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1 Introduction
Let X be a normed space over a scalar field K, and let I ⊂R be an open interval, where K
denotes either R or C. Assume that a,a, . . . ,an : I →K and g : I → X are given continu-
ous functions. If for every n times continuously differentiable function y : I → X satisfying
the inequality

∥∥an(x)y(n)(x) + an–(x)y(n–)(x) + · · · + a(x)y′(x) + a(x)y(x) + g(x)
∥∥ ≤ ε

for all x ∈ I and for a given ε > , there exists an n times continuously differentiable solution
y : I → X of the differential equation

an(x)y(n)(x) + an–(x)y(n–)(x) + · · · + a(x)y′(x) + a(x)y(x) + g(x) = 

such that ‖y(x) – y(x)‖ ≤ K(ε) for any x ∈ I , where K(ε) is an expression of ε with
limε→K(ε) = , then we say that the above differential equation has the Hyers-Ulam sta-
bility. For more detailed definitions of the Hyers-Ulam stability, we refer the reader to
[–].
Obłoza seems to be the first author who has investigated the Hyers-Ulam stability of

linear differential equations (see [, ]). Thereafter, Alsina andGer [] proved theHyers-
Ulam stability of the differential equation y′(x) = y(x). It was further proved by Takahasi et
al. that the Hyers-Ulam stability holds for the Banach space valued differential equation
y′(x) = λy(x) (see [] and also [–]).
Moreover, Miura et al. [] investigated the Hyers-Ulam stability of an nth-order lin-

ear differential equation. The first author also proved the Hyers-Ulam stability of various
linear differential equations of first order (ref. [–]).
Recently, the first author applied the power series method to studying the Hyers-Ulam

stability of several types of linear differential equations of second order (see [–]).
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However, it was inconvenient that he had to alter and apply the power series method with
respect to each differential equation in order to study the Hyers-Ulam stability. Thus, it
is inevitable to develop a power series method that can be comprehensively applied to
different types of differential equations.
In Sections  and  of this paper, we establish a theory for the power series method that

can be applied to various types of linear differential equations of second order to prove
the Hyers-Ulam stability.
Throughout this paper, we assume that the linear differential equation of second order

of the form

p(x)y′′(x) + q(x)y′(x) + r(x)y(x) = , ()

for which x =  is an ordinary point, has the general solution yh : (–ρ,ρ)→ C, where ρ

is a constant with  < ρ ≤ ∞ and the coefficients p,q, r : (–ρ,ρ) → C are analytic at 
and have power series expansions

p(x) =
∞∑
m=

pmxm, q(x) =
∞∑
m=

qmxm and r(x) =
∞∑
m=

rmxm

for all x ∈ (–ρ,ρ). Since x =  is an ordinary point of (), we remark that p 	= .

2 Inhomogeneous differential equation
In the following theorem, we solve the linear inhomogeneous differential equation of sec-
ond order of the form

p(x)y′′(x) + q(x)y′(x) + r(x)y(x) =
∞∑
m=

amxm ()

under the assumption that x =  is an ordinary point of the associated homogeneous linear
differential equation ().

Theorem . Assume that the radius of convergence of power series
∑∞

m= amxm is ρ > 
and that there exists a sequence {cm} satisfying the recurrence relation

m∑
k=

[
(k + )(k + )ck+pm–k + (k + )ck+qm–k + ckrm–k

]
= am ()

for any m ∈ N. Let ρ be the radius of convergence of power series
∑∞

m= cmxm and let
ρ = min{ρ,ρ,ρ}, where (–ρ,ρ) is the domain of the general solution to (). Then ev-
ery solution y : (–ρ,ρ) → C of the linear inhomogeneous differential equation () can be
expressed by

y(x) = yh(x) +
∞∑
m=

cmxm

for all x ∈ (–ρ,ρ), where yh(x) is a solution of the linear homogeneous differential equa-
tion ().
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Proof Since x =  is an ordinary point, we can substitute
∑∞

m= cmxm for y(x) in () and
use the formal multiplication of power series and consider () to get

p(x)y′′(x) + q(x)y′(x) + r(x)y(x)

=
∞∑
m=

m∑
k=

pm–k(k + )(k + )ck+xm +
∞∑
m=

m∑
k=

qm–k(k + )ck+xm

+
∞∑
m=

m∑
k=

rm–kckxm

=
∞∑
m=

m∑
k=

[
(k + )(k + )ck+pm–k + (k + )ck+qm–k + ckrm–k

]
xm

=
∞∑
m=

amxm

for all x ∈ (–ρ,ρ). That is,
∑∞

m= cmxm is a particular solution of the linear inhomoge-
neous differential equation (), and hence every solution y : (–ρ,ρ) → C of () can be
expressed by

y(x) = yh(x) +
∞∑
m=

cmxm,

where yh(x) is a solution of the linear homogeneous differential equation (). �

For the most common case in applications, the coefficient functions p(x), q(x), and r(x)
of the linear differential equation () are simple polynomials. In such a case, we have the
following corollary.

Corollary . Let p(x), q(x), and r(x) be polynomials of degree at most d ≥ . In par-
ticular, let d be the degree of p(x). Assume that the radius of convergence of power series∑∞

m= amxm is ρ >  and that there exists a sequence {cm} satisfying the recurrence formula

m∑
k=m

[
(k + )(k + )ck+pm–k + (k + )ck+qm–k + ckrm–k

]
= am ()

for any m ∈ N, where m =max{,m – d}. If the sequence {cm} satisfies the following con-
ditions:

(i) limm→∞ cm–/mcm = ,
(ii) there exists a complex number L such that limm→∞ cm/cm– = L and

pd + Lpd– + · · · + Ld–p + Ldp 	= ,
then every solution y : (–ρ,ρ) → C of the linear inhomogeneous differential equation ()
can be expressed by

y(x) = yh(x) +
∞∑
m=

cmxm
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for all x ∈ (–ρ,ρ),where ρ =min{ρ,ρ} and yh(x) is a solution of the linear homogeneous
differential equation ().

Proof Letm be any sufficiently large integer. Since pd+ = pd+ = · · · = , qd+ = qd+ = · · · =
 and rd+ = rd+ = · · · = , if we substitutem – d + k for k in (), then we have

am =
d∑

k=

[
(m – d + k + )(m – d + k + )cm–d+k+pd–k

+ (m – d + k + )cm–d+k+qd–k + cm–d+krd–k
]
.

By (i) and (ii), we have

lim sup
m→∞

|am|/m

= lim sup
m→∞

∣∣∣∣∣
d∑

k=

(m – d + k + )(m – d + k + )cm–d+k+

×
(
pd–k +

qd–k
(m – d + k + )

cm–d+k+

cm–d+k+

+
rd–k

(m – d + k + )(m – d + k + )
cm–d+k

cm–d+k+

cm–d+k+

cm–d+k+

)∣∣∣∣∣
/m

= lim sup
m→∞

∣∣∣∣∣
d∑

k=

(m – d + k + )(m – d + k + )cm–d+k+pd–k

∣∣∣∣∣
/m

= lim sup
m→∞

∣∣∣∣∣
d∑

k=d–d

(m – d + k + )(m – d + k + )cm–d+k+pd–k

∣∣∣∣∣
/m

= lim sup
m→∞

∣∣(m – d + )(m – d + )cm–d+
(
pd + Lpd– + · · · + Ldp

)∣∣/m

= lim sup
m→∞

∣∣(pd + Lpd– + · · · + Ldp
)
(m – d + )(m – d + )

∣∣/m

× (|cm–d+|/(m–d+)
)(m–d+)/m

= lim sup
m→∞

|cm–d+|/(m–d+),

which implies that the radius of convergence of the power series
∑∞

m= cmxm is ρ. The rest
of this corollary immediately follows from Theorem .. �

In many cases, it occurs that p(x) ≡  in (). For this case, we obtain the following corol-
lary.

Corollary . Let ρ be a distance between the origin  and the closest one among singular
points of q(z), r(z), or

∑∞
m= amzm in a complex variable z. If there exists a sequence {cm}

satisfying the recurrence relation

(m + )(m + )cm+ +
m∑
k=

[
(k + )ck+qm–k + ckrm–k

]
= am ()
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for any m ∈N, then every solution y : (–ρ,ρ) →C of the linear inhomogeneous differen-
tial equation

y′′(x) + q(x)y′(x) + r(x)y(x) =
∞∑
m=

amxm ()

can be expressed by

y(x) = yh(x) +
∞∑
m=

cmxm

for all x ∈ (–ρ,ρ),where yh(x) is a solution of the linear homogeneous differential equation
() with p(x) ≡ .

Proof If we put p =  and pi =  for each i ∈ N, then the recurrence relation () reduces
to (). As we did in the proof of Theorem ., we can show that

∑∞
m= cmxm is a particular

solution of the linear inhomogeneous differential equation ().
According to [, Theorem .] or [, Theorem ..], there is a particular solution

y(x) of () in a form of power series in x whose radius of convergence is at least ρ. More-
over, since

∑∞
m= cmxm is a solution of (), it can be expressed as a sum of both y(x) and a

solution of the homogeneous equation () with p(x)≡ . Hence, the radius of convergence
of

∑∞
m= cmxm is at least ρ.

Now, every solution y : (–ρ,ρ) →C of () can be expressed by

y(x) = yh(x) +
∞∑
m=

cmxm,

where yh(x) is a solution of the linear differential equation () with p(x)≡ . �

3 Approximate differential equation
In this section, let ρ >  be a constant. We denote by C the set of all functions y :
(–ρ,ρ)→ C with the following properties:
(a) y(x) is expressible by a power series

∑∞
m= bmxm whose radius of convergence is at

least ρ;
(b) There exists a constant K ≥  such that

∑∞
m= |amxm| ≤ K |∑∞

m= amxm| for any
x ∈ (–ρ,ρ), where

am =
m∑
k=

[
(k + )(k + )bk+pm–k + (k + )bk+qm–k + bkrm–k

]

for all m ∈ N and p 	= .

Lemma. Given a sequence {am}, let {cm} be a sequence satisfying the recurrence formula
() for all m ∈N. If p 	=  and n≥ , then cn is a linear combination of a,a, . . . ,an–, c,
and c.
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Proof We apply induction on n. Since p 	= , if we set m =  in (), then

c =


p
a –

r
p

c –
q
p

c,

i.e., c is a linear combination of a, c, and c. Assume now that n is an integer not less
than  and ci is a linear combination of a, . . . ,ai–, c, c for all i ∈ {, , . . . ,n}, namely,

ci = α
i a + α

i a + · · · + αi–
i ai– + βic + γic,

where α
i , . . . ,αi–

i , βi, γi are complex numbers. If we replacem in () with n – , then

an– = cpn– + cqn– + crn–

+ cpn– + cqn– + crn–

+ · · ·
+ n(n – )cnp + (n – )cn–q + cn–r

+ (n + )ncn+p + ncnq + cn–r

= (n + )npcn+ +
[
n(n – )p + nq

]
cn + · · ·

+ (pn– + qn– + rn–)c + (qn– + rn–)c + rn–c,

which implies

cn+ =


(n + )np
an– –

n(n – )p + nq
(n + )np

cn – · · ·

–
pn– + qn– + rn–

(n + )np
c –

qn– + rn–
(n + )np

c –
rn–

(n + )np
c

= α
n+a + α

n+a + · · · + αn–
n+an– + βn+c + γn+c,

where α
n+, . . . ,αn–

n+ , βn+, γn+ are complex numbers. That is, cn+ is a linear combination
of a,a, . . . ,an–, c, c, which ends the proof. �

In the following theorem, we investigate a kind of Hyers-Ulam stability of the linear
differential equation (). In other words, we answer the question whether there exists an
exact solution near every approximate solution of (). Since x =  is an ordinary point of
(), we remark that p 	= .

Theorem. Let {cm} be a sequence of complex numbers satisfying the recurrence relation
() for all m ∈ N, where (b) is referred for the value of am, and let ρ be the radius of
convergence of the power series

∑∞
m= cmxm. Define ρ = min{ρ,ρ,ρ}, where (–ρ,ρ) is

the domain of the general solution to (). Assume that y : (–ρ,ρ) → C is an arbitrary
function belonging to C and satisfying the differential inequality

∣∣p(x)y′′(x) + q(x)y′(x) + r(x)y(x)
∣∣ ≤ ε ()

http://www.advancesindifferenceequations.com/content/2013/1/76
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for all x ∈ (–ρ,ρ) and for some ε > . Let α
n ,α

n, . . . ,αn–
n , βn, γn be the complex numbers

satisfying

cn = α
na + α

na + · · · + αn–
n an– + βnc + γnc ()

for any integer n≥ . If there exists a constant C >  such that

∣∣α
na + α

na + · · · + αn–
n an–

∣∣ ≤ C|an| ()

for all integers n ≥ , then there exists a solution yh : (–ρ,ρ) → C of the linear homoge-
neous differential equation () such that

∣∣y(x) – yh(x)
∣∣ ≤ CKε

for all x ∈ (–ρ,ρ), where K is the constant determined in (b).

Proof By the same argument presented in the proof of Theorem . with
∑∞

m= bmxm in-
stead of

∑∞
m= cmxm, we have

p(x)y′′(x) + q(x)y′(x) + r(x)y(x) =
∞∑
m=

amxm ()

for all x ∈ (–ρ,ρ). In view of (b), there exists a constant K ≥  such that

∞∑
m=

∣∣amxm∣∣ ≤ K

∣∣∣∣∣
∞∑
m=

amxm
∣∣∣∣∣ ()

for all x ∈ (–ρ,ρ).
Moreover, by using (), (), and (), we get

∞∑
m=

∣∣amxm∣∣ ≤ K

∣∣∣∣∣
∞∑
m=

amxm
∣∣∣∣∣ ≤ Kε

for any x ∈ (–ρ,ρ). (That is, the radius of convergence of power series
∑∞

m= amxm is at
least ρ.)
According to Theorem . and (), y(x) can be written as

y(x) = yh(x) +
∞∑
n=

cnxn ()

for all x ∈ (–ρ,ρ), where yh(x) is a solution of the homogeneous differential equation ().
In view of Lemma ., the cn can be expressed by a linear combination of the form () for
each integer n≥ .
Since

∑∞
n= cnxn is a particular solution of (), if we set c = c = , then it follows from

(), (), and () that

∣∣y(x) – yh(x)
∣∣ ≤

∞∑
n=

∣∣cnxn∣∣ ≤ CKε

for all x ∈ (–ρ,ρ). �
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