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Abstract
This paper studies the Kudryashov-Sinelshchikov and Jimbo-Miwa equations. Subse-
quently, we formally derive the dark (topological) soliton solutions for these equations.
By using the sine-cosine method, some additional periodic solutions are derived. The
physical parameters in the soliton solutions of the ansatzmethod, amplitude, inverse
width and velocity, are obtained as functions of the dependent model coefficients.
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1 Introduction
In recent years, many powerful methods to construct exact solutions of nonlinear partial
differential equations have been established and developed, which led to one of the most
exciting advances of nonlinear science and theoretical physics. Particularly, the existence
of soliton-type solutions for nonlinear models is of great importance because of their po-
tential application in many physics areas such as nonlinear optics, plasmas, fluid mechan-
ics, condensedmatter andmanymore. Remarkably, the interest in dark and bright solitons
has been growing steadily in recent years [–]. In fact, many kinds of exact soliton solu-
tions have been obtained by using, for example, the tanh-sech method [–], extended
tanh method [–], homogeneous balance method [, ], first integral method [,
], Jacobi elliptic function method [, ], (G′

G )-expansion method [, ], F-expansion
method [, ], Hirota bilinear method [, ], multiple exp-function method [] and
transformed rational function method [] and so on.
In , Kudryashov and Sinelshchikov [] obtained amore common nonlinear partial

differential equation for describing the pressure waves in a mixture liquid and gas bubbles
taking into consideration the viscosity of the liquid and the heat transfer. The equation
reads as follows []:

ut + αuux + uxxx – (uuxx)x – buxuxx = . (.)

In this equation, u is a density and α, b are real parameters. Ryabov [] obtained some
exact solutions for b = – and b = – using a modification of the truncated expansion
method. Solutions are derived in a more straightforward manner and cast into a simpler
form, and some new types of solutions which contain solitary wave and periodic wave
solutions are presented in [].

© 2013 Güner et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

http://www.advancesindifferenceequations.com/content/2013/1/68
mailto:acevikel@yildiz.edu.tr
http://creativecommons.org/licenses/by/2.0


Güner et al. Advances in Difference Equations 2013, 2013:68 Page 2 of 11
http://www.advancesindifferenceequations.com/content/2013/1/68

On the other hand, there is the Jimbo-Miwa equation (JM)

uxxxy + uyuxx + uxuxy + uyt – uxz = . (.)

This equation was first introduced by Jimbo and Miwa [] and it is known that this
model is not Painlevé integrable. For many years, many scientists have researched it and
certain explicit solutions have been obtained [–]. Exact three-wave solutions in-
cluding periodic cross-kink wave solutions, doubly periodic solitary wave solutions and
breather type of two-solitary wave solutions for the Jimbo-Miwa equation have been ob-
tained using the generalized three-wave method in [].
The layout of this paper is organized as follows. In Section , we give the description of

the sine-cosine method and we apply this method to the Kudryashov-Sinelshchikov (KS)
and Jimbo-Miwa equations. We apply the ansatz method to the KS and JM equations in
Section . Conclusions are given in the last section.

2 Sine-cosinemethod
In this section, the sine-cosine method will be first described and then subsequently ap-
plied to solve the Kudryashov-Sinelshchikov and Jimbo-Miwa equations.

2.1 Brief of the method
The sine-cosine method was first proposed by Wazwaz in  []. This method has
been applied to various kinds of nonlinear problems arising in the applied sciences
[–].
. We introduce the wave variable ξ = x + y – ct into the PDE

P(u,ut ,ux,uy,utt ,uxx,uyy,uxt ,uxy,uty, . . .) = , (.)

where u(x, y, t) is a traveling wave solution. This enables us to use the following changes:

∂

∂t
= –c

∂

∂ξ
,

∂

∂t
= c

∂

∂ξ  ,
∂

∂x
=

∂

∂ξ
,

∂

∂x
=

∂

∂ξ  ,
∂

∂y
=

∂

∂ξ
,

∂

∂y
=

∂

∂ξ  , . . . .
(.)

One can immediately reduce nonlinear PDE (.) into the nonlinear ODE

Q(u,uξ ,uξξ ,uξξξ , . . .) = . (.)

Ordinary differential equation (.) is then integrated as long as all terms contain deriva-
tives, where we neglect integration constants.
. The solutions of many nonlinear equations can be expressed in the form []

u(x, t) =

⎧⎨
⎩

λ cosβ (μξ ), |ξ | ≤ π
μ ,

, otherwise,
(.)

or in the form

u(x, t) =

⎧⎨
⎩

λ sinβ (μξ ), |ξ | ≤ π
μ
,

, otherwise,
(.)
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where λ,μ and β �=  are parameters that will be determined,μ and c are the wave number
and the wave speed respectively. We use

u(ξ ) = λ cosβ (μξ ),

un(ξ ) = λn cosnβ (μξ ),
(
un

)
ξ
= –nμβλn sin(μξ ) cosnβ–(μξ ),

(
un

)
ξξ

= –nμβλn cosnβ (μξ ) + nμλnβ(nβ – ) cosnβ–(μξ ),

(.)

and the derivatives of (.) become

u(ξ ) = λ sinβ (μξ ),

un(ξ ) = λn sinnβ (μξ ),
(
un

)
ξ
= nμβλn cos(μξ ) sinnβ–(μξ ),

(
un

)
ξξ

= –nμβλn sinnβ (μξ ) + nμλnβ(nβ – ) sinnβ–(μξ ),

(.)

and so on for other derivatives.
.We substitute (.) or (.) into the reduced equation obtained above in (.), balance

the terms of the cosine functions when (.) is used, or balance the terms of the sine func-
tions when (.) is used, and solve the resulting system of algebraic equations by using
the computerized symbolic calculations.We next collect all terms with the same power in
cosk(μξ ) or sink(μξ ) and set to zero their coefficients to get a system of algebraic equations
among the unknowns μ, β and λ. We obtained all possible values of the parameters μ, β
and λ [].

2.2 Application of the sine-cosine method to the Kudryashov-Sinelshchikov
equation

We begin first with Eq. (.). Using the wave variable ξ = x – vt, Eq. (.) is carried to the
ODE

–(uv)′ + α

(
u



)′
+ u′′′ –

(
uu′′)′ –

b

[(
u′)]′ = , (.)

where by integrating once we obtain

–uv + α
u


+ u′′ – uu′′ –

b

(
u′) + k = , (.)

where k is the integration constant.
Substituting (.) into (.) gives

–vλ cosβ (μξ ) +


αλ cosβ (μξ ) + λμβ cosβ–(μξ )

– λμβ cosβ (μξ ) – λβμ cosβ–(μξ ) – λμβ cosβ–(μξ )

+ λμβ cosβ (μξ ) + λμβ cosβ–(μξ )

+


bλμβ cosβ (μξ ) –



bλμβ cosβ–(μξ ) + k = . (.)
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Equating the exponents and the coefficients of each pair of the cosine functions, we find
the following system of algebraic equations:

(β – ) �= ,

β –  = β ,



αλ + λμ + bλμ = ,

– vλ – λμ – λμ – bλμ = ,

λμ + k = .

(.)

Solving the system (.) yields

β = –,

μ =
√
–

α

 + b
,

λ =
k(b + )

α
,

v =
a + k + kb + bk

b + 
.

(.)

The result (.) can be easily obtained if we also use the sine method (.). Consequently,
for α

+b < , the following periodic solutions can be obtained:

u(x, t) =
(
k(b + )

α

)
sec

[√
–

α

 + b
(x – vt)

]
, (.)

where |√– α
+b (x – vt)| < π

 , and

u(x, t) =
(
k(b + )

α

)
csc

[√
–

α

 + b
(x – vt)

]
, (.)

where  <
√
– α

+b (x – vt) < π .
However, for α

+b > , we obtain the soliton solutions

u(x, t) =
(
k(b + )

α

)
sech

[√
–

α

 + b
(x – vt)

]
(.)

and

u(x, t) =
(
–
k(b + )

α

)
csch

[√
α

 + b
(x – vt)

]
. (.)

All the solutions reported in this paper have been verified with Maple by putting them
back into original Eq. (.), which cannot be obtained by the methods [–]. To the best
of our knowledge, these solutions are new and have not been reported yet.
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2.3 Application of the sine-cosine method to the Jimbo-Miwa equation
Webegin secondwith Eq. (.). Using the wave variable ξ = x+y+z–vt, Eq. (.) is carried
to the ODE

u′′′′ + 
[(
u′)]′ – (v + )u′′ = , (.)

where by integrating once we obtain

u′′′ + 
(
u′) – (v + )u′ = , (.)

which is obtained upon setting the constant of integration to zero. Setting u′ = ρ , Eq. (.)
becomes

ρ ′′ + ρ – (v + )ρ = . (.)

Substituting (.) into (.) gives

–λβμ cosβ (μξ ) + λβμ cosβ–(μξ ) – λβμ cosβ–(μξ )

+ λ cosβ (μξ ) – (v + )λ cosβ (μξ ) = . (.)

Equating the exponents and the coefficients of each pair of the cosine functions, we find
the following system of algebraic equations:

(β – ) �= ,

β –  = β ,

λμ + λ = ,

– λμ – λv – λ = .

(.)

Solving the system (.) yields

β = –,

μ =


√
–v – ,

λ = v +


.

(.)

The result (.) can be easily obtained if we also use the sine method (.). Consequently,
for v +  < , the following periodic solutions can be obtained:

u(x, y, z, t) =
(
v +




)
sec

[


√
–v – (x + y + z – vt)

]
, (.)

where | 
√
–v – (x + y + z – vt)| < π

 , and

u(x, y, z, t) =
(
v +




)
csc

[


√
–v – (x + y + z – vt)

]
, (.)

where  < 


√
–v – (x + y + z – vt) < π .
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However, for v +  > , we obtain the soliton solutions

u(x, y, z, t) =
(
v +




)
sech

[


√
–v – (x + y + z – vt)

]
(.)

and

u(x, y, z, t) =
(
–v –




)
csch

[


√
v + (x + y + z – vt)

]
. (.)

Comparing the above results with the relevant ones in [–], it can be seen that some
of the obtained results are new and the rest of solutions are the same.

3 Ansatzmethod
In this section, the ansatz method will be used to carry out the integration of the
Kudryashov-Sinelshchikov and Jimbo-Miwa equations. The search is going to be for a
topological -soliton solution which is also known as a kink solution or a shock wave solu-
tion. This will be demonstrated in the following two subsections. For both equations, arbi-
trary constant coefficients will be considered. There are many applications of this method
[–].

3.1 Application of the ansatzmethod to the Kudryashov-Sinelshchikov equation
In this section the search is going to be for a topological -soliton solution to the
Kudryashov-Sinelshchikov equation given by (.). To start off, the hypothesis is given by
[, ]

u(x, t) = A tanhp τ , where (.)

τ = B(x – vt). (.)

Here, A and B are free parameters and v is the velocity of the wave in (.) and (.). The
exponent p is unknown at this point and its values will fall out in the process of deriving
the solution of this equation. Thus from (.) we get

ut = pvAB
{
tanhp+ τ – tanhp– τ

}
, (.)

ux = pAB
{
tanhp– τ – tanhp+ τ

}
, (.)

uxx = pAB{(p – ) tanhp– τ – p tanhp τ + (p + ) tanhp+ τ
}
, (.)

uxxx = pAB{(p – )(p – ) tanhp– τ –
[
p + (p – )(p – )

]
tanhp– τ

+
[
p + (p + )(p + )

]
tanhp+ τ – (p + )(p + ) tanhp+ τ

}
, (.)

uxuxx = pAB{(p – ) tanhp– τ – (p – ) tanhp– τ

+ (p + ) tanhp+ τ – (p + ) tanhp+ τ
}
. (.)

Substituting Eqs. (.)-(.) into (.), we have

pvAB
{
tanhp+ τ – tanhp– τ

}
+ αpAB

{
tanhp– τ – tanhp+ τ

}
+AB{p(p – )(p – ) tanhp– τ –

[
p + p(p – )(p – )

]
tanhp– τ
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+
[
p + p(p + )(p + )

]
tanhp+ τ – p(p + )(p + ) tanhp+ τ

}
–AB{p(p – )(p – ) tanhp– τ +

[
p + p(p – )(p – )

]
tanhp– τ

–
[
p + p(p + )(p + )

]
tanhp+ τ + p(p + )(p + ) tanhp+ τ

}
– ( + b)pAB{(p – ) tanhp– τ – (p – ) tanhp– τ

+ (p + ) tanhp+ τ – (p + ) tanhp+ τ
}
= . (.)

From (.), equating the exponents p –  and p +  gives

p –  = p + 

so that

p = . (.)

It should be noted that the same value of p is yielded when the exponent pairs p – 
and p – , p +  and p +  are equated with each other, respectively.

ABp(p + )(p + ) + ( + b)pAB(p + ) = , (.)

–pvAB –AB[p + p(p – )(p – )
]
–ABp(p – )(p – )

– ( + b)pAB(p – ) = , (.)

pvAB + pαAB +AB[p + p(p + )(p + )
]

+AB[p + p(p – )(p – )
]
+ ( + b)pAB(p – ) = , (.)

–pαAB –ABp(p + )(p + ) –AB[p + p(p + )(p + )
]

– ( + b)pAB(p + ) = . (.)

If we put p =  in (.)-(.), the system reduces to

–AB – ABb – ABv – AB = , (.)

AB + AB + ABv + ABb + αAB = , (.)

–AB – AB – αAB – ABb = . (.)

Solving the above equations yields

b = –, (.)

A =
B

B – α
, (.)

v = AB – B – αA. (.)

Hence, finally, the -soliton solution to (.) is respectively given by

u(x, t) = A tanh
[
B(x – vt)

]
, (.)

where the free parameterA is given by (.), the velocity of the solitons v is given in (.).
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3.2 Application of the ansatzmethod to the Jimbo-Miwa equation
In this section the search is going to be for a topological -soliton solution to the ( + )-
dimensional Jimbo-Miwa equation. Without any loss of generality, it is assumed that the
dark soliton solution to (.) is given by

u(x, y, z, t) = A tanhp τ , (.)

where

τ = B(x + y + z – vt). (.)

Here, A and B are free parameters and v is the velocity of the wave in (.) and (.).
The exponent p is unknown at this point and its values will fall out in the process of de-
riving the solution of this equation. Thus from (.) we get

ux = pAB
{
tanhp– τ – tanhp+ τ

}
, (.)

uy = pAB
{
tanhp– τ – tanhp+ τ

}
, (.)

uxx = pAB{(p – ) tanhp– τ – p tanhp τ + (p + ) tanhp+ τ
}
, (.)

uxz = pAB{(p – ) tanhp– τ – p tanhp τ + (p + ) tanhp+ τ
}
, (.)

uxy = pAB{(p – ) tanhp– τ – p tanhp τ + (p + ) tanhp+ τ
}
, (.)

uyt = –pvAB{(p – ) tanhp– τ – p tanhp τ + (p + ) tanhp+ τ
}
, (.)

uxxxy = pAB{(p – )(p – )(p – ) tanhp– τ – (p – )
(
p – p + 

)
tanhp– τ

+ p
(
p + 

)
tanhp τ – (p + )

(
p + p + 

)
tanhp+ τ

+ (p + )(p + )(p + ) tanhp+ τ
}
, (.)

uyuxx = pAB{(p – ) tanhp– τ – (p – ) tanhp– τ

+ (p + ) tanhp+ τ – (p + ) tanhp+ τ
}
, (.)

uxuxy = pAB{(p – ) tanhp– τ – (p – ) tanhp– τ

+ (p + ) tanhp+ τ – (p + ) tanhp+ τ
}
. (.)

Substituting Eqs. (.)-(.) into (.), we have

pAB{(p – )(p – )(p – ) tanhp– τ

– (p – )
(
p – p + 

)
tanhp– τ + p

(
p + 

)
tanhp τ

– (p + )
(
p + p + 

)
tanhp+ τ + (p + )(p + )(p + ) tanhp+ τ

}
+ pAB{(p – ) tanhp– τ – (p – ) tanhp– τ

+ (p + ) tanhp+ τ – (p + ) tanhp+ τ
}

– pvAB{(p – ) tanhp– τ – p tanhp τ + (p + ) tanhp+ τ
}

– pAB{(p – ) tanhp– τ – p tanhp τ + (p + ) tanhp+ τ
}
= . (.)
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From (.), equating the exponents p +  and p +  gives

p +  = p + 

so that

p = .

It should be noted that the same value of p is yielded when the exponent pairs p – 
and p – , p +  and p + , p –  and p are equated with each other, respectively.

ABp(p + )(p + )(p + ) – p(p + )AB = , (.)

–p(p + )
(
p + p + 

)
AB + p(p + )AB – p(p + )vAB

– p(p + )AB = , (.)

pAB(p + 
)
– p(p – )AB + pvAB + pAB = . (.)

Solving the above system for p =  gives

A = B,

v = B –


.

(.)

Thus, finally, the -soliton solution to (.) is respectively given by

u(x, y, z, t) = A tanh
[
B(x + y + z – vt)

]
, (.)

where the free parameter A is given by (.) and the velocity of the solitons v is given
in (.).

4 Conclusion
In this paper, the KS and JM equations are solved by the sine-cosine method as well as
by the solitary wave ansatz method. There are several solutions that are obtained by the
first method. The solitary wave ansatzmethod is used to carry out the integration of these
equations. The obtained solutions may be useful for understanding of the mechanism of
complicated nonlinear physical phenomena in wave interaction. In addition, we note that
the solitary wave ansatzmethod is an efficientmethod for constructing exact soliton solu-
tions for nonlinearwave equations. These results are going to be very useful for conducting
research in future.
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