solutions, and it is a special case of the following equation:

x(t) = —px(t) + f (x(t — 7)), 1.3)

where 1 > 0, T > 0 is the delay, and f is a one-dimensional nonlinear function. Equa-
tion (1.3) is known as the Mackey-Glass equation and has found many applications in
physics [9], population dynamics [10], physiology [11], medicine [12], neural control [13],
and economy [14].

The chaotic behaviors of equation (1.3) for some special forms of f have been studied
by many researchers. For example, Heiden and Mackey [15], and Walther [16], proved the
existence of chaos in case of either piecewise constant or smooth but ‘nearly’ piecewise
constant f. Lani-Wayda and Walther [17, 18] succeeded to prove chaos for certain smooth,
nowhere constant f (and assuming u = 0 in (1.3)).

To the best of our knowledge, the research works on the chaotic behavior of equation
(1.2) or its discrete analogue (1.1) with rigorously mathematical proof up to now are still
few. The main purpose of this paper is to study the existence of chaos of equation (1.1) by
using the snap-back repeller theory.

The rest of the paper is organized as follows. In Section 2, some basic concepts and
lemmas are introduced. The transformation of the chaos problem is given in Section 3. In
Section 4, it is rigorously proved that there exists chaotic behavior in the delay difference
equation by using the snap-back repeller theory. Finally, an illustrative example is provided

with computer simulations.

2 Preliminaries
In this section, some basic concepts and lemmas are introduced.

In 1975, Li and Yorke [19] considered a one-dimensional continuous map and obtained
the well-known result, that is, ‘period 3 implies chaos. They first used the precise word
‘chaos’ However, to the best of our knowledge, there is no unified definition of chaos in
mathematics up to now. Depending on the requirements in different problems, there ap-
peared several different definitions of chaos, some are stronger and some are weaker. For
convenience, we present two definitions of chaos in the sense of Li-Yorke and Devaney.

Definition 2.1 Let (X, d) be a metric space, f : X — X be a map, and S be a set of X with at
least two distinct points. Then S is called a scrambled set of f if for any two distinct points
x,y€S,

(i) liminf, o d(F"(),f"(3)) = 0

(ii) limsup,_, . d(f"(x),f"(y)) > 0.
The map f is said to be chaotic in the sense of Li-Yorke if there exists an uncountable
scrambled set S of f.

There are three conditions in the original characterization of chaos in Li-Yorke’s theo-
rem [19]. Besides the above conditions (i) and (ii), the third one is that for all x € S and for
all periodic points p of f,

limsupd(f”(x),f"(p)) > 0.

n—0o0
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But conditions (i) and (ii) together imply that the scrambled set S contains at most one
point x that does not satisfy the above condition. So, the third condition is not essential

and can be removed.

Definition 2.2 [20] Let (X,d) be a metric space and V beasetof X. Amapf:V — Vis
said to be chaotic on V in the sense of Devaney if
(i) the set of the periodic points of f is dense in V;

(ii) f is topologically transitive in V;

(iii) f has sensitive dependence on initial conditions in V.

In 1992, Banks et al. [21] proved that conditions (i) and (ii) together imply condition
(iii) if f is continuous in V and V is infinite. So, condition (iii) is redundant in the above
definition. It has been proved that under some conditions, chaos in the sense of Devaney

is stronger than that in the sense of Li-Yorke [22].

Remark 2.1 Some researchers consider that condition (i) in Definition 2.2 is not essential
in the chaotic behavior. In 1990, Wiggins [23, Definition 4.11.2] called the map f chaotic
on V if it satisfies conditions (ii) and (iii) in Definition 2.2. So, some researchers use the
term ‘chaos in the sense of Wiggins! It is evident that chaos in the sense of Devaney is

stronger than that in the sense of Wiggins.

In the following, by B,(z) and B,(z) denote the open and closed balls of radius r centered

at z € X, respectively. For convenience, we present some definitions in [24].

Definition 2.3 [24, Definitions 2.1-2.4] Let (X,d) be a metric space and f: X — X be a
map.
(i) A point z € X is called an expanding fixed point (or a repeller) of f in B,(z) for some

constant r > 0, if f(z) = z and there exists a constant A > 1 such that

d(f(x),f () = rd(x,y) Vx,y € B,(2).

The constant A is called an expanding coefficient of f in B,(z). Furthermore, z is
called a regular expanding fixed point of f in B,(z) if z is an interior point of f(B,(z)).
Otherwise, z is called a singular expanding fixed point of f in B,(z).

(ii) Assume that z is an expanding fixed point of f in B,(z) for some r > 0. Then z is said
to be a snap-back repeller of f if there exists a point %o € B,(z) with x¢ # z and
f™(x0) = z for some positive integer m. Furthermore, z is said to be a nondegenerate
snap-back repeller of f if there exist positive constants u and ry < r such that
By, (x0) C B.(2) and

d(f" %),/ () = ud(x,y) Vx,y € By, (%0).

z is called a regular snap-back repeller of f if f(B,(z)) is open and there exists a
positive constant &y such that B, (x9) C B,(z) and for each positive constant § < 8,
z is an interior point of f”(Bs(x¢)). Otherwise, z is called a singular snap-back

repeller of f.


http://www.advancesindifferenceequations.com/content/2013/1/99

Li et al. Advances in Difference Equations 2013, 2013:99 Page 4 of 10
http://www.advancesindifferenceequations.com/content/2013/1/99

Remark 2.2 In 1978, Marotto [25] introduced the concept of snap-back repeller for maps
in the Euclidean space R”. It is obvious that Definition 2.3 extends the concept of snap-
back repeller to maps in metric spaces. According to the above classifications of snap-back
repellers for maps in metric spaces, the snap-back repeller in the Marotto paper [25] is
regular and nondegenerate.

We now present two lemmas which will be used in Section 4. The following Lemma 2.1
is similar to that Lemma 3.5 in [26].

Lemma 2.1 Let h: [-r,r] C R — R be a continuously differentiable map. Assume that
h(0) =0, W' (0) # 0, then for a sufficiently small neighborhood N of 0 € R and any bounded
interval I of R, there exists a positive constant B* := B*(N, I) such that the equation Bh(x) =
y has a solution x € N for any |B| > B* and y € I.

Proof Since h is continuously differentiable on [-r,r], and 4(0) = 0, #'(0) # 0, for any suf-
ficiently small neighborhood N C [-r, 7] of 0, there exist two neighborhoods U/ and V of
0 such that 4,V C N and /& : U — V is a homeomorphism. In addition, for any bounded
interval I C R, there exists a positive constant 8, such that

11-—{ L. eI}CV

Bo 1B '

Take B* := B*(N,I) = Bo, then %I C V for any |B| > B*. Hence, for any y € I and |8| > 8%,

the equation Aa(x) = %y, i.e., Bh(x) = y has a solution x € U C N. This completes the proof.
O

Lemma 2.2 [27, Theorem 4.4] Letf : R” — R" be a map with a fixed point z € R". Assume
that

(1) f is continuously differentiable in a neighborhood of z and all the eigenvalues of Df (z)
have absolute values larger than 1, which implies that there exist a positive constant r
and a norm || - || in R" such that f is expanding in B,(z) in | - ||;

(2) z is a snap-back repeller of f with f™(xo) = z, xo # z, for some xy € B,(z) and some
positive integer m. Furthermore, f is continuously differentiable in some
neighborhoods of xo,%1,...,%m-1, respectively, and det Df (x;) #0 for 0 <j <m —1,
where x; = f(xj_1) for 1 <j <m - 1.

Then for each neighborhood U of z, there exist a positive integer k > m and a Cantor set A C
U such that f*: A — A is topologically conjugate to the symbolic system o :Y 5 — Y 5.
Consequently, f* is chaotic on A in the sense of Devaney and f is chaotic in the sense of
Li-Yorke. Further, there exists an uncountable, perfect and compact set V C R”, containing
the Cantor set A, such that f(V) =V and f is chaotic on V in the sense of Devaney.

Remark 2.3 In Lemma 2.2, it is only required that f is continuously differentiable near z
and x; (0 <j <m —1). So, it is easy to be satisfied by many maps in practical models. The
conclusions of Lemma 2.2 are slightly different from the original Theorem 4.4 in [27].
From [27, Theorem 4.4], we get that f¥ is chaotic on A in the sense of Devaney. By [28,
Lemma 2.4], we obtain that f* is chaotic in the sense of Li-Yorke. Consequently, f is chaotic
in the sense of Li-Yorke. The construction of V and f is chaotic on V' in the sense of De-
vaney can be conferred to [29, Theorem 4.2]. Under the conditions of Lemma 2.2, z is a
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regular and nondegenerate snap-back repeller. Therefore, Lemma 2.2 can be briefly stated
as the following: ‘a regular and nondegenerate snap-back repeller in R” implies chaos in
the sense of both Devaney and Li-Yorke. We refer to [24, 30] for details.

3 Transformation of the chaos problem
In this section, we will transform the delay difference equation (1.1) into a (k + 1)-dimen-
sional discrete dynamical system, and give some definitions about chaos of the two sys-
tems.

Let u;j(n) := x(n +j—k—1) for 1 <j < k +1, then system (1.1) can be transformed into the
following (k + 1)-dimensional discrete system

uy(n)
u3(n)

un+1) = = F(u(n)), (3.1)

Ug1 (1)
autp () + Bur (n)(1 - ui (n))

where u = (i1, s, ..., ps1)? € R¥HL.

The map F is said to be induced by f, and system (3.1) is said to be induced by system (1.1).
It is evident that a solution {x(n — k),...,x(n)}32; of system (1.1) with an initial condition
{x(=k),...,x(0)} corresponds to a solution {u(n)}}2; of system (3.1) with an initial condition
u(0) = (111(0), . ..., ur,1(0))T € R¥*1. We call the solution {u(n)}>2; of (3.1) is induced by the

oo

solution {x(n —k),...,x(n)}:°; of (1.1). Therefore, the dynamical behavior of system (1.1) is

the same as that of its induced system (3.1) in R*1, So, we introduce some relative concepts

for system (1.1), which are motivated from some works in [30, Definitions 5.1 and 5.2].

Definition 3.1
(i) A point z € R¥*! is called an m-periodic point of system (1.1) if z € R*! is an

m-periodic point of its induced system (3.1), that is, F"(z) = z and F/(z) # z for
1 <j <m—1.1In the special case of m =1, z is called a fixed point or steady state of
system (1.1).

(ii) A point z € R**! is called a snap-back repeller of system (1.1) if z € R**! is a
snap-back repeller of its induced system (3.1).

(iii) The concepts of density of periodic points, topological transitivity, sensitive
dependence on initial conditions, and the invariant set for system (1.1) are defined

similarly to those for its induced system (3.1) in R¥*1,

Definition 3.2 System (1.1) is said to be chaotic in the sense of Devaney (or Li-Yorke) on
V C R¥L if its induced system (3.1) is chaotic in the sense of Devaney (or Li-Yorke) on
V C RFL

4 Chaos in the system

In this section, we will investigate the chaotic behavior of system (3.1), i.e., system (1.1),
by showing that there exists a regular and nondegenerate snap-back repeller under some
conditions.
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Consider the fixed points of system (3.1). From F() = i, we obtain that system (3.1) has
the following three fixed points for 1’7"‘ <1

0:=00,...,0)",  P=@,...p", Q:=(q....,q)" eR*,

where p:=— /1+ "‘Tﬁl <0,q:=,/1+ “Til > 0. We also get that O is the unique fixed point
of system (3.1) when 1‘7“ > 1. In the two cases, O is always a fixed point of system (3.1).
So, in the following, we only show the fixed point O can be a regular and nondegenerate
snap-back repeller of system (3.1) under some conditions.

Theorem 4.1 There exists a positive constant By such that for any |B| > Bo, the fixed point
O is a regular and nondegenerate snap-back repeller of system (3.1). Then system (3.1) and
consequently, system (1.1), is chaotic in the sense of both Devaney and Li-Yorke.

Proof The idea in the proof is motivated by the proof of [26, Theorem 3.2]. We will ap-
ply Lemma 2.2 to prove this theorem. So, it suffices to show that all the assumptions in
Lemma 2.2 are satisfied. It is clear that the map F in system (3.1) is continuously differen-
tiable in R¥*1. So, F satisfies the differentiability in Lemma 2.2.

First, we show that there exists a positive constant $; such that O is an expanding fixed
point of the map F in some norm in R**! for any |8| > ;. In fact, the Jacobian matrix of F

at Ois
0 0
0 1 0
DF(0O) =
0O 0 O
'3 00 - @ (k+1)x (k+1)

Its eigenvalues are determined by

A k- g =o. (4.1)
Let B :=1+ |o|. From (4.1), we get that all the eigenvalues of DF(O) have absolute values
larger than 1 for any |B| > B;. Otherwise, suppose that there exists an eigenvalue Ao of
DF(O) with |Ag| <1, then we get the following inequality:

L+ ol > A7 + enl| = [ag™ —arg| = 1B] > 1+ |al,
which is a contradiction. Hence, it follows from the first condition of Lemma 2.2 that there
exists a positive constant 7 and a norm || - ||* in R**! such that O is an expanding fixed point
of F in B,(0O) in the norm | - ||*, that is,

|E@®) -F)|" = yllx—yl* Vx,y € B,(0),

where y > 1 is an expanding coefficient of F in B,(0), and B,(0) is the closed ball centered
at O € R**! of radius r with respect to the norm || - ||*.
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Next, we show that O is a snap-back repeller of F in the norm | - ||*. Suppose that W C
B,(0) is an arbitrary neighborhood of O in R**!, then there exists a small interval  C R
containing 0 such that U x U x --- x U C W. In the following, we will show that there

_\/_/

k+1
exists a positive constant S, such that for any |B| > B, there exists a point Oy € W with

Oy # O satisfying
F*%(0o) = O,
which implies that O is a snap-back repeller of F.
For convenience, let /(x) := x(1 — x?). It is clear that /(x) is continuously differentiable
on R and satisfies

h0)=0,  H(0)=1>0.

For k =1. From Lemma 2.1, it follows that there exists a positive constant 8, such that

for any |B| > B5, there exist two points x1,x, € U satisfying the following equations:

IBh(xZ) =—-aq,
ﬁh(xl) =1- axy.

(4.2)

Set Op = (x1,%2)7 € R?, then we get that Oy € U x U C W with Oy # O for any |8 > 8. It
follows from (4.2) that F(Og) = (x,,1)T, F2(Op) = (1,0)T, F3(Oy) = O.

For k > 1, it also follows from Lemma 2.1 that there exists a positive constant 85 such
that for any |B| > B;, there exist two points x;,x, € U satisfying the following equations:

ﬁh(‘xl) = 1,
Bh(xs) = —at.

(4.3)

Set Oy = (x1,%2,0,...,0)7 € R*1, then we get that Oy € U x U x --- x U C W with
—_————

k+1
O # O for any |B| > B;. It follows from (4.3) that F(Op) = (x,,0,...,1)T, F/(Op) =

(0,...,0,1,0,...,0)7 for 2 <j < k + 1, and FK*?(Op) = O.
N ——

j
Take B, := max({f;, B5}. Then for any || > B,, there exists a point Og € W with Oy # O

satisfying F**2(0y) = O, in the two cases. Fix By > max{fi, f2}. Then we get that O is a
snap-back repeller of F for |8] > Bo.
Now, we shall show that for 3] > Bo,

detDF(0;)) #0, 0<j<k+1,

where O; := F(O;_1) for 1 <j < k + 1. It is obvious that /(x) is continuously differentiable
on R and satisfies

h(0) = h(1) = 0,
(4.4)
HO)=1, K@) =-2.
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Hence, from the second conclusion of (4.4), it follows that there exists a sufficiently small
neighborhood U; C R containing 0 such that #'(x) # 0 for all x € U;. We can take suf-
ficiently large By such that x;, x, obtained above also lie in U; for |8| > Bo and satisfy

equations (4.2) or (4.3). Consequently, we have

W (x1) #0, W (x2) #0. (4.5)
A direct calculation shows that for any u = (uy, ..., u,1)" € R,
det DF(u) = (-1)*BH (u1). (4.6)

For k =1, we get that Og = (x1,%2)7, O1 = (x5, 1)7, O = (1,0)7 € R2. It follows from the
second conclusion of (4.4), (4.5) and (4.6) that for |B| > Bo,

detDF(0;) #0, for0<j<2.

For k > 1, we get that Oy = (x1,%2,0,...,0)7, O; = (x,0,...,0,1)7, and O; = (0,...,0,
1,0,...,0)T € R for 2 < j < k + 1. Hence, from the second conclusion of (4.4), (4.5) and
e —

j
(4.6), we get that for |8] > |Bol,

detDF(O;) #0, for0<j<k+1

Therefore, all the assumptions in Lemma 2.2 are satisfied and O is a regular and non-
degenerate snap-back repeller of system (3.1). Therefore, system (3.1), i.e., system (1.1), is
chaotic in the sense of both Devaney and Li-Yorke. The proof is complete. O

Remark 4.1 From the proof of Theorem 4.1, we see there exists some positive constant
Bo such that for any |B| > Bo, system (3.1) is chaotic in the sense of both Devaney and Li-
Yorke. However, it is very difficult to determine the concrete value 8 since the expanding
area of a fixed point is not easy to obtain. This will be left for our further research.

Remark 4.2 The system (3.1) consists of a k-dimensional linear subsystem and one-
dimensional nonlinear subsystem. That is, the folding and stretching only occurs in the
variable #,1, and all the other variables u; are replaced by u;,; for 1 <j < k. So, system
(3.1) can be viewed as one of the simplest systems that can show higher-dimensional chaos.
Consequently, system (1.1) can be viewed as one of the simplest delay difference systems
that show chaos.

In order to help better visualize the theoretical result, two computer simulations are
done, which exhibit complicated dynamical behaviors of the induced system (3.1), i.e.,
system (1.1). We take « = -0.1, B = 2.7, k = 1,2 for computer simulations. It follows from
the proof of Theorem 4.1 that O is an expanding fixed point of system (3.1) when |B]| >
1+ || = 1.1. Furthermore, there exists some positive constant By > 1.1 such that for | 8] >
Bo, we have two couples of points x; &~ 0.4879, x, &~ 0.0371 satisfying equation (4.2) for
k =1, and x; ~ 0.4832, x, ~ 0.0371 satisfying equation (4.3) for k > 1. Consequently, O
is a regular and nondegenerate snap-back repeller of system (3.1) for |8| > Bo. Therefore,
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0.5F

-15 -1 -0.5 0 0.5 1 1.5

Figure 1 A dense orbit of system (3.1) in the (u7, uz) space for ¢ =-0.1, § =2.7, k=1, and n from 0 to
20,000, with the initial condition u(0) = (0.01,0.01)".

Figure 2 A dense orbit of system (3.1) in the (uq, uz, u3) space for =-0.1, 8 =2.7, k =2, and n from 0
to 20,000, with the initial condition u(0) = (0.01,0.01,0.01)7.
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system (3.1), i.e., system (1.1), is chaotic in the sense of both Devaney and Li-Yorke. Some

simulation results are shown in Figures 1-2 for k = 1,2 and # from 0 to 20,000, respectively.

Itis a dense orbit in each picture, which clearly shows that the system has very complicated

dynamical behaviors.
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