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Abstract
Stochastic models have an important role in modeling and analyzing epidemic
diseases for small size population. In this article, we study the generation of stochastic
models for epidemic disease susceptible-infective-susceptible model. Here, we use
the separation variable method to solve partial differential equation and the new
developed modified probability generating function (PGF) of a random process to
include a random catastrophe to solve the ordinary differential equations generated
from partial differential equation. The results show that the probability function is too
sensitive to μ, β and γ parameters.
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1 Deterministic susceptible-infective-susceptible model
Figure  shows a deterministic susceptible-infective-susceptible model for an epidemic
disease. In this figure, S is the susceptible population, I is the infective population, μ >
 is the natural death rate, γ >  is the removal rate which is a constant. Note that
S, I ≥  because they represent the number of people. The infection rate, λ, depends
on the number of partners per individual per unit time (r > ) and the transmission
probability per partner (β > ). In this system, the first susceptible population in class
S is going to be infected, then infected population in class I is going to be suscepti-
ble again. The following system of ODE’s describes this susceptible-infective-susceptible
model []

⎧⎨
⎩

dS(t)
dt = γ I(t) –μ – λS(t),

dI(t)
dt = λS(t) –μ – γ .

()

Figure  illustrates the system (). This system is nonlinear due to the form of λ = βI .

2 Generation stochastic susceptible-infective-susceptible model
In this section, we present the state of the generation stochastic [–] susceptible-
infective-susceptible model. The stochastic susceptible-infective-susceptible model is
similar to the deterministic susceptible-infective-susceptible model, for the determinis-
tic model we can find an exact function but for the stochastic model, we cannot obtain
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Figure 1 A schematic of system ().

Figure 2 Stochastic susceptible-infective-susceptible model state diagram.

Table 1 Transition diagram for the stochastic susceptible-infective-susceptible model

Transitions Rates

i –→ i – 1 β i(m + (n – i)) +μ – γ

i –→ 0 μ – γ

for i = n,n – 1,n – 2, . . . , 2, 1

In this figure, μ > 0 is the natural death rate, γ > 0 is the removal rate which is a constant and β > 0 is the transmission
probability per partner.

an exact function. Figure  shows the state diagram for the stochastic [–] susceptible-
infective-susceptible model [, –].
At t, if m is infective and n is susceptible, namely S(t) + I(t) = n + m, then Pi(t) =

P[S(t) = i|S() = n] is the probability function in the time t and stage i. Here, our goal is to
determine Pi(t). Table  shows the transition diagram for this model. To determine Pi(t)’s,
we should create the Kolmogorov equations. From Figure , we have

P[staying at state i] =  –
(
βi

(
m + (n – i)

)
�t +μ�t – γ�t

)
()

and

P[moving from state i to i – ] = βi
(
m + (n – i)

)
�t +μ�t – γ�t. ()

Now, to produce the forward Kolmogorov equations, we have

Pi(t +�t) = P
(
 contact during �t|S(t) = i

)
Pi(t)

+ P
(
 contact during �t|S(t) = i + 

)
Pi+(t)

= P(staying at state i)Pi(t) + P(moving from state i +  to i)Pi+(t)

=
(
 –

(
βi

(
m + (n – i)

)
�t +μ�t – γ�t

))
Pi(t)

+
(
β(i + )

(
m + (n – i – )

)
�t +μ�t – γ�t

)
Pi+(t).
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So,

Pi(t +�t) – Pi(t) = –
(
βi(m + n – i)�t +μ�t – γ�t

)
Pi(t)

+
(
β(i + )(m + n – i – )�t +μ�t

– γ�t
)
Pi+(t), ()

then

Pi(t +�t) – Pi(t)
�t

= –
(
βi(m + n – i) +μ – γ

)
Pi(t)

+
(
β(i + )(m + n – i – ) +μ – γ

)
Pi+(t). ()

Having limited from both sides of Eq. (), when �t –→ , we have

P′
i(t) = lim

�t–→

Pi(t +�t) – Pi(t)
�t

= –
(
βi(m + n – i) +μ – γ

)
Pi(t)

+
(
β(i + )(m + n – i – ) +μ – γ

)
Pi+(t). ()

Therefore, the forward Kolmogorov equations for this model will be as follows:

P′
i(t) = –

(
βi(m + n – i) +μ – γ

)
Pi(t)

+
(
β(i + )(m + n – i – ) +μ – γ

)
Pi+(t). ()

The probabilities function Pi(t) is found from Eq. (). Also, from probability generat-
ing functions (PGFs) and partial differential functions equations (PDEs), the probabilities
function Pi(t) can be obtained. Probability generating functions can be written as

y(x, t) =
n∑
i=

Pi(t)xi = P(t) + P(t)x + P(t)x + · · · + Pn(t)xn. ()

Now, the partial derivative of y(x, t) with respect to t will be ∂y
∂t =

∑n
i= P′

i(t)xi, so one can
write the partial derivative as follows:

∂y
∂t

=
n∑
i=

[
–
(
βi(m + n – i) +μ – γ

)
Pi(t)

+
(
β(i + )(m + n – i – ) +μ – γ

)
Pi+(t)

]
xi. ()

Having simplified Eq. (), we can write

∂y(x, t)
∂t

= (μ – γ ) · 
x
+ (γ –μ)y(x, t) + β(m + n – )( – x)

∂y(x, t)
∂x

+ βx(x – )
∂y(x, t)

∂x
. ()
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The separation variable method is employed to solve Eq. (). If y(x, t) = X(x)T(t), then we
have

T ′(t)
T(t)

= (γ –μ) + (μ – γ ) · 
x

· 
X(x)

+ β(m + n – )( – x)
X ′(x)
X(x)

+ βx(x – )
X ′′(x)
X(x)

. ()

Two sides of Eq. () are equal, so

T ′(t)
T(t)

= –c and (γ –μ) + (μ – γ ) · 
x

· 
X(x)

+ β(m + n – )( – x)
X ′(x)
X(x)

+ βx(x – )
X ′′(x)
X(x)

= –c. ()

To include a random catastrophe presented by Gani and Swift in  [], we develop
the modified probability generating function (PGF) of a random process to solve Eq. ()
as follows:

G(x, t) =
n∑
j=

Gj(x, t) =
n∑
j=

[
e–(μ–γ )ty(x, t) +

∫ t


(μ – γ )e–(μ–γ )vy(x, v)dv

]
, ()

with μ – γ ≥ , here y(x, t) is the answer of Eq. () when μ = , γ = . So, we can put
μ = , γ =  with m =  in Eq. ()

x(x – )X ′′(x) – n(x – )X ′(x) + (c/β)X(x) = . ()

This equation was solved by Bailey in  []. After having solved Eq. () by Maple, we
have

X(x) = –C × F
[
–/

√
β + βn + nβ – c +

√
β(– + n)√

β
,

– /
–
√

β + βn + nβ – c +
√

β(– + n)√
β

; –n;x
]
, ()

where F[·, ·; ·; ·] is a hypergeometric function.

Notation  The standard hypergeometric function F[a,b; c;x] is as follows:

F[a,b; c;x] =
∞∑
i=

(a)i(b)i
(c)i

× xi

i!
, ()

where (a)i = a(a + )(a + )(a + ) · · · (a + i – ) with (a) =  is the Pochhammer symbol.
The derivatives of F[a,b; c;x] are given by

dF[a,b, c,x]
dx

=
ab
c F[a + ,b + , c + ,x],

d
F[a,b, c,x]

dx
=
a(a + )b(b + )

c(c + ) F[a + ,b + , c + ,x],
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d
F[a,b, c,x]

dx
=
a(a + )(a + )b(b + )(b + )

c(c + )(c + ) F[a + ,b + , c + ,x],

...

Also, from equation T ′(t)
T(t) = –c, we have T(t) = ke–ct . So,

y(x, t) = e–ct


F[–/
√

β+βn+nβ–c+
√

β(–+n)√
β

, –/–
√

β+βn+nβ–c+
√

β(–+n)√
β

; –n; ]

× F
[
–/

√
β + βn + nβ – c +

√
β(– + n)√

β
,

– /
–
√

β + βn + nβ – c +
√

β(– + n)√
β

; –n;x
]
. ()

In Eq. () we can take c = j(N +m– j)β ;N = n+ ε, here ε is so small parameter. Then from
Eq. () and Eq. (), one can write

G(x, t) =
n∑
j=

[
e–(μ–γ )t × e–j(N+m–j)βt 

F[–j, j –N – ,–N , ]
()

× F[–j, j –N – ,–N ,x] +
∫ t


(μ – γ )e–(μ–γ )v × e–j(m+N–j)βv ()

× 
F[–j, j –N – ,–N , ]

× F[–j, j –N – ,–N , v]dv
]
. ()

Thus,

G(x, t) =
n∑
j=

λj × F[–j, j –N – ,–N ,x]×
[
(e–[(μ–γ )+j(N+m–j)β]t

+
∫ t


(μ – γ )e–[(μ–γ )+j(N+m–j)β)]v dv

]

=
n∑
j=

λj × F[–j, j –N – ,–N ,x]×
[
e–[(μ–γ )+j(m+N–j)β]t

–
 – e(–μ+γ+jβN–jβ+jβ)t

–μ + γ + jβN – jβ + jβ

]
, ()

where

λj =
(–)jn!(N – j + )N !�(–N + j – )
j!(n – j)!(N – n)!(–)n+�(n –N + j)

.

Now, to find P(t),P(t),P(t), . . . ,Pk(t), one can calculate G(x, t) as follows:

G(x, t) =
∞∑
k=

Pk(t)xk = P(t) + P(t)x + P(t)x + · · · . ()
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So,

P(t) = G(, t)

=
n∑
j=

λj ×
[
e–[(μ–γ )+j(m+N–j)β)]t

–
 – e(–μ+γ+jβN–jβ+jβ)t

–μ + γ + jβN – jβ + jβ

]
. ()

Hence, P(t) and P(t) are obtained as follows:

P(t) =
dG(x, t)

dx

∣∣∣∣
x=

=
n∑
j=


!
(–j)(j –N – )

(–N)
× λj×	j(t),

P(t) =
dG(x, t)

dx

∣∣∣∣
x=

=
n∑
j=


!
(–j)(–j + )(j –N – )(j –N –  + )

(–N)(–N + )

× λj×	j(t),

...

Therefore,

Pk(t) =
dkG(x, t)

dxk

∣∣∣∣
x=

=
n∑
j=


k!
(–j)k(j –N – )k

(–N)k
× λj × 	j(t), ()

with

	j(t) =
[
e–jμt–(n–j)γ t–(m+N–j)βt –

 – e(–μ+γ+jβN–jβ+jβ)t

–μ + γ + jβN – jβ + jβ

]
. ()

3 Numerical results
Some numerical examples illustrate the behavior of the probability function PK (t,β ,μ,γ )
with the following parameters: t = ; β = .; μ = .; γ = ..
Figure (a) and (b) show the behavior of the probability functions, P(t,β) and P(t,β)

with μ = . and γ = . when  < t <  and  < β < .
Figure (a) shows that with an increase in t and β , the probability function P(t,β) in-

creases fast, but in Figure (b) P(t,β) decreases fast.
Figure (a) and (b) show the behavior of the probability functions, P(t,μ) and P(t,μ)

with β = . and γ = . when  < t <  and  < μ < . Figure (a) shows that as t in-
creases, the probability function P(t,μ) increases, but with an increase in μ, the prob-
ability function P(t,μ) decreases. Figure (b) shows that as t increases, the probability
function P(t,μ) decreases, but with an increase in μ, the probability function P(t,μ)
increases.
Figure (a) and (b) display the probability functions, P(t,γ ) and P(t,γ ) with β = .

andμ = .. From Figure (a) when  < t <  and  < γ < , the probability function P(t,γ )

http://www.advancesindifferenceequations.com/content/2013/1/7
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Figure 3 Probability function Pk(t,β) with μ = 0.3 and γ = 0.1, (a): k = 0 and (b): k = 8.

Figure 4 Probability function Pk(t,μ) with β = 0.3 and γ = 0.1, (a): k = 0 and (b): k = 8.

Figure 5 Probability function Pk(t,γ ) with β = 0.3 and μ = 0.3, (a): k = 0 and (b): k = 8.

http://www.advancesindifferenceequations.com/content/2013/1/7


Seddighi Chaharborj et al. Advances in Difference Equations 2013, 2013:7 Page 8 of 9
http://www.advancesindifferenceequations.com/content/2013/1/7

Figure 6 Probability function Pk(β ,μ) with γ = 0.1 and t = 1, (a): k = 0 and (b): k = 8.

Figure 7 Probability function Pk(μ,γ ) with β = 0.3 and t = 1, (a): k = 0 and (b): k = 8.

is nearly zero, but for  < t <  as t increases, P(t,γ ) slowly increases, and as γ increases,
P(t,γ ) sharply increases. In Figure (b), P(t,γ ) is almost constant for  < t < , but with
a decrease in γ from  to , P(t,γ ) increases; also, Figure (b) shows the highest value of
P(t,γ ) when  < t <  and  < γ < .
Figure (a) and (b) show the probability functions, P(β ,μ) and P(β ,μ) with γ = .

and t = . Figure (a) depicts that for  < β < , as μ increases from  to , the probability
function P(β ,μ) increases. Figure (b) shows that for  < μ < , with an increase in β and
μ, the probability function P(β ,μ) increases.
Figure (a) and (b) illustrate the probability functions, P(μ,γ ) and P(μ,γ ) with β = .

and t = . Figure (a) shows that the probability function P(μ,γ ) decreases with an in-
crease inμ, but inversely it increases with an increase in γ . In Figure (a) we observe a sep-
aration which means that in the probability function PK (μ,γ ) we have μ �= γ . Figure (b)
depicts that the probability function P(μ,γ ) increases when μ increases, although it de-
creases with an increase in γ .
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4 Conclusions
We have presented the generation of a stochastic model for the susceptible-infective-
susceptible model. The separation variable method has been applied to solve a partial
differential equation of this generation. So, two ordinary differential equations have been
achieved which relate to the parameter x. To solve this equation, we used the devel-
oped modified probability generating function (PGF) of a random process to consider a
random catastrophe. Numerical results showed the behavior of the probability function
Pk(t,β ,μ,γ ) when  < t <  and  < β ,μ,γ < .
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