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Abstract
In this paper, we present a unified framework for analyzing the spectral collocation
method for neutral functional-differential equations with proportional delays using
shifted Legendre polynomials. The proposed collocation technique is based on
shifted Legendre-Gauss quadrature nodes as collocation knots. Error analysis and
stability of the proposed algorithm are theoretically investigated under several mild
conditions. The accuracy of the proposed method has been compared with a
variational iteration method, a one-leg θ -method, a particular Runge-Kutta method,
and a reproducing kernel Hilbert space method. Numerical results show that the
proposed methods are of high accuracy and are efficient for solving such an
equation. Also, the results demonstrate that the proposed method is a powerful
algorithm for solving other delay differential equations.
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1 Introduction
One of the fundamental classes of delay differential equations (DDEs) is that of neutral
functional-differential equations (NFDEs) with proportional delays. Such equations arise
in many areas of science and engineering and play an important role in the modeling of
real-life phenomena in other fields of science (cf. [–]). For these reasons, NFDEs have
received much attention in the last decades. The principal difficulty in studying DDEs lies
in their special transcendental nature. Obviously, most of NFDEs cannot be solved by the
well-known exact methods. Therefore, it is highly desirable to design accurate numerical
approaches to approximate the solutions of NFDEs.
The theory of DDEs with multiple delays has been analyzed by many authors, and we

briefly review some of them. In [] Jackiewicz and Lo proposed and developed the Adams
predictor-corrector method for the numerical solution of NFDEs. In [], the authors in-
vestigated the Adomian decomposition method for solving a special class of DDEs and
established the convergence of this approach.
Some analytical and numerical solutions of a family of DDEs were presented in []. The

authors of [] investigated the Runge-Kutta (RK) method for NFDEs with different pro-
portional delays and proved the stability of RK for this equation. Wang and Li [] pro-
posed the one-leg-methods for solving nonlinear neutral functional differential equations.
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We also refer to the articles [–] and the references therein for applying the waveform
relaxation method to solve neutral type functional-differential systems.
Over the years, it was found that the spectral methods were a valid method to obtain

approximations for differential equations. The solution of a DDE globally depends on its
history due to the delay variable, so a global spectral method could be a good candidate
for numerical DDEs. In this direction, Ishiwata andMuroya [] proposed the rational ap-
proximation algorithm based on Legendre polynomials and Ishiwata et al. [] developed
the collocation approximation for solving DDEs. Meanwhile, in [] the authors discussed
the tau approach for solving a class of NFDEs, and the solution was expanded by a shifted
Legendre polynomial, and the unknown expansion coefficients were obtained by a seg-
mented Lanczos-tau formulation. The authors of [] proposed a Bernoulli operational
matrix method for solving a generalized pantograph equation. Wang and Wang [] pro-
posed and analyzed the Legendre collocation algorithm for nonlinear DDEs with vari-
able delay. The theory and the numerical results given in [] and [] explained that the
proposed collocation approximations converge exponentially when the data in the given
DDEs are smooth. Recently, Ali et al. [] implemented a spectral Legendre approach for
solving pantograph-type differential and integral equations and studied the error analysis
of the method. More recently, the work of Trif [] discussed the application of the tau
method based on the operational matrix of Chebyshev polynomials for solving DDEs of
pantograph type.
Our fundamental goal of this paper is to develop a suitable way to approximate the neu-

tral functional-differential equations with proportional delays on the interval [,T] by us-
ing the shifted Legendre polynomials. In other words, we propose the spectral shifted
Legendre-Gauss collocation (SLC) method to find the solution uN (x). For suitable collo-
cation points, we use the (N –m + ) nodes of the shifted Legendre-Gauss interpolation
on the interval [,T]. These equations together withm initial conditions generate (N + )
algebraic equations which can be solved. It should be noted that the basic requirement for
using any spectral base (e.g., Legendre polynomials) is the smoothness of the solution of
the considered problem. Thismay be guaranteed by the smoothness of known functions in
the neutral equation. By these assumptions (i.e., being smooth), exponential convergence
behavior of spectral approximations is exhibited in any test problem.
The paper is organized as follows. Section  is devoted to preliminaries needed here-

after. In Section , we design the shifted Legendre-Gauss collocation technique for NFDEs
with proportional delays. The error analysis and stability of the solution are provided in
Section  under several mild conditions. In Section , we present some numerical results
demonstrating the efficiency of the suggested numerical algorithm. Concluding remarks
are given in Section .

2 Preliminaries
Let Pi(x) be the standard Legendre polynomial of degree i, then we have that

Pi(–x) = (–)iPi(x), Pi(–) = (–)i, Pi() = . ()

If α > –, β > – and P(α,β)
k (x) is the kth degree of the Jacobi polynomial, then for an integer

m, themth-order derivative of Legendre polynomials is

DmPk(x) = –m
�(m + k + )

�(k + )
P(m,m)
k–m (x). ()
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Let w(α,β)(x) = ( – x)α( + x)β , then we define the weighted space Ł
w(α,β) (–, ) as usual,

equipped with the following inner product and norm:

(u, v)w(α,β) =
∫ 

–
u(x)v(x)w(α,β)(x)dx, ‖v‖w(α,β) = (v, v)



w(α,β) .

The set of Legendre polynomials forms a complete Ł(–, )-orthogonal system, and

∥∥Pi(x)
∥∥ = hi =


i + 

. ()

Let T > , then the shifted Legendre polynomial of degree k on the interval (,T) is
defined by LT ,k(x) = Pk( xT – ). Thus LT ,k(x) can be obtained by

(k + )LT ,k+(x) = (k + )
(
x
T

– 
)
LT ,k(x) – kLT ,k–(x), k = , , . . . .

With the aid of the standard Legendre polynomials, we get

LT ,k() = (–)k , DqLT ,k() =
(–)k–q(k + q)!
Tq(k – q)!q!

, DqLT ,k(T) =
(k + q)!

Tq(k – q)!q!
. ()

Next, we define the space Ł(,T) in the usual way, with the following inner product
and norm:

(u, v) =
∫ T


u(x)v(x)dx, ‖u‖ = (u,u)/. ()

The set of shifted Legendre polynomials is a complete Ł(,T)-orthogonal system.
Moreover, due to (), we have

‖LT ,k‖ =
(
T


)
hk = hT ,k . ()

3 Shifted Legendre-Gauss collocationmethod
In this section, we develop a spectral Legendre-Gauss collocation approach to analyze the
following NFDEs with proportional delays:

(
u(x) + a(x)u(γmx)

)(m) = βu(x) +
m–∑
n=

bn(x)u(n)(γnx) + f (x), x≥ , ()

with the initial conditions

u(n)() = λn, n = , , . . . ,m – . ()

Here, a(x) and bn(x) (n = , , . . . ,m – ) are given analytical functions, and γn, β , λn are
constants with  < γn <  (n = , , . . . ,m).
Nowwe introduce the Legendre-Gauss quadratures in two different intervals (–, ) and

(,T) that will be used in the sequel. Denote by xN ,j(xT ,N ,j),  ≤ j ≤ N , and �N ,j(�T ,N ,j),

http://www.advancesindifferenceequations.com/content/2013/1/63
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 ≤ i ≤ N , the nodes and Christoffel numbers of the standard (shifted) Legendre-Gauss-
Lobatto quadratures on the intervals (–, ), (,T), respectively. Then one can clearly de-
duce that []

xT ,N ,j =
T

(xN ,j + ),  ≤ j ≤ N ,

�T ,N ,j =
(
T


)
�N ,j,  ≤ j ≤ N ,

and if SN (,T) denotes the set of all polynomials of degree at most N , then it follows that
for any φ ∈ SN+(,T) (cf. []),

∫ T


φ(x)dx =

(
T


)∫ 

–
φ

(
T

(x + )

)
dx

=
(
T


) N∑
j=

�N ,jφ

(
T

(xN ,j + )

)
=

N∑
j=

�T ,N ,jφ(xT ,N ,j). ()

We define the discrete inner product and norm as follows:

(u, v)N =
N∑
k=

u(xT ,N ,k)v(xT ,N ,k)�N ,k , ‖u‖N =
√
(u,u)N . ()

Obviously,

(u, v)N = (u, v) ∀uv ∈ SN–. ()

Thus, for any u ∈ SN (,T), the norms ‖u‖N and ‖u‖ coincide. We set

SN (,T) = span
{
LT ,(x),LT ,(x), . . . ,LT ,N (x)

}
. ()

The following relation for the qth derivative of shifted Legendre polynomials LT ,k(x) will
be needed for our main results []:

L(q)T ,k(x) =
k–q∑
i=

(k+i) even

Cq(k, i)LT ,i(x), ()

where

Cq(k, i) =
q–(i + )�(  (q + k – i))�(  (q + k + i + ))
Tq�(q)�(  ( – q + k – i))�(  ( – q + k + i))

. ()

In virtue of (), the high-order derivative of shifted Legendre polynomials with propor-
tional delay can be written as

L(q)T ,k(γmx) =
k–q∑
i=

(k+i) even

γ q
mCq(k, i)LT ,i(γmx), ()

where Cq(k, i) is defined in ().
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The shifted Legendre-Gauss collocationmethod for solving () and () is to seek uN (x) ∈
SN (,T) such that

(
u(xT ,N ,k) + a(xT ,N ,k)u(γmxT ,N ,k)

)(m) = βu(xT ,N ,k) +
m–∑
n=

bn(xT ,N ,k)u(n)(γnxT ,N ,k)

+ f (xT ,N ,k), k = , , . . . ,N –m, ()

u(n)() = λn, n = , , . . . ,m – .

Now, we derive an efficient algorithm for tackling () and (). Let us expand the numer-
ical approximation in terms of shifted Legendre polynomials

uN (x) =
N∑
h=

ahLT ,h(x), a = (a,a, . . . ,aN )T . ()

We first approximate u(x) and un(x) as Eq. (). By substituting these approximations in
Eq. (), we get

( N∑
h=

ahLT ,h(x) + a(x)
N∑
h=

ahLT ,h(γmx)

)(m)

= β

N∑
h=

ahLT ,h(x) +
m–∑
n=

N∑
h=

bn(x)ahD(n)LT ,h(γnx) + f (x). ()

Then, by virtue of (), we deduce that

( N∑
h=

ahLT ,h(x) + a(x)
N∑
h=

ahLT ,h(γmx)

)(m)

= β

N∑
h=

ahLT ,h(x) +
m–∑
n=

N∑
h=

h–q∑
f =

(γn)nbn(x)ahCq(h, f )LT ,f (γnx) + f (x). ()

Also, by substituting Eq. () in Eq. (), we obtain

N∑
h=

ahD(n)LT ,h() = λn, n = , , . . . ,m – . ()

To find the solution uN (x), we collocate Eq. (). Using () and (), at the (N –m + )
shifted Legendre roots, yields

( N∑
h=

ahLT ,h(xT ,N ,k) + a(xT ,N ,k)
N∑
h=

ahLT ,h(γmxT ,N ,k)

)(m)

= β

N∑
h=

ahLT ,h(xT ,N ,k)

+
m–∑
n=

N∑
h=

h–q∑
f =

(γn)nbn(xT ,N ,k)ahCq(h, f )LT ,f (γnxT ,N ,k) + f (xT ,N ,k). ()
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Next, Eq. (), after using (), can be written as

N∑
h=

(–)h–nah
(h + n)!

Tn(h – n)!n!
= λn, n = , , . . . ,m – . ()

Thus Eq. () with relation () generate (N + ) of a set of algebraic equations which
can be solved for the unknown coefficients aj, j = , , , . . . ,N , by using any standard solver
technique.

4 Error analysis and stability of the solution
This section is divided into two subsections. The first subsection is related to presenting
a bound for the error of the proposed method; meanwhile, in the second subsection, the
stability of the numerical solution is investigated briefly.

4.1 Error bound of the method
In this part, the error bound of the method will be provided under several mild condi-
tions such as solution boundedness of the main neutral differential equation. However,
some definitions and lemmas should be provided for clarifying the main theorem of this
subsection.

Definition . A function, ξ : [–, ] –→ � belongs to the Sobolev space Wm,p, if its jth
weak derivative, ξ (j), lies in Lp[–, ] for all ≤ j ≤ m with the norm

‖ξ‖Wm,p =
m∑
j=

∥∥ξ (j)∥∥
Lp ,

where ‖ξ‖Lp denotes the usual Lebesgue norm,

‖ξ‖Lp =
(∫ 

–

∥∥ξ (x)
∥∥p dx

) 
p
,

and ‖ξ (x)‖ stands for any finite dimensional norm in �n.

Lemma . Given a function ξ ∈ Wm,∞, x ∈ [–, ], there exists a polynomial uN (x) of
degree less than or equal to N such that

∥∥ξ (x) – uN (x)
∥∥
L∞ ≤ CCN–m, ∀x ∈ [–, ],

where C is a constant independent of N , m is the order of smoothness of ξ , and C =
‖ξ‖Wm,∞ . Here, uN (x) with the smallest norm ‖ξ (x) – uN (x)‖L∞ is called the Nth order
best polynomial approximation of ξ (x) in the norm of L∞.

Note that if ξ ∈ C∞, thenm = ∞. This implies that uN (x) converges to ξ at a spectral rate,
i.e., it is faster than any given polynomial rate. Moreover, we denote the set of continuous
functions in a linear space on [,T] by C[,T] and the uniform norm in C[,T] by

‖f ‖∞ = max
≤x≤t

∣∣f (x)∣∣, ∀f ∈ C[,T].

http://www.advancesindifferenceequations.com/content/2013/1/63
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Again, we consider Eq. () with the initial conditions (). For clarity of presentation, we
assume that m = . A similar procedure can be applied for higher values of m. Therefore,
()-() can be written as follows:

(
u(x) + a(x)u(γx)

)′ = βu(x) + b(x)u(γx) + f (x), u() = λ.

Integrating the aforementioned equation in the interval [,x] yields

u(x) + a(x)u(γx) –
(
λ + a()λ

)
=

∫ x



(
βu(ε) + b(ε)u(γε) + f (ε)

)
dε.

Accordingly, we can rewrite the above-obtained equation in the following form:

u(x) + a(x)u(γx) = g(x) + β

∫ x


u(ε)dε +

∫ γx


b̂(θ )u(θ )dθ , ()

where g(x) = (λ + a()λ) +
∫ x
 f (ε)dε and b̂(θ ) = 

γ
b( θ

γ
).

In the following theorem, we show that the approximate solution which was expressed
in terms of Legendre polynomials converges to the exact solution under several mild con-
ditions.

Theorem . Consider Eq. () again. Assume u(x) and uN (x) are the exact and approx-
imate solutions of (). Also, let the approximations of a(x), g(x), and b̂(x) be aN (x),
gN (x), and b̂,N (x), respectively. Moreover, suppose that ‖a(x)‖∞ ≤ A, ‖uN (x)‖∞ ≤ UN ,
‖b̂(x)‖∞ ≤ B, where x ∈ [,T]. Then limN→∞ uN (x) = u(x) under the condition A+ |β|T +
TB � .

Proof Since the known functions a(x), g(x), and b̂(x) are approximated in terms of shifted
Legendre polynomials, then the obtained solution is an approximated polynomial in the
form of uN (x). Our aim is to find an upper bound for the associated error between u(x)
and uN (x) for (). We rewrite () in the following form:

u(x) = –a(x)u(γx) + g(x) + β

∫ x


u(ε)dε +

∫ γx


b̂(θ )u(θ )dθ .

According to the assumptions, one reaches the following equation:

uN (x) = –aN (x)uN (γx) + gN (x) + β

∫ x


uN (ε)dε +

∫ γx


b̂,N (θ )uN (θ )dθ .

Subtraction of the above equations yields

∥∥u(x) – uN (x)
∥∥∞

=
∥∥∥∥–a(x)u(γx) + aN (x)uN (γx) + g(x) – gN (x) + β

∫ x


u(t)dt

– β

∫ x


uN (ε)dε +

∫ γx


b̂(θ )u(θ )dθ –

∫ γx


b̂,N (θ )uN (θ )dθ

∥∥∥∥∞
.

http://www.advancesindifferenceequations.com/content/2013/1/63
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According to the trigonometric inequality, we have

∥∥u(x) – uN (x)
∥∥∞ ≤ ∥∥–a(x)u(γx) + aN (x)uN (γx)

∥∥∞ +
∥∥g(x) – gN (x)

∥∥∞

+
∥∥∥∥β

∫ x


u(ε)dε – β

∫ x


uN (ε)dε

∥∥∥∥∞

+
∥∥∥∥
∫ γx


b̂(θ )u(θ )dθ –

∫ γx


b̂,N (θ )uN (θ )dθ

∥∥∥∥∞
.

Since  ≤ γ ≤  and x ∈ [,T], the above inequality reduces to a simple form as follows:

∥∥u(x) – uN (x)
∥∥∞ ≤ ∥∥a(x)(u(γx) – uN (γx)

)∥∥∞ +
∥∥(
a(x) – aN (x)

)
uN (γx)

∥∥∞

+
∥∥g(x) – gN (x)

∥∥∞ + T
∥∥β

(
u(x) – uN (x)

)∥∥∞

+ T
∥∥b̂(x)u(x) – b̂,N (x)uN (x)

∥∥∞.

In other words,

∥∥u(x) – uN (x)
∥∥∞ ≤ ∥∥a(x)(u(γx) – uN (γx)

)∥∥∞ +
∥∥(
a(x) – aN (x)

)
uN (γx)

∥∥∞

+
∥∥g(x) – gN (x)

∥∥∞ + T
∥∥β

(
u(x) – uN (x)

)∥∥∞

+ T
∥∥b̂(x)(u(x) – uN (x)

)∥∥∞ + T
∥∥(
b̂(x) – b̂,N (x)

)
uN (x)

∥∥∞.

Since ≤ γ ≤ , then limN→∞ ‖u(x) – uN (x)‖∞ = limN→∞ ‖u(γx) – uN (γx)‖∞. Also, im-
posing the assumptions ‖a(x)‖∞ ≤ A, ‖uN (x)‖∞ ≤ UN , ‖b̂(x)‖∞ ≤ B to the above in-
equality yields

∥∥u(x) – uN (x)
∥∥∞ ≤ A

∥∥u(x) – uN (x)
∥∥∞ +UN

∥∥a(x) – aN (x)
∥∥∞

+
∥∥g(x) – gN (x)

∥∥∞ + |β|T∥∥u(x) – uN (x)
∥∥∞

+ TB
∥∥u(x) – uN (x)

∥∥∞ + TUN
∥∥b̂(x) – b̂,N (x)

∥∥∞.

For clarity of presentation, we rewrite the above inequality in the following form:

∥∥u(x) – uN (x)
∥∥∞ ≤ UN‖a(x) – aN (x)‖∞ + ‖g(x) – gN (x)‖∞ + TUN‖b̂(x) – b̂,N (x)‖∞

 –A – |β|T – TB
.

If A + |β|T + TB � , then limN→∞ ‖u(x) – uN (x)‖∞ =  (or limN→∞ uN (x) = u(x)). This
conclusion is made because of the smoothness of a(x), g(x), and b̂(x). These assumptions
imply that limN→∞ ‖a(x)–aN (x)‖∞ = , limN→∞ ‖g(x)–gN (x)‖∞ = , and limN→∞ ‖b̂(x)–
b̂,N (x)‖∞ =  (see Lemma .). This completes the proof. �

4.2 Stability of the solution
Theorem . Let us consider u(x) ∈ C[,T] together with its Lagrange interpolation poly-
nomial INu(x) which is based on the shifted Gaussian points; then

‖u – INu‖∞ ≤ ( +�N )
∥∥u – p*

∥∥∞,
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where p* is the best approximation of Nth order of u and

�N = max
–≤x≤

λN (x), λN (x) =
N∑
j=

∣∣Fj(x)∣∣

are the Lebesgue constant and the Lebesgue function, respectively. Also, Fj(x) stands for the
jth Lagrange polynomial which is constructed by using shifted Gaussian points.

Proof Since u(x) ∈ C[,T], the best approximating polynomial for u, say p*, exists and we
immediately have

‖u – INu‖∞ ≤ ∥∥u – p*
∥∥∞ +

∥∥p* – INu
∥∥∞.

However, both p* and INu are N th order polynomials

∥∥p* – INu
∥∥∞ ≤ �N

∥∥u – p*
∥∥∞,

where

�N = max
–≤x≤

λN (x), λN (x) =
N∑
j=

∣∣Fj(x)∣∣. �

The Lebesgue function and the Lebesgue constant both depend only on the choice of in-
terpolation nodes. The above theorem indicates that a good set of grid points is one which
minimizes the Lebesgue constant for interpolation. We know that on equally spaced in-
terpolation points, the Lebesgue constant blows up exponentially with the increasing of
N (as made apparent by the classical Runge phenomenon). On the contrary, the best pos-
sible Lebesgue constant among all distributions of N prohibits only a logarithmic growth
with N . Fortunately, the main families of Gaussian points (Gauss, Gauss-Radau, Gauss-
Lobatto) for the Legendre or Chebyshev weights have Lebesgue constants that grow log-
arithmically or sub-linearly with N .
Errors in the experimental measure of the data and computational issues such as round-

ing errors can impact on the accuracy of the interpolation. Assume that uε(x) represents
a perturbed version of u(x); i.e.,

‖u – uε‖ ≤ ε,

the difference between the two polynomial representations is then

‖INu – INuε‖ ≤ ε�N .

Nowwe can deduce that for largeN , Gaussian interpolation points with respect to equally
spaced points have better stability, and for equally spaced points, an interpolation poly-
nomial can become unstable for large N .
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Table 1 Absolute errors using SLCmethod at N = 17 for Example 1

x SLC method
N = 17

RKHSM
[25]

VI method [26] One-leg θ

method [10, 27]
RKT
method [28]n = 5 n = 6

0.1 4.27 · 10–17 1.42 · 10–4 2.63 · 10–3 1.30 · 10–3 4.65 · 10–3 8.68 · 10–4
0.2 2.70 · 10–17 1.17 · 10–4 4.36 · 10–3 2.14 · 10–3 1.45 · 10–2 1.49 · 10–3
0.3 5.94 · 10–17 9.45 · 10–4 5.40 · 10–3 2.63 · 10–3 2.57 · 10–2 1.90 · 10–3
0.4 8.01 · 10–17 7.59 · 10–4 5.89 · 10–3 2.84 · 10–3 3.60 · 10–2 2.16 · 10–3
0.5 8.27 · 10–17 6.03 · 10–4 5.96 · 10–3 2.83 · 10–3 4.43 · 10–2 2.28 · 10–3
0.6 1.95 · 10–16 4.73 · 10–4 5.71 · 10–3 2.67 · 10–3 5.03 · 10–2 2.31 · 10–3
0.7 1.56 · 10–16 3.64 · 10–4 5.23 · 10–3 2.39 · 10–3 5.37 · 10–2 2.27 · 10–3
0.8 8.80 · 10–17 2.75 · 10–4 4.59 · 10–3 2.04 · 10–3 5.47 · 10–2 2.17 · 10–3
0.9 1.03 · 10–16 2.03 · 10–4 3.84 · 10–3 1.64 · 10–3 5.35 · 10–2 2.03 · 10–3
1.0 1.23 · 10–16 1.43 · 10–4 3.04 · 10–3 1.22 · 10–3 5.03 · 10–2 1.86 · 10–3

5 Numerical results
To illustrate the effectiveness of the proposedmethod in the present paper, several test ex-
amples are carried out in this section. Comparisons of the results obtained by the present
method with those obtained by other methods reveal that the present method is very ef-
fective and convenient. We consider the following examples.

Example  Consider the first-order neutral functional-differential equation with propor-
tional delay used in []

⎧⎨
⎩u′(x) = –u(x) + .u(.x) + .u′(.x) + (.x – .)e–.x + e–x, x ≥ ,

u() = ,
()

which has the exact solution xe–x.

We apply the proposed shifted Legendre-Gauss collocation method at t =  to (). In
Table , we compare our results with those obtained by a reproducing kernel Hilbert space
method (RKHSM) [], a variational iteration (VI) method [], a one-leg θ -method [,
], and a Runge-Kutta-type (RKT) method []. Numerical results of this problem show
that the SLC method is more accurate than the presented methods in [, –]. The
graph of the analytical solution and the approximate solution at t =  for N =  is dis-
played in Figure  to make it easer to compare with the analytical solution.
The logarithmic graph of absolute coefficients of shifted Legendre polynomials of a neu-

tral functional-differential equation with proportional delay is shown in Figure , which
shows that the method has exponential convergence rate. Absolute errors obtained by the
SLC method with N =  are plotted in Figure .

Example  Consider the following first-order neutral functional-differential equation
with proportional delay [, , , , ]:

⎧⎨
⎩u′(x) = –u(x) + 

u(
x
 ) +


u

′( x ), x ∈ [, ],

u() = ,
()

the analytic solution of the aforementioned problem is u(x) = e–x.

http://www.advancesindifferenceequations.com/content/2013/1/63
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Figure 1 Graph of the exact solution and the approximate solution at t = 4 and N = 15 for Example 1.

Figure 2 Logarithmic graph of absolute coefficients |aj| of shifted Legendre polynomials of
Example 1.

In Table , we compare the errors of the present method with a two-stage order-one
Runge-Kutta (RK) method [], a one-leg θ -method [, ] with θ = ., a variational
iteration (VI) method [], and a shifted Chebyshev operational matrix (SCOM) [].
The graph of the analytical solution and the approximate solution at t =  for N =  is
displayed in Figure  to make it easer to compare with analytical solution.

Example  Consider the following second-order neutral functional-differential equation
with proportional delays [, , , , ]:

⎧⎨
⎩u′′(x) = 

u(x) + u( x ) + u′( x ) +

u

′′( x ) – x – x + , x ∈ [, ],

u() = u′() = ,
()

the exact solution of which is u(x) = x.

http://www.advancesindifferenceequations.com/content/2013/1/63
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Figure 3 Graph of absolute errors at N = 17 for Example 1.

Table 2 Absolute errors using SLCmethod at N = 14 for Example 2

x RK
method

θ -method
with θ = 0.8

VI method
m = 8

SCOM
method

SLCmethod
N = 14

0.2 8.24 · 10–4 8.86 · 10–3 7.08 · 10–4 4.83 · 10–11 1.98 · 10–16
0.4 1.35 · 10–3 2.66 · 10–2 1.29 · 10–3 3.36 · 10–11 8.51 · 10–17
0.6 1.66 · 10–3 4.58 · 10–2 1.76 · 10–3 1.18 · 10–11 1.98 · 10–16
0.8 1.81 · 10–3 6.29 · 10–2 2.15 · 10–3 5.25 · 10–11 2.07 · 10–16
1.0 1.85 · 10–3 7.66 · 10–2 2.47 · 10–3 2.40 · 10–12 4.37 · 10–15

Figure 4 Graph of the exact solution and the approximate solution at t = 5 and N = 18 for Example 2.

In Table , we compare the errors of the present method with a two-stage order-one
Runge-Kutta (RK) method [], a one-leg θ -method [, ] with θ = ., a variational
iteration (VI) method [], and a shifted Chebyshev operational matrix (SCOM) [].
The graph of the analytical solution and the approximate solution at t =  for N =  is
displayed in Figure  to make it easer to compare with analytical solution.
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Table 3 Absolute errors using SLCmethod at N = 10 for Example 3

x RK
method

θ -method
with θ = 0.8

VI method
m = 8

SCOM
method

SLCmethod
N = 10

0.1 1.00 · 10–3 6 · 10 · 10–3 1.67 · 10–4 2.08 · 10–17 6.59 · 10–17
0.2 2.02 · 10–3 2.58 · 10–2 7.15 · 10–4 4.16 · 10–17 1.37 · 10–17
0.3 3.07 · 10–3 6.47 · 10–2 1.73 · 10–3 4.16 · 10–17 5.67 · 10–18
0.4 4.17 · 10–3 1.37 · 10–1 3.30 · 10–3 5.55 · 10–17 6.98 · 10–17
0.5 5.34 · 10–3 2.81 · 10–1 5.55 · 10–3 1.11 · 10–16 2.13 · 10–17

Figure 5 Graph of the exact solution and the approximate solution at t = 40 and N = 8 for Example 3.

Table 4 Absolute errors using SLCmethod for Example 4

x SLCmehood x SLCmehood

0.0 8.61 · 10–18 0.0 3.01 · 10–18
5.0 2.77 · 10–17 10.0 1.66 · 10–16
10.0 5.55 · 10–17 20.0 3.33 · 10–16
15.0 1.11 · 10–16 30.0 1.44 · 10–15
20.0 1.11 · 10–16 40.0 4.32 · 10–15
25.0 2.22 · 10–16 50.0 1.66 · 10–15
30.0 7.77 · 10–16 60.0 3.91 · 10–14
35.0 5.77 · 10–15 70.0 7.57 · 10–14
40.0 8.62 · 10–13 80.0 4.04 · 10–13
45.0 1.27 · 10–10 90.0 1.52 · 10–11
50.0 1.87 · 10–8 100.0 1.13 · 10–7

Example  Consider the following third-order neutral functional-differential equation
with proportional delays:

⎧⎨
⎩u′′′(x) = u(x) + u′( x ) + u′′( x ) +


u

′′′( x ) + f (x), x ∈ [, ],

u() = , u′() = π
 , u′′() = – π

, ,
()

and the function f (x) is chosen such that the analytical solution u(x) = log( + sin( πx
 )).

In Table , we list the absolute errors using SLC method in the two intervals [, ] and
[, ], at N =  and N =  respectively.
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Figure 6 Comparison of the approximate solutions with the exact solution at t = 50 and N = 24 for
Example 4.

Figure 7 Comparison of the approximate solutions with the exact solution at t = 100 and N = 24 for
Example 4.

From Table , we can see that the approximate solution by the SLC method agrees very
well with the exact solution. Figures  and  display the spectral solution at N =  and
the exact one in two long intervals, [, ] and [, ], respectively.

6 Conclusions and future works
In this paper, we have proposed a new collocation method based on the shifted Legendre
polynomials to numerically solve the neutral functional-differential equations with study-
ing the error analysis of the proposed method. The comparison of the obtained results
with those based on other methods shows that the present method is a powerful mathe-
matical tool for finding the numerical solutions of such equations. High accuracy in long
computational intervals and the stability of the approximated solutions encourage us to
apply a similar method for solving other applied mathematics problems (see, for instance,
[]) in the future.
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