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1 Introduction
In this study, we consider linear partial differential-algebraic equations (PDAEs) of the
form

Au(t, x) + Buyy(t, x) + Cul(t, x) = f(t,x), (1)

where ¢t € (0,¢,) and x € (-,]) C R, A,B,C € R*" are constant matrices, u,f : [0,] X
[-[,]] = R". We are interested in cases where at least one of the matrices, A or B, is singu-
lar. The two special cases A = 0 or B = 0 lead to ordinary differential equations or DAEs
which are not considered here. Therefore, in this paper we assume that none of the ma-
trices A or B is the zero matrix [1-3]. Many important mathematical models can be ex-
pressed in terms of PDAEs. Such models arise in many areas of mathematics, engineering,
the physical sciences and population growth. In recent years, much research has been fo-
cused on the numerical solution of PDAEs [4, 5]. Some numerical methods have been
developed using Runge-Kutta methods [6, 7]. The purpose of this paper is to consider the
numerical solution of PDAEs by using multivariate Padé approximations.

2 Two-dimensional differential transformation
The basic definition of the two-dimensional differential transform is given as follows
[8-13]:

1[5 w(x,y)
W(k,h) = M[‘axkayh ]OO, (2)

where w(x, ) is the original function and W (k, /) is the transformed function. The trans-
formation is called T-function and lower case and upper case letters represent the original
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and transformed functions respectively. The differential inverse transform of W (k, k) is
defined as

wxy) =Y > Wk )ty 3)

3 Multivariate Padé approximants

Consider the bivariate function f(x, y) with Taylor series development

flxy) = Z cix'y (5)

i,j=0

around the origin. We know that a solution of the univariate Padé approximation problem

for
o0
f@)=) et (6)
i=0
is given by
Yhoew xY e o xn Y e
Cm+l Cm e Crm+l-n
p(x) = ) . . . (7)
Cm+n Cm+n-1 e Cm
and
1 x x"
Cm+l Cm o Cmtl-n
g(x) = 8)
Cm+n  Cmn-1 e Cm

Let us now multiply the jth row in p(x) and g(x) by ¥*! (j = 2,...,n + 1) and afterwards
divide the jth column in p(x) and g(x) by ¥/ ™! (j = 2,..., n+1). This results in a multiplication
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of numerator and denominator by ™. Having done so, we get

m i m-1 i m-n i
D ino CiX Dz Cix e XLy
m+1 m m+l-n
Cm+1X CmX Cm+l-nX
m+n m+n—1 m
p(x) CrmnX Cm+n-1% e CimX (9)
q(x) 1 1 .. 1
m+1 m m+l-n
Cm+1X CmX o Cim+l-nX
cm+nxm+n Cmﬂq_lxmwz—l . mem

if (D = detD,,, #0).

This quotient of determinants can also immediately be written down for a bivariate func-
tion f(x,). The sum Z;(:o cix’ will be replaced by the kth partial sum of the Taylor series
development of f(x, ) and the expression c,x* by an expression that contains all the terms

of degree k in f (v, y). Here a bivariate term c;x'y is said to be of degree i + /.

If we define
- 3 . a -
Z?:j:o i’y ZZ;‘:O i’y o Z?:j:no cijx'y
Zi+j:m+l X'y ZH}':m cix'y e Zi+j:m+l—n cix'y
p(x,y) = . : . . (10)
Zi+}':m+n Clixi)/j Z::l-j:m+n—1 Cijxiyj e Z:Zj:m Clixi)/
and
1 1 . 1
Zi+j:m+1 ci/xi);/ Zi+j:m Cljxijlj e Zi+j:m+l—n Cljxi-yj
01(%)’) = . . . . ’ (11)
Zi+j:m+n Cifxi.)}j Z:’ﬁj:m+n—l Clixi)/ e Z:ﬁj:m Cljxi)}j
then it is easy to see that p(x,y) and g(x, y) are of the form
mn+m
py) = > an'y,
i+j=mn
mn+n (12)
qx,y) = Z bi/xi)/.
i+j=mn

We know that p(x,y) and g(x,y) are called Padé equations [3, 14]. So, the multivariate
Padé approximant of order (m, n) for f(x,y) is defined as

_pxy)

T qxy) 3)

Frnn (%5 )

Page 3 of 10


http://www.advancesindifferenceequations.com/content/2013/1/8

Yigider and Celik Advances in Difference Equations 2013, 2013:8 Page 4 of 10
http://www.advancesindifferenceequations.com/content/2013/1/8

4 Numerical example
The test problem considers the following PDAE [6]:

0o 2 0 -1 0 O 0O 0 O

1 -1 0Ju+| 0 0 O |uux+|0 -1 O|u=f,

1 -1 0 0 0 -1 0 0 1

x € [-0.5,0.5],¢t € [0,1], (14)
where

_1 _
fi=—x*e 2t —2e7,
1 1
f2=—x2€_t—§x26_2t,

1
fi=—xe"+ Exze‘%‘ +(¥* - 2)sint.

The exact solution is

x%e!

u(x,t) = | x2e 3t |. (15)

x2sint

Equivalently, Equation (14) can be written as

0o 2 0 Ui -1 0 O Ulxx 0o 0 O U fi
1 -1 0 uy |+10 0 O Ux | +]10 -1 O wl=1AL] 6)
1 -1 0 Usy 0 0 -1 U3xx 0 0 1 Us 3

By using the basic definition of the two-dimensional differential transform and taking

the transform of Equation (16), we can obtain that

2k + 1)Up(k +1,h) — (h+ 1)(h + 2)UL (K, h + 2) = Fy(k, h),

(k+1)Ui(k +1,h) — (k + 1)Uy (k + 1, /) — U (k, h) = Fo(k, h),

(k+1)Ui(k +1,h) — (k+ 1)U (k +1,h) — (b + 1)(h + 2)Us(k, h + 2) + Us(k, h)
= F3(k, h).

Consequently, by substituting the values of u;, we have obtained

1 1 1 1
w(x,t) = 5% — a2t + =x2% — Zx283 + — a2t — — 28 + — %10,
2 6 24 120 720
1 1 1 1 1 1
ur(x,8) = — =%t + =2t — — 23+ — a2t - —— %5 - x%t°
2 8 48 384 3840 46080

1 1
us(x, t) = 2%t — —x%83 + — %28,
6 120
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Table 1 Comparison of the numerical solution of u, (x, t) with exact solutions (t = 0.01)

X up(x, t) ra3(x, t) |uq(x,t) - raz(x, t)]
-05 0.2475124584 0.2475124584 0
-04 0.1584079734 0.1584079734 0
-03 0.08910448503 008910448502 1101
-02 0.03960199335 0.03960199334 1107
-0.1 0.009900498337 0.009900498336 110712
0.1 0.009900498337 0.009900498336 110712
0.2 0.03960199335 003960199334 1101
03 008910448503 008910448502 1101
04 0.1584079734 0.1584079734 0
05 02475124584 0.2475124584 0

Figure 1 Values of uq(x, t).

Figure 2 Values of r43(x, t) Padé approximant.
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Table 2 Comparison of the numerical solution of u;(x, t) with exact solutions (t = 0.01)

X uz(x, t) ra3(x, t) |uz(x, t) - raz(x, t)]
-05 0.2487531198 0.2487531198 0
-04 0.1592019967 0.1592019967 0
-03 0.08955112313 008955112314 1101
-02 0.03980049917 0.03980049917 0
-0.1 0.009950124792 0.009950124793 110712
0.1 0.009950124792 0.009950124793 110712
0.2 003980049917 0.03980049917 0
03 0.08955112313 008955112314 110712
04 0.1592019967 0.1592019967 0
05 02487531198 0.2487531198 0

Figure 3 Values of u;(x, t).

Figure 4 Values of r43(x, t) Padé approximant.
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Table 3 Comparison of the numerical solution of uz(x, t) with exact solutions (t = 0.01)

)'d us(x,t) raz(x,t) |us(x,t) - ra3(x,t)|
-05 0.002499958334 0.002499958333 110712
-04 0.001599973333 0001599973333 0
-03 0.0008999850001 0.0008999850000 110713
-02 0.0003999933334 0.0003999933333 110713
-0.1 0.00009999833334 0.00009999833333 11071
0.1 0.00009999833334 0.00009999833333 11071
0.2 0.0003999933334 0.0003999933333 110713
03 0.0008999850001 0.0008999850000 110713
04 0.001599973333 0001599973333 0
0.5 0.002499958334 0.002499958333 110712

Figure 5 Values of us(x, t).

Figure 6 Values of r43(x, t) Padé approximant.
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The power series u; (x, t), us(x, £) and us(x, ) can be transformed into multivariate Padé
approximation

m=4, n=3,

x2 — 22t + %xzt2 x% — x%t x> 0
_ 1,243 1,242 42 2
pl(x,t) _ 16x t 2lx t 1 Xt X
ﬁx2t4 —gx2t3 §x2t2 —xzt
1 245 1 .24 1,2.3 1,22
:LxSté—L 847 4 I s
144 360 2880
=0.006944444444x%° + 0.002777777778x%t” + 0.0003472222222x%¢8,
1 1 1 1
1.2.3 1,22 2 2
ql(x ) = —x t 3% t —Xx“t X
4 - 1 .2.4 1.2.3 1,22 2
ﬂx t —gx t Ex t —x“t
1 .2.5 1 .24 1.2.3 1,2.2
1 1 1
= —x6t6 + —x6t7 + —x6t8 + —xgt8
144 240 960 8640

=0.006944444444x°t° + 0.004166666667x°t” + 0.001041666667x°¢
+0.0001157407407%£8,

1 1 1
e t) = [ —a%® — — a8 + —— 488
144 360 2880

1 1 1 1
/ — %80+ — X% + X8t + —— + 4048
144 240

8640 960
= (0.006944444444x°t° + 0.002777777778x%t" + 0.0003472222222x°*)

/(0.006944444444x5¢° + 0.004166666667x°t” + 0.0001157407407x°¢*

+0.001041666667x°t*),
af = 3xt+ gt Xt - pat x> 0
1 .2.3 1,22 1.2 2
— =Xt Xt —>X“t X
palxt) = 148 244 81 243 122t2 1.2
382 —Rx gx —Ex t
1 245 1 244 1 .243 1,242
1 1 1
= —x8t6 - x8t7 + xSt8
9216 46080 737280
=0.0001085069444x%£° — 0.00002170138889x%¢’
+0.0000013563368064%8,
1 1 1 1
w0 o T A © o S Py x2
X, =
7 TS Tl A Pl e
1 245 1 2 44 1 .2.3 1,22
Mx t @x t —Rx t gx t
1 1 1
6t6 + 6.7 6.8 6.9

= Xt + X+ ———x't
9216 30720 245760 4423680
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=0.0001085069444x°¢° + 0.00003255208333x°¢’

+0.000004069010417x°¢® + 0.0000002260561343x°¢’,

1 1 1
ro(x,t) = X560 — 2Bt + a8
9216 46080 737280

/ (92116966'56 * 30;20’6%7 " 24531760x6t8 * 442;680x6t9>
= (0.0001085069444x%¢° — 0.00002170138889x°¢”

+0.000001356336806x°£%)

/(0.0001085069444x°° + 0.00003255208333x°¢”

+0.000004069010417x°¢* + 0.0000002260561343x°¢”),

Xt x2t 0 0
1.2.3 2
—Lx2¢ 0 X%t 0 7
xt)=| © = —a%
OO0 e 0 a2 360
1 245 1,.2.3
mx t 0 —gx t O
=0.01944444444x%¢8,
1 1 1 1
1.2.3 2
——x°t 0 Xt 0
x,t)=| © S (LY P Y
BEO=I T e 0wy (360 2160
1 245 1.2.3
mx t 0 —gx t 0

=0.01944444444x°¢ + 0.00324.0740741x°¢°,

7 7 7
rs(x,8) = [ —%¢8 / — a7 + —— %
360 360 2160

= (0.01944444444x%¢%)/(0.01944444444x°t" + 0.003240740741x°¢").

5 Conclusions
The method for solving partial differential-algebraic equations (PDAEs) has been pro-
posed. The results of the example showed from Tables 1-3 and Figures 1-6 that exactly the
same solutions have been obtained with multivariate Padé approximation. On the other
hand, the results are quite reliable. Therefore, this method can be applied to many com-
plicated PDAEs.
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