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Abstract

This paper investigates the problem of robust Hy, control for a class of switched
stochastic systems with time delays under asynchronous switching, where the
asynchronous switching means that the switching of the controllers has a lag to the
switching of system modes. The parameter uncertainties are allowed to be norm
bounded. Firstly, by using the average dwell time approach, the stability criterion and
Hso performance analysis for the underlying systems are developed. Then, based on
the obtained results, sufficient conditions for the existence of admissible
asynchronous switching controllers which guarantee that the resulting closed-loop
systems are mean-square exponentially stable with Hy, performance are derived.
Finally, a numerical example is given to illustrate the effectiveness of the proposed
approach.
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1 Introduction

Switched systems are a kind of hybrid systems composed of a family of subsystems and
a logical rule that orchestrates switching between these subsystems. Due to the physical
properties or various environmental factors, many real-world systems can be modeled
as switched systems, such as networked control systems [1, 2], robot control systems [3],
and so on. Switched systems have drawn increasing attention during the past decades due
to their wide applications. Common Lyapunov function method [4], multiple Lyapunov
function method [5] and average dwell time approach [6, 7] have been proposed to study
the stability of such systems.

It is worth pointing out that time delay phenomenon may cause systems to be unsta-
ble or have poor performance. Many scholars have devoted their energy to the study of
switched systems with time delays, and some useful results have been proposed in [8-11].
The exponential stability and L, -gain analysis for switched delay systems were investigated
by employing the average time method in [8, 9]. The asymptotical stability and H,, con-
trol of switched delay systems were researched in [10]. The problem of delay-independent
minimum dwell time was discussed in [11], and sufficient conditions were presented to
guarantee the exponential stability of switched delay systems.

On the other hand, stochastic disturbance may not be ignored in some practical sys-
tems. Some useful results on stochastic delay systems have been established in [12, 13].
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Moreover, the stability analysis of switched stochastic delay-free systems was investigated
in [14]. Sufficient conditions of mean-square exponential stability for switched stochastic
delay systems were presented in [15, 16]. In [17], the H, control problems for continuous-
time switched stochastic systems were considered. The /; — [ filtering problem for a class
of nonlinear switched stochastic systems was addressed in [18]. It should be pointed out
that the aforementioned results are based on a common assumption that the switching
of the controller is synchronized with the switching of the system. However, as stated
in [19-21], there inevitably exists asynchronous switching in actual operation (usually
the switching of the controller lags behind that of the system). Thus, it is necessary to
design asynchronously switched controllers for switched stochastic systems. Recently,
some work on asynchronously switched control of switched stochastic delay-free systems
has been done in [22-24]. Robust reliable control of switched stochastic systems under
asynchronous switching was studied in [22], and robust Hy, reliable control of switched
stochastic nonlinear systems was researched in [23]. In [24], the problem of robust Hy
filtering of switched stochastic delay-free systems under asynchronous switching was in-
vestigated, and the stabilization problem for a class of switched stochastic systems with
time delays under asynchronous switching was addressed in [25]. However, to the best of
our knowledge, the issue of asynchronously switched H,, control for switched stochastic
systems with time delays has not yet been fully investigated to date, which motivates the
present investigation.

In this paper, we are interested in investigating the robust Hy control problem for
switched stochastic systems with time delays under asynchronous switching. The main
contributions of this paper can be summarized as follows: (i) By constructing an appro-
priate Lyapunov-Krasovskii functional, the extended mean-square exponential stability
result with H,, performance for the general switched stochastic delay systems is derived
for the first time; (ii) The asynchronously switched H,, control problem for the underlying
systems is studied, and sufficient conditions for the existence of a state feedback controller
are formulated in a set of LMIs (linear matrix inequalities). Compared with the existing
results presented in [22—-25], the proposed conditions bring some convenience for solving
the designed controllers.

The remainder of the paper is organized as follows. In Section 2, problem statement and
some useful lemmas are given. In Section 3, a criterion of mean-square exponential stabil-
ity with Hy, performance for the general switched stochastic delay systems is developed
by using the average dwell time approach. Then, sufficient conditions for the existence of
admissible asynchronous switching Ho, controllers are derived. In Section 4, a numerical
example is given to illustrate the effectiveness of the proposed approach. Finally, conclud-
ing remarks are provided in Section 5.

Notations

In this paper, the superscript ‘T’ denotes the transpose, and the symmetric term in a ma-
trix is denoted by *. The notation X > Y (X > Y) means that matrix X — Y is positive defi-
nite (positive semi-definite, respectively). R” denotes the n-dimensional Euclidean space.
[lx(2)|| denotes the Euclidean norm. L, [z, 00) is the space of square integrable vector-
valued functions on [y, 00), and ¢ is the initial time. A,x (P) and Ay, (P) denote the max-
imum and minimum eigenvalues of matrix P, respectively. I is an identity matrix with
appropriate dimension. diag{a;} denotes a diagonal matrix with the diagonal elements 4;,
i=12,...,m
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2 Problem formulation and preliminaries
Consider the following switched stochastic systems with time-delays:

dx(t) = [Ao(t) + Ado ¥t = T) + Bou(t) + Goo(t)] dt + Donx(t) dw(t), (1a)
z(t) = My(x(2), (1b)
x(s) = p(s), se€lto—1,t0l, (Ic)

where x(t) € R” is the state vector, ¢(s) € R” is the vector-valued initial function, v(t) € R?
is the disturbance input belonging to L, [fy,00), u(t) € R? is the control input, w(¢f) is a
one-dimensional zero-mean Wiener process on a probability space (2, F, P) satisfying

E{dw)} =0,  E{dw’(®)}=ds, (2)

where Q is the sample space, F is o -algebras of subsets of the sample space and P is the
probability measure on F, E{-} is the expectation operator.

The switching signal o (¢) : [0,00) = N ={1,2,...,N} is a piecewise constant function of
time, o (t) = { € N means that the ith subsystem is active; N is the number of subsystems.
B;, G;and M, i € N, are real-valued matrices with appropriate dimensions. zzli, zzld,» and ﬁi

are uncertain real matrices with appropriate dimensions and can be written as
[A; As Di=lA; As D)+HF(t)E; Ey Esl 3)

where A;, Aj; and D; are known real-value matrices with appropriate dimensions, F;(t) is

unknown time-varying matrix satisfying
FI@)F(t) < 1. (4)

For the sake of simplicity, F;(£) is written as F; in this paper.

The system switching sequence can be described as o : {(¢y,0 (%)), (¢, 0(t1)), ..., (&
o (tx)), ...}, where ty is the initial time and #; denotes the kth switching instant.

Without loss of generality, denote o’(t) as the switching signal of the controller, and it
can be described as

o’ {(t(),O'/(t())), (L‘l + Ao’ (b + AI)),...,(tk + Ap, o (b + Ak)),...},

O’/(tk+Ak) eN, k=1,2,...,

where o/ (tp) = 0 (t0), o' (tk + Ax) = 0 (£), 0 < A < infrsq(Es1 — t)-
Considering the existence of asynchronous switching, the system control input is given
by u(t) = Ka/(t)x(t),

Remark1 The delayed period Ax > 0 (Ag < 0) denotes the time that the switching instant
of the controller lags behind (exceeds) that of the system, and it is called the mismatched
period. Throughout this paper, we only consider the case where Ay > 0.

Remark 2 Ay < infi=1(f.1 — tx) guarantees that there always exists a period during which
the controller and the system operate synchronously, and the period is said to be the
matched period.
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Definition 1 System (la)-(1c) with v(¢) = O is said to be exponentially stable in the mean-
square sense under the switching signal o (¢) if there exist scalars ¥ > 0 and « > 0 such that
the solution x(t) of the system satisfies

E{|»(2) ||2} < Ke’“(‘*m)t sup E{ ||go(s)||2}, Yt > to. (5)

0-T<s<ty

Definition 2 [6] For any T > T1 > &y, let N, (71, T») denote the switching number of o (¢)
on an interval [T, T5). If

I,-T)
T,

N, (T1, T5) < Np + (6)
holds for given Ny > 0 and T, > O, then the constant T, is called the average dwell time.
As commonly used in the literature, we choose Ny = 0.

Definition 3 [26] For any A > 0 and y > 0, system (la)-(1c) is said to be exponentially
stable in the mean-square sense and has a prescribed weighted H, performance level y
if the following conditions are satisfied:

(a) When v(¢) = 0, system (1a)-(1c) is exponentially stable in the mean-square sense;

(b) Under zero initial condition, the output z(t) satisfies

E{ / h e M) 2T (5)2(s) ds} <y? / h vI(s)v(s)ds, YO #v(t) € Ly[ty,0). (7)

to to

Lemma 1 [27] Let U, V, W and X be constant matrices of appropriate dimensions, and
let X satisfy X = X7, then for all VTV < I, X + UVW + WTVTUT <0 if and only if there
exists a scalar & > 0 such that

X+eUu +e'wTw <o. (8)

3 Main results
3.1 Stability and H,, performance analysis
Consider the following switched stochastic delay systems:

dx(t) = [fa(t) (t,x(t),x(t - r)) +85() (t, V(t))] at + g (t,x(t)) dw(t), (9a)
2(t) = Mo (r) (t’x(t))r (9b)
x(s) =(s), selto—1,6]. (9¢)

Consider the Lyapunov function V(¢,%(t)) = Vo) (¢, %(2)) (which is written as V() (¢) in
what follows). When the ith subsystem is activated, according to the I£6 formula, along
the trajectory of the ith subsystem, we have

E{aVi(t)} = E{LV/(¢) dt}, (10)
LVi(t) = Vi (t) + Vi O[fi (£ 2(0), 2t — 1)) + gi(£v(2)) ]

. %trace[hiT (6,(0) Vis (OB, 6(0))] (1)

. . g 2y,
where V;(¢) = 800, Vi) = (512, 519, Vi (6) = (A -
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Let T (¢, tp) and T (¢,,tp) denote unions of the dispersed intervals during which the
Lyapunov function is decreasing and increasing within the time interval [, ¢;), and let
T~ (ts tp) and T*(t,, t) represent the length of T, (t,, t,) and T} (t,, t), respectively. Denote
') =z")z@) — 2T Ov(e).

Lemma 2 Counsider system (9a)-(9¢), for given scalars o > 0 and B > 0, if there exist C'
functions V(t) = Vo (t), and positive scalars k; and ky, such that

@E{«®)]’} < E{Vow®) < sup E{[x(5)]’}, (12)
—-1<s<t
LV (t) +aVop(t) +T(t) <0, te T (t,t), 13)
LVop(t) = BVew(t) +T(¢) <0, te Ti(to,t),
hold, then under the average dwell time scheme
T (to, t A
0, B2 e, (14)
T+(t0, t) oa—-A
|
T,>T, = % (15)

the system is exponentially stable in the mean-square sense and has a prescribed weighted

Hy, performance level y, and v > 1 satisfies
where t; (k =1,2,...) is the kth switching instant.

Proof From (10) and (13), it holds that

E{%(ewv"(t)(t))} = _E{eatr(t)}’ te T (t, 1), 17)
g {%(eﬁ%m(”)} =-E[eT®), teTi(t.0. s

For any ¢ € [¢, £1,1), integrating both sides of (17) and (18), we have

t
E{Vyu(t)} < e @ T U Ely, (1)) - E{ / e T COATT GO () ds}. (19)

i

Then, according to (16), (19) and Nj (¢, ¢) in Definition 2, one obtains that

E{Vou(0)}

t
< Me—aT’(tl,tHﬂT*(tl,t)E{ Vo(tl_)(t[_)} —E{/ e—aT’(s,t)JrﬂT*(s,t)l—w(s) ds}

i

— + U — +
< ue_aT (t1)+BT (tH’t)E{Va(tl,l)(tl—l)} _ ME{/ e @ T (st)+pT (S’tl)F(s) ds}
ta

t
_E{f e—aT'(s,t)+ﬂT*(s,t)F(s) dS}
]
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— + u — +
< MZe—utT (-1, )+B8T (tl_l’t)E{Va(tl‘_l)(tl_,l)} _ ,LLE{/; e—aT (s,t))+BT (s,t[)l—w(s) dS}
-1

t
_E{/ e—aT’(s,t)ﬂiT*(s,t)l—w(s) dS}
]

S...

f

< MNU(to't)e_“Tﬁ([o’t)J'ﬁthO't)E{Vg(to)(to)} _ MNU(to,t)E{/ e aT’(s,t)+ﬁT+(s,t)F(S) ds}
t

0

¢ t
R ME{/ ! e—aT’(s,t1)+ﬁT+(s,t1)F(S) dS} _ E{/. e—aT’(s,t)+/3T+(s,t)F(S) dS}
1 Z

< MN" (00,0) p=a T~ (t0,0)+BT* (to,t)E{ Vi to) (to)}

t
_E{f MN,,(s,t)e—aT‘(s,t)+/3T*(s,t)F(s) ds}
t

0
In t — +
< e_(A_TTIzL)(t_tO)E{ Vo(to) (£0)} —E{/ plNo S e T D+AT SO () ds}. (20)
to
In order to prove that system (9a)-(9c¢) is exponentially stable in the mean-square sense
and has a prescribed weighted Hy, performance level y, two conditions in Definition 3

should be satisfied.
(a) When v(¢£) = 0, noticing that I'(¢) = zT (£)z(t), it can be obtained from (20) that

E{Vo (@)} < fu_l%ﬂt_t@f{Va(to)(to)}

t
—E{/ MNJ(s,t)e—otT’(s,t)+ﬁT*(s,t)ZT(S)Z(s) dS}
£

0

A_ln/i

< e_( Ta)(t_tO)E{ Vg(to)(to)}.

Then, according to Definition 1, we can obtain from (12) that system (9a)-(9c) is exponen-
tially stable in the mean-square sense.

(b) Under zero initial condition, it follows from (20) that
t —
E{/ MNg(S,t)efotT (S,E)+/3T+(S,t)r(s) ds} E 0' (21)
to
Multiplying both sides of (21) by (04 Jeads to

t
E{/ M—Ng(to,s)e—aT‘(s,t)+f3T+(s,t)F(S) ds} <0. (22)
7

0

From (14), we get that there exists a scalar function A" = ¢(s) satisfying

T (st) B+
T+(s,t) o-)"

where 0 < A" < .

Page 6 of 15
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Notice that T'(¢) = z7 (£)z(t) — y2vT (£)v(¢), then combining (22) and (23) yields

¢ t
E{/ N (009 =2 6=9) 2T () 7(5) ds} < y2/ pNo €09 =2 =9 T (5)(s) ds. (24)

to to

By Definition 2, we have

E { / e~ (t=9)=2(6-10) ;T ()5 5) ds} <y? / te_f(t_s)vT(s)V(s) ds. (25)

to to

Integrating both sides of (25) from ¢ = £, to 0o, inequality (7) is obtained.
The proof is completed. O

Remark 3 Note that the stability analysis of switched systems with stable and unstable
subsystems has been studied in [7], and the proposed method is extended to system (9a)-
(9¢) in the paper. In Lemma 2, all the active subsystems during the time interval T} (to, t)
are required to be unstable (but bounded), and all the active subsystems during the time
interval T (¢,t) are required to be stable. By limiting the lower bound of average dwell
time, the stability of system (9a)-(9c¢) is guaranteed.

3.2 Robust H,, control
In this subsection, we focus on the robust H., control for switched stochastic systems with
time delays under asynchronous switching. Considering system (la)-(1c), under the asyn-

chronous switching controller u(t) = K,/(;)%(t), the resulting closed-loop system is given
by

dx() = [(Ao () + Bo(oKo/(9)2(t) + Ado¥(t = T) + Goyv(8)] dt + Dyox(t) dw(t), (26a)
z(t) = Mo (nx(2), (26b)
x(s) = p(s), se€lto—1,20]. (26¢)
The following theorem gives sufficient conditions for the existence of asynchronous ro-

bust Hy, controller such that the closed-loop system (26a)-(26c¢) is exponentially stable in
the mean-square sense and has a prescribed weighted H,, performance level y.

Theorem 1 Counsider system (1a)-(1c), for given positive scalars o and B, if there exist two
positive scalars &; and g, and matrices Wi, X; > 0, Y; > 0 and Z; > 0 with appropriate
dimensions such that Vi,j € N, i #J,

Zi—aY,—atZ; >0, (27a)
L AsXe G XMP XDl X.EL XEL
Y, 0 0 0 XEL o0
0 0 0 0
% % * _I 0 0 < O, (27b)

0

* oz 0 0
% * % # E} —Sil 0
€
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(=) AgXi G xM! XDl XEl XEL]
* -y, 0 0 0 XkEj; O
20 o 0 0
* -1 0 0 0 <0 (27¢)
s 0 0
s : gl 0
* r gyl

hold, then under the switching controller u(t) = K, 1yx(t), K; = W:X;*, and the average dwell
time scheme

T (to, 1) - B+ A

, O0<A<a, 28

T+(t0, t) Toa-A ( )
|

Ta>Ta:%, (29)

the resulting closed-loop system (26a)-(26¢) is exponentially stable in the mean-square
sense and has a prescribed weighted Hy, performance level y, where . > 1 satisfies

XP=uX, o XX < pXTYX

Xz X < uX7'ZX, VijeN,i#),
and

X = XA + W Bl + AiX; + BW +aX; + Y; + TZ; + e;HH],

Yl = e HH - X,

Sh=XAT + WIBT + AX; + BiW; — X+ Y; + 1Z; + eyH;H],

%35 = eHiH] - Xi.
Proof Assume that the ith subsystem is activated at the switching instant #_;, and the
jth subsystem is activated at the switching instant #. Because there exists asynchronous
switching, the ith controller is active during the interval [tx_; + Ax_1, & + Ak), and the jth

controller is active during the interval [£x + A, tis1 + Dii1)-
(1) When ¢ € [tx_1 + Ak_1, %), system (26a) can be described as

dx(t) = [(A; + BiK)x(t) + Agix(t — T) + G(D)] dt + Dix(t) dw(?). (31)

Consider the following Lyapunov functional candidate:

3
Vi) =) V() (32)

g=1

where
Vil®) = xT(OPa(),  Vault) = / o (5)Quxls) ds,

V3,(t) = / ‘ / ; 27 (s)Rx(s) ds db,
0 t—

Page 8 of 15
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P;, Q; and R; are symmetric positive definite matrices with appropriate dimensions to be
determined.

By the It6 formula, we have
3
dvi(t) = Z LV (t)dt + 2T (£)P;Dix () dw(t), (33)
g=1
where
CVLi(t) = 2xT(t)Pi[(A,» + BJ(,)?C()'I) +Ad,»x(t - T) + GiV(t)]

+ xT(t)biTPibix(t),

LVy;(8) = 2" (£)Qu(t) — ™ (t — T)Qix(t - 1),

LV3,(t) = ta” (ORx(t) - /t xT (s)Rix(s) ds.

From (32), we obtain
3
Vi(t) = Y Veult)
g=1

t T t
= 2T () Px(¢) + / x7 (s)Qux(s) ds + / / xT (s)Rix(s) ds do
t-t 0 t-6
t t
< 2T (£)Pix(¢) + / xT(s)Qux(s)ds + T / xT (s)Rix(s) ds.
-1 -1
Under the condition
R, —aQ;—atR; >0, (34)
we get that

LVi(£) +aVi(t) + T'(2)

< 2T ()P (A; + BK)x(t) + Agin(t — ) + Giv(D)]
+ xT(t)lA)iTPilA),»x(t) +x7(6)(Q; + TR))x(t)
+oaxl (OPx(t) - xT(t - 7)Qux(t — 7) + xT(t)MiTMix(t) —y2T@)w(e)
- /t xT ($)(R; — «Q; — T R)x(s) dis

< 22T (OP[(A; + BiKp)x(t) + Agix(t - 7) + Gu(e) ]
+xT (DI P.Dax(t) + x7 (£)(Q; + TR))x(t)
+axT () Px(t) —xT (¢ — 1)Qux(t — ) + xT(t)MiTM,-x(t) R ()120))

=&T()0£(),
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where £7(¢t) = [xT(¢) xT (¢ — 7) vT (1)],

(Ai + BiKi)TPi + Pi(ili +BiK;) + aP; + Q; + TR; + lA)iTPl'lA)i + ML-TMl' Pl'zzldi P;G;
@i — * _Qi 0

(2) When ¢ € [k, t + Ak), system (26a) can be written as
dx(t) = [(A; + BiK;)x(t) + Agin(t — ) + Gp(D)] dt + Dye(t) dw(?). (35)
Following the step line in (1), we have
LVi(®) - BVi(®) + T () < €T ()0, (0), (36)

where

(A]' + BjKl')TPl' + Pi(zzl]' + B]'Ki) - BP;+ Qi+ TR; + bjTPibj + MjTM]' Pl'zzld]' P;G;j
-Qi 0
% _)’21

®; =

From (32), one obtains k1 E{|lx(£)[|*} < E{Vi(t)} < k2 sup,_, .., E{||x(s)||*}, where

K1 = IIllIl )"min(Pi)x
VieN

2
T
K2 = max Amax(Py) + T max Amax(Q) + — max Amax (R;).
VieN VieN 2 VieN

If ©; <0 and ©; < 0, we have
LV t) +a Vo) + T () <0, telto,tr) Upra, [tcr + Arcrs ), 37)
LV () = BVop(®) +T (&) <0, te Uy, [tioti + Ag).

By the Schur complement, one obtains that ®; < 0 is equivalent to

(Al' + B,‘Kl’)TPi + P,‘(A,‘ + BiK;) + aP; + Q; + TR; P,‘Adi P;G; MlT biTPi

* -Q; 0 0 0
20 0 |<0. (38)
* #* _1 0
% P % _Pi

Denoting X; = P;* and using diag{X;, X;, 1,1, X;} to pre- and post-multiply the left term of
(38), one obtains that

T, AgXi G xMT X,DF

* -Y; 0 0 0
Ti=| = SRR V2) 0 |<o, (39)
% % B -1 0

* * # * X
14


http://www.advancesindifferenceequations.com/content/2013/1/86

Chen and Xiang Advances in Difference Equations 2013, 2013:86 Page 11 of 15
http://www.advancesindifferenceequations.com/content/2013/1/86

where

Ti = X,AT + WIBT + AX; + BW +aX; + Y, + 12,

Y = X;QiX, Z;i = XiRiX;, Wi = KiX;.
From (3), we have

T' =T+ AT, (40)
where

Ty AuX; G XM!I XD

-Y;, 0 0 0
T =| = 0 o |,
* * -1 0
* * * * _Xi

XELFTHT + HiE:EX; HFEyX; 0 0 XELFTHF

X.ELFTHT 0 0 0 0
AT = 0 0 0 0 0 ,
0 0 0 0 0
H,FE3.X; 0 00 0
T} = XA + WIBl + AX; + BW + aX; + Vi + T Z;.
By Lemma 1, it can be obtained that (39) is equivalent to
T T
H O0||H o0 XEL XEL| | X.EL X.EL
0 0[O0 O XEL 0 XEL 0
T'+e| 0 0 0 0 +8i_1 0 0 0 0 <0.
0 o|lo o 0 0 0 0
0 H||0 H 0 0 0 0

According to the Schur complement, it follows that (39) is equivalent to (27b). Then from
(38) and (39), we obtain that (27b) is equivalent to ®; < 0. Similarly, it is easy to get that
(27c¢) is equivalent to ®; < 0.

Noticing that X; = Pi‘l, Y; = X;Q:X; and Z; = X;R;X;, one obtains that (30) is equivalent

to the following inequalities:
P; < pp;, Q; = 1nQ;, Ry <uR; VijeN,i#j. (41)

By Lemma 2, system (26a)-(26c¢) is exponentially stable in the mean-square sense and

has a prescribed weighted H,, performance level y. The proof is completed. d

Remark 4 A stabilizing controller design method of switched stochastic delay systems
under asynchronous switching has been proposed in [25], and sufficient conditions for
the existence of designed controller have been derived in a set of matrix inequalities, but
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there is some difficulty in finding the feasible solution. However, the focus of our work is on
the asynchronous switching Hy, controller design, and this is also the major contribution
of the paper. In addition, the method of Hy, controller design presented in the paper is
different from the ones proposed in [22-25], and it is much easier to solve the designed
controller.

4 Numerical example

In this section, a numerical example is presented to illustrate the effectiveness of the pro-
posed approach. Consider system (1a)-(1c) with the following parameters:

3 1 03 0 2 1
A= ) An = ) B = )
! [2 —4} a [0.1 -1} ! [3 1}
1 -02 13
D1: ) G1: )
03 -0.2 15

02 01
M, = ,  En=[02 4], Ex=[0 -18],
1 |: 0 03:| 11 [ ] 21 [ ]

1.1
E;=[01 -01], H, = |: ) :|,

103 ~05 01 13
Ay = . A= . By= ,
2 [—4 —2} @ [0.2 —0.8:| 2 [2 1}

02 01 15
D2= ) G2= )

02 —-02 13

03 O
M,y = , Ein=[0 21], Ey» =[-0.1 0],
2 |:0'1 0'2i| 2= ] 2 = ]

E3»=[-01 0.] H, = 0.1
32 = . A 2= 0.3 )
Fi(¢) = sint, F5(t) = cost, w(t) = 127, A=A, =02, =1

Take o = 0.8, 8 =1 and y =1, then solving LMIs (27a)-(27¢) in Theorem 1, we have

. (131772 0.7714 [a10781 89258

"" 107714 26426 "7 189258 56.6342|
. [4.8293 12775 e [13:0662 —41.4525
"“ 112775 7.0308| "1 28.0096 37.6451 |
- [11:5472 06269 [41.8473 5.8609

>7 106269 25231 >7 | 58609 56.5162 |
o [4.9917 0.8236 [ -64665 -38.4972
>710.8236 6.8097 |’ 7132522 319777 |

&1 = 1.4777, &y = 139145, €12 = 150698, &1 = 1.4354.
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controller switching signal
| |
AN i |

system switching signal
0.5 B

N

-
&)
T

System Modes

-
T

Figure 1 Switching signal.

state x1

Figure 2 State x; of the closed-loop system.

Then the designed controller gain matrices can be obtained:

_[-0.0758 -15.6426 02720 153254
"7 14657 14.6532 | >7|-1.8608 13.1362 |

From (30), we get p = 1.9245, and then from (28) and (29), it can be obtained that
T; =1.2683. Thus, according to Theorem 1, under the average dwell time T, > 1.2683,
the designed controller can guarantee that the resulting closed-loop system is exponen-
tially stable in the mean-square sense and has a prescribed weighted Hy, performance
level y =1.

Let x(¢) = [0,0]7, t € [-1,0), and x(0) = [2,-2]7, and choose T, = 2, simulation results
are shown in Figures 1-3. Figure 1 depicts the switching signals of the system and the con-
troller, respectively. Figures 2 and 3 show state trajectories of the closed-loop system, re-

spectively.

Page 13 0of 15
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fh, JMM“ i \ -—
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I |

state x2
&
1

Figure 3 State x; of the closed-loop system.

5 Conclusions

In this paper, the robust H,, control problem for switched stochastic systems with time
delays under asynchronous switching has been investigated. Based on the average dwell
time approach, a criterion of mean-square exponential stability with H,, performance of
switched stochastic delay systems is presented, and sufficient conditions for the existence
of a robust H,, controller are derived. Finally, a numerical example is given to illustrate
the effectiveness of the proposed approach.
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