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Abstract
The purpose of this paper is to investigate a nonlinear second-order neutral
difference equation of the form

�(rn�(xn + pnxn–k)) + anf (xn) = 0,

where x :N0 → R, a :N0 → R, p, r :N0 →R \ {0}, f :R → R is a continuous function,
and k is a given positive integer. Sufficient conditions for the existence of a bounded
solution of this equation are obtained. Also, stability and asymptotic stability of this
equation are studied. Additionally, the Emden-Fowler difference equation is
considered as a special case of the above equation. The obtained results are
illustrated by examples.
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1 Introduction
In presented paper we study a nonlinear second-order difference equation of the form

�
(
rn�(xn + pnxn–k)

)
+ anf (xn) = , ()

where x :N →R, a :N →R, p, r :N →R \ {}, and f :R→ R is a continuous function.
Here N := {, , , . . .}, Nk := {k,k + ,k + , . . .}, where k is a given positive integer and R

is a set of all real numbers. By a solution of equation (), we mean a sequence x :N → R

which satisfies () for every n ∈N.
Putting f (x) = xγ , where γ <  is a quotient of two odd integers, rn ≡  and pn ≡ p ∈

(,∞), p �=  in equation (), we get an Emden-Fowler difference equation of the form

�(xn + pxn–k) + anxγ
n = . ()

In the last years many authors have been interested in studying the asymptotic behavior
of solutions of difference equations, in particular, second-order difference equations (see,
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for example, papers of Medina and Pinto [], Migda [], Migda and Migda [], Migda et
al. [], Musielak and Popenda [], Popenda andWerbowski [], Schmeidel [], Schmeidel
and Zba̧szyniak [] and Thandapani et al. []).
Neutral difference equations were studied in many other papers by Grace and Lalli []

and [], Lalli and Zhang [], Migda and Migda [], Luo and Bainov [], and Luo and
Yu [].
Some relevant results related to this topic can be found in papers by Baštinec et al. [],

Baštinec et al. [], Berezansky et al. [], Diblík andHlavičková [], and Diblík et al. [].
For the reader’s convenience, we note that the background for difference equations the-

ory can be found, e.g., in the well-known monograph by Agarwal [] as well as in those
by Elaydi [], Kocić and Ladas [], or Kelley and Peterson [].
The theory of measures of noncompactness can be found in the book of Akhmerov et

al. [] and in the book of Banaś and Goebel []. In our paper, we used axiomatically
defined measures of noncompactness as presented in paper [] by Banaś and Rzepka.

2 Measures of noncompactness and Darbo’s fixed point theorem
Let (E,‖ · ‖) be an infinite-dimensional Banach space. If X is a subset of E, then X̄, ConvX
denote the closure and the convex closure of X, respectively. Moreover, we denote byME

the family of all nonempty and bounded subsets of E and by NE the subfamily consisting
of all relatively compact sets.

Definition  A mapping μ :ME → [,∞) is called a measure of noncompactness in E if
it satisfies the following conditions:

◦ kerμ = {X ∈ME : μ(X) = } �= ∅ and kerμ ⊂NE ,
◦ X ⊂ Y ⇒ μ(X)≤ μ(Y ),
◦ μ(X̄) = μ(X) = μ(ConvX),
◦ μ(αX + ( – α)Y )≤ αμ(X) + ( – α)μ(Y ) for  ≤ α ≤ ,
◦ if Xn ∈ ME , Xn+ ⊂ Xn, Xn = X̄n for n = , , , . . . and limn→∞ μ(Xn) = , then⋂∞

n=Xn �= ∅.

The following Darbo’s fixed point theorem given in [] is used in the proof of the main
result.

Theorem  Let M be a nonempty, bounded, convex, and closed subset of the space E, and
let T :M →Mbea continuous operator such thatμ(T(X))≤ kμ(X) for all nonempty subset
X of M, where k ∈ [, ) is a constant. Then T has a fixed point in the subset M.

We consider the Banach space l∞ of all real bounded sequences x : N → R equipped
with the standard supremum norm, i.e.,

‖x‖ = sup
n∈N

|xn| for x ∈ l∞.

Let X be a nonempty, bounded subset of l∞, Xn = {xn : x ∈ X} (it means Xn is a set of nth
terms of any sequence belonging to X), and let

diamXn = sup
{|xn – yn| : x, y ∈ X

}
.
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We use the following measure of noncompactness in the space l∞ (see []):

μ(X) = lim sup
n→∞

diamXn.

3 Main result
In this section, sufficient conditions for the existence of a bounded solution of equation
() are derived. Further, stable solutions of () are studied. We start with the following
theorem.

Theorem  Let

f :R →R be a continuous function, ()

and let there exist constants L and M such that for all x ∈R,

∣∣f (x)∣∣ ≤ M|x| + L, ()

the sequence p :N →R \ {} satisfies the following condition:

– < lim inf
n→∞ pn ≤ lim sup

n→∞
pn < , ()

sequences a :N →R, r :N →R \ {} are such that

∞∑
n=

∣∣∣∣ rn
∣∣∣∣

∞∑
i=n

|ai| < ∞. ()

Then there exists a bounded solution x :N →R of equation ().

Proof Condition () implies that there exist n ∈N and a constant P ∈ [, ) such that

|pn| ≤ P <  for n≥ n. ()

The remainder of a series is the difference between the nth partial sum and the sum of a
series. Let us denote by αn the remainder of series

∑∞
n= | 

rn |∑∞
i=n |ai| so that

αn =
∞∑
j=n

∣∣∣∣ rj
∣∣∣∣

∞∑
i=j

|ai|. ()

From (), the remainder αn tends to zero. Therefore, we can denote

lim
n→∞αn = . ()

Let us denote that C is a given positive constant. Condition () implies that there exists a
positive integer n such that

αn ≤ C
 – P

(CM + L)
()

for n≥ n.
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We define a set B as follows:

B :=
{
(xn)∞n= : |xn| ≤ C for n ∈Nn

}
, ()

where Nn := {n,n + ,n + , . . .} and n =max{n,n}.
It is not difficult to prove that B is a nonempty, bounded, convex, and closed subset l∞.
Let us define a mapping T : B → l∞ as follows:

(Tx)n = –pnxn–k –
∞∑
j=n


rj

∞∑
i=j

aif (xi) ()

for any n ∈ Nn .
We will prove that the mapping T has a fixed point in B.
Firstly, we show that T(B)⊂ B. Indeed, if x ∈ B, then by (), (), (), and (), we have

∣∣(Tx)n∣∣ ≤ |pn||xn–k| +
∞∑
j=n

∣∣∣∣ rj
∣∣∣∣

∞∑
i=j

|ai|
∣∣f (xi)∣∣

≤ PC +
∞∑
j=n

∣∣∣∣ rj
∣∣∣∣

∞∑
i=j

|ai|
(
M|xi| + L

)

≤ CP + (MC + L)
∞∑
j=n

∣∣∣∣ rj
∣∣∣∣

∞∑
i=j

|ai|

≤ CP + (CM + L)αn = C
P + 


≤ C for n ∈Nn .

Next, we prove that T is continuous. Let x(p) be a sequence in B such that ‖x(p) – x‖ → 
as p → ∞. Because of (), we have ‖f (x(p)) – f (x)‖ → . Since B is closed, x ∈ B. Now,
utilizing (), we get

∣∣(Tx(p))n – (Tx)n
∣∣ ≤ |pn|

∣∣x(p)n–k – xn–k
∣∣ + ∞∑

j=n

∣∣∣∣ rj
∣∣∣∣

∞∑
i=j

|ai|
∣∣f (x(p)i

)
– f (xi)

∣∣.
Hence, by () and (),

∣∣(Tx(p))n – (Tx)n
∣∣ ≤ P

∣∣x(p)n–k – xn–k
∣∣ + αn sup

i≥n

∣∣f (x(p)i
)
– f (xi)

∣∣, n ∈Nn .

Therefore, by (),

∥∥Tx(p) – Tx
∥∥ ≤ P

∥∥x(p) – x
∥∥ +C

 – P
(CM + L)

∥∥f (x(p)i
)
– f (xi)

∥∥ → 

and

lim
p→∞

∥∥Tx(p) – Tx
∥∥ = .

This means that T is continuous.
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Now, we need to compare a measure of noncompactness of any subset X of B and T(X).
Let us take a nonempty set X ⊂ B. For any sequences x, y ∈ X, we get

∣∣(Tx)n – (Ty)n
∣∣ ≤ P|xn – yn| +CMαn, n ∈Nn .

Hence, we obtain

diam
(
T(X)

)
n ≤ k diamXn +CMαn.

This yields

lim sup
n→∞

diam
(
T(X)

)
n ≤ k lim sup

n→∞
diamXn.

From the above, for any X ⊂ B, we have μ(T(X))≤ kμ(X), where k = P+
 ∈ [, ).

By virtue of Theorem , we conclude that T has a fixed point in the set B. It means that
there exists x ∈ B such that xn = (Tx)n. Thus

xn = –pnxn–k +
∞∑
j=n


rj

∞∑
i=j

aif (xi), n ∈Nn ()

for any n ∈Nn . To show that there exists a connection between the fixed point x ∈ B and
the existence of a solution of equation (), we use the operator � for both sides of the
following equation:

xn + pnxn–k =
∞∑
j=n


rj

∞∑
i=j

aif (xi),

which is obtained from (). We find that

�(xn + pnxn–k) = –

rn

∞∑
i=n

aif (xi), n ∈Nn .

Using again the operator � for both sides of the above equation, we get equation () for
n ∈ Nn . The sequence x, which is a fixed point of the mapping T , is a bounded sequence
which fulfills equation () for large n. If n ≤ k, the proof is ended. If n > k, then we find
previous n – k +  terms of the sequence x by the formula

xn–k+l =


pn+l

(
–xn+l +

∞∑
j=n+l


rj

∞∑
i=j

aif (xi)

)
, where l ∈ {, , , . . . ,k – },

the results of which follow directly from (). It means that equation () has at least one
bounded solution x :N →R.
This completes the proof. �

Example  Let us consider the equation

�

(
(–)n�

(
xn +

(


+


n

)
xn–

))
+
(–)n+

n+
(xn)


 = .

http://www.advancesindifferenceequations.com/content/2013/1/91
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All the assumptions of Theorem  are fulfilled. Then there exists a bounded solution x of
the above equation. So, the sequence xn = (–)n is such a solution.

Remark  Assume that

pn ≡ p ∈ (, ) ()

and

∞∑
n=

∞∑
i=n

|ai| < ∞ ()

in an Emden-Fowler difference equation of the form (). Then there exists a bounded
solution of equation ().

Proof Here all the assumptions of Theorem  are satisfied, e.g., the function f : R → R

given by formula f (x) = xγ is a continuous function, and |f (x)| = |xγ | ≤ γ |x| +  – γ . So,
taking M = γ and L =  – γ , we obtain condition (). The thesis follows directly from
Theorem . �

Finally, sufficient conditions for the existence of an asymptotically stable solution of
equation () will be presented. We recall the following definition which can be found
in [].

Definition  Let x be a real function defined, bounded, and continuous on [,∞). The
function x is an asymptotically stable solution of the equation

x = Fx. ()

It means that for any ε > , there exists T >  such that for every t ≥ T and for every other
solution y of equation (), the following inequality holds:

∣∣x(t) – y(t)
∣∣ ≤ ε.

Theorem  Assume that there exists a positive constant D such that

∣∣f (x) – f (y)
∣∣ ≤ D|x – y| ()

for any x, y ∈R, and conditions ()-() hold. Then equation () has at least one asymptoti-
cally stable solution x :N →R.

Proof From Theorem , equation () has at least one bounded solution x :N →R which
can be rewritten in the form

xn = (Tx)n, ()

where a mapping T is defined by ().

http://www.advancesindifferenceequations.com/content/2013/1/91


Schmeidel Advances in Difference Equations 2013, 2013:91 Page 7 of 9
http://www.advancesindifferenceequations.com/content/2013/1/91

Because of Definition , the sequence x is an asymptotically stable solution of the equa-
tion xn = (Tx)n, which means that for any ε > , there exists n ∈ N such that for every
n≥ n and for every other solution y of equation (), the following inequality holds:

|xn – yn| ≤ ε. ()

From (), by (), we have

∣∣(Tx)n – (Ty)n
∣∣ ≤ P|xn–k – yn–k| +

∞∑
j=n

∣∣∣∣ rj
∣∣∣∣

∞∑
i=j

|ai|
∣∣f (xi) – f (yi)

∣∣

for n≥ n. The above and () yield

∣∣(Tx)n – (Ty)n
∣∣ ≤ P|xn–k – yn–k| +D

∞∑
j=n

∣∣∣∣ rj
∣∣∣∣

∞∑
i=j

|ai||xi – yi|

for n≥ n =max{n,n}. Hence, by () and (), we obtain

∣∣(Tx)n – (Ty)n
∣∣ ≤ P|xn–k – yn–k| +D sup

i≥n
|xi – yi|αn

for n≥ n. Thus, linking the above inequality and (), we have

|xn – yn| ≤ P|xn–k – yn–k| +D sup
i≥n

|xi – yi|αn. ()

Let us denote

lim sup
n→∞

|xn – yn| = l.

Because of

lim sup
n→∞

|xn – yn| = lim sup
n→∞

|xn–k – yn–k|,

and (), we get

l
(
 – P –D lim

n→∞αn

)
≤ .

From the above and (), we obtain

l( – P) ≤  for enough large n.

Suppose to the contrary that l > . Thus, we obtain a contradiction with the fact that  <
P < . Therefore we get lim supn→∞ |xn – yn| = . This completes the proof. �

Remark  Under conditions ()-() and (), any bounded solution of equation () is
asymptotically stable.

http://www.advancesindifferenceequations.com/content/2013/1/91
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Proof If boundedness of a solution of equation () is assumed, then by virtue of the same
arguments as in Theorem , the thesis of the above remark is obtained. �

Example  Let us consider equation () with f (x) = x, an = �pn and
∑∞

n=
∑∞

i=n |ai| < ∞.
Such an equation has infinitely many solutions of the form xn ≡ c, where c is a real con-
stant. All the assumptions of Theorem  are fulfilled, then each of such solutions is asymp-
totically stable.

Theorem  Assume that L =  in (). Under conditions ()-() and (), if there exists a
zero solution of equation (), then it is asymptotically stable.

Proof If L = , then condition () takes the form |f (x)| ≤ M|x|. This implies that f () = .
Hence, the sequence x ≡  is a bounded solution of equation (). By Remark , the zero
solution is asymptotically stable. �
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26. Banaś, J, Goebel, K: Measures of Noncompactness in Banach Spaces. Lecture Notes in Pure and Applied Mathematics,
vol. 60. Dekker, New York (1980)
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