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Abstract

In this paper, we consider the value distribution of meromorphic solutions for linear
difference equations with meromorphic coefficients.
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1 Introduction and preliminaries

Recently, several papers (including [1-7]) have been published regarding value distribu-
tion of meromorphic solutions of linear difference equations. We recall the following re-
sults. Chiang and Feng proved the following theorem.

Theorem A ([2]) Let Py(z),...,P,(z) be polynomials such that there exists an integer [,
0 <[ <mn, such that

deg(P;) > max {deg(P; 1.1
2(Py) OS/SHM{ g(P)} (L1)

holds. Suppose f(z) is a meromorphic solution of the difference equation
P,(2)f(z+n)+ -+ Pi(2)f(z+1) + Py(2)f (z) = 0. (1.2)
Then we have o (f) > 1.

In this paper, we use the basic notions of Nevanlinna’s theory (see [8, 9]). In addition,
we use the notation o (f) to denote the order of growth of the meromorphic function f(z),
and A(f) to denote the exponent of convergence of zeros of f(z).

Chen [1] weakened the condition (1.1) of Theorem A and proved the following results.

Theorem B ([1]) Let P,(2),...,Po(z) be polynomials such that P,Py # 0 and
deg(Py, + --- + Py) = max{degP;:j=0,...,n} > 1. (1.3)

Then every finite order meromorphic solution f (z) (& 0) of equation (1.2) satisfies o (f) > 1,
and f(z) assumes every nonzero value a € C infinitely often and M(f — a) = o (f).
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Theorem C ([1]) Let F(z), Py(2),...,Po(z) be polynomials such that FP,Py # 0 and (1.3).
Then every finite order transcendental meromorphic solution f(z) of the equation

P,(2)f(z+n)+ -+ P(2)f (z + 1) + Py(2)f (z) = F(z) (1.4)
satisfies o (f) > 1 and A(f) = o (f).

Theorem D ([1]) Let F(z), P,(2),...,Po(2z) be polynomials such that FP,P, # 0. Suppose
that f(z) is a meromorphic solution with infinitely many poles of (1.2) (or (1.4)). Then
o(f) =1

For the linear difference equation with transcendental coefficients
An@)f (z+n)+---+A1(2)f (2 + 1) + Ao (2)f(2) = O, (1.5)
Chiang and Feng proved the following result.

Theorem E ([2]) Let Ao(2),...,A,(2) be entire functions such that there exists an integer I,
0 <l <mn, such that

J(A1)>max{a(A,»):0§j§n,j7’l}. (1.6)
Iff(2) is a meromorphic solution of (1.5), then we have o (f) > o (A;) + 1.
Laine and Yang proved the following theorem.

Theorem F ([5]) Let Ay, ..., A, be entire functions of finite order so that among those hav-
ing the maximal order o := max{o (Ax) : 0 < k < n}, exactly one has its type strictly greater
than the others. Then for any meromorphic solution of

A, )f(z+Cy) + -+ A1(2)f (2 + C1) + Ap(2)f (2) =0, 1.7)
we have o (f) > o +1.

Remark 1.1 If Ay,...,A, are meromorphic functions satisfying (1.6), then Theorem E
does not hold. For example, the equation

eiz —

. oe-1
y(z+1)—<e‘+ ¢ 1)y(z):O
has a solution y(z) = € — 1, which o (y) = 1 <5 (4) + 1.

This example shows that for the linear difference equation with meromorphic coeffi-
cients, the condition (1.6) cannot guarantee that every transcendental meromorphic so-
lution f(z) of (1.7) satisfies o (f) > o (A4;) + 1.

Thus, a natural question to ask is what conditions will guarantee every transcenden-
tal meromorphic solution f(z) of (1.7) with meromorphic coefficients satisfies o (f) >
o(A) +1.

In this note, we consider this question and prove the following results.
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Theorem 1.1 Let ¢, ¢; (# ¢1), a be nonzero constants, hy(z) be a nonzero meromorphic
function with o (h) < 1, B(z) be a nonzero meromorphic function.
If B(z) satisfies any one of the following three conditions:
(i) o(B)>1 and §(c0,B) > 0;
(ii) o(B) <1;
(iii) B(z) = ho(z)e?* where b is a nonzero constant, hy(z) ( 0) is a meromorphic function
with o (hg) <1,
then every meromorphic solution f (% 0) of the difference equation

flz+ ) + m(2)e™f(z+c1) + Bz)f (z) =0 (1.8)

satisfies o (f) > max{o(B),1} + 1.
Further, if p(z) (# 0) is a meromorphic function with

o(p) < max{cr(B),l} +1,
then
Mf —¢) =o(f) = max{o (B),1} + 1.

Corollary Under conditions of Theorem 1.1, every finite order solution f(z) (& 0) of (1.8)
has infinitely many fixed points, satisfies T(f) = o (f), and for any nonzero constant c,

k(f(z) - c) =o(f) > max{a(B),l} +1.
Example 1.1 The equation

flz+2)- %ezz+3f(z +1) - %e‘””f(z) =0

satisfies conditions of Theorem 1.1 and has a solution f(z) = s satisfying A(f) = 0 and
7(f) = o (f) = 2. This example shows that under conditions of Theorem 1.1, a meromorphic
solution of (1.8) may have no zero.

Theorem 1.2 Let hy(2), ¢1, ¢3, a, B(2) satisfy conditions of Theorem 1.1, and let F(z) (% 0)
be a meromorphic function with o (F) < max{o (B),1} + 1. Then all meromorphic solutions
with finite order of the equation

Sz + ) + m(2)ef(z + c1) + B2)f (2) = F(2) (1.9)
satisfy

AMf) = o(f) = max{o(B),1} +1
with at most one possible exceptional solution with o (f) < max{o (B),1} + 1.

Remark 1.2 Under conditions of Theorem 1.1, equation (1.8) has no rational solution. But
equation (1.9) in Theorem 1.2 may have a rational solution. For example, the equation

flz+2)+€f(z+1)—€f(z) =z+2-¢
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satisfies conditions of Theorem 1.2 and has a solution f(z) = z. This shows that in Theo-

rem 1.2, there exists one possible exceptional solution with o (f) < max{o (B),1} + 1.

2 Proof of Theorem 1.1

We need the following lemmas to prove Theorem 1.1.

Lemma 2.1 ([2, 10]) Given two distinct complex constants m, 0, let f be a meromorphic
function of finite order o . Then, for each & > 0, we have

f(Z + 711) _ o-l+e
m(r,f(z+n2)>—0(r )

Lemma 2.2 (see [11]) Suppose that P(z) = (e +iB)z" +- - - («, B are real numbers, |«|+|8| #

0) is a polynomial with degree n > 1, that A(z) (& 0) is an entire function with o (A) < n. Set
2(2) = A(2)e’@, z = re?, 8(P,0) = a cos nb) — B sinné. Then, for any given € > 0, there exists
a set Hy C [0,2r) that has the linear measure zero such that for any 6 € [0,27)\(Hy U Ha),
there is R > 0 such that for |z| = r > R, we have that

(i) if8(P,0) >0, then

exp{(1-&)8(P,0)r"} < lg(re™)| < exp{(L+¢&)8(P,0)r"}; (2.1)
(i) if8(P,0) <0, then
exp{(l +¢)8(P, 9)7”} < |g(rei9)’ < exp{(l —&)8(P, 9);’"}, (2.2)
where Hy = {0 € [0,27); 8(P,0) = 0} is a finite set.
Lemma 2.3 Let ¢, ¢ (# c1), a be nonzero constants, Aj(z) (j = 0,1,2), F(z) be nonzero

meromorphic functions. Suppose that f(z) is a finite order meromorphic solution of the

equation
Ar(2)f (z+ ¢2) + A1(2)f (2 + 1) + Ao (2)f (2) = F(2). (2.3)

Ifo(f) > max{o (F),0(4)) (j = 0,1,2)}, then A(f) = o (f).

Proof Suppose that o (f) = o, max{o (F),0(4)) (j=0,1,2)} = «. Then o > a. Equation (2.3)
can be rewritten as the form

+A1(z)f(z +c1)

f(@) f(2)

1 F() f(z+c2)
7 1 (40

+ Ao(Z)>. (2.4)
Thus, by (2.4), we deduce that

T(r.f) = T(r,}) +0(1)

_ m(r}> +N<r,}) +0(1)
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1 1\ <
< N(r,f> + m(r, 1?) + ;m(r,Aj)

f(z+cz)) < f(z+cl))
+ml|r, +m|r, +0(). (2.5)
( f@ f@
For any given ¢ (0 < & < min{ i, 27*}), and for sufficiently large r, we have that
1 ,
m(r, I?) <T(r,F) <r**e, m(r,A;) <r** (j=0,1,2). (2.6)
By Lemma 2.1, we obtain
m (r,f(z - 62)> <Mr° ¢ and wm (r,f(z il Cl)) < My°1*e, (2.7)
f@) f@)
where M (> 0) is some constant.
By o (f) = o, there exists a sequence {r,} satisfying r; <ry <---, r, — 0o such that
log T'(ry,
lim 1270w _ (2.8)
n—oo  logry,
Thus, for sufficiently large r,, we have that
T(ry,f)=rl"". (2.9)

Substituting (2.6)-(2.9) into (2.5), we obtain for sufficiently large r,,

1
re 8 < T(ry.f) < N(’n»};) +4r%% 4 2Mr‘,’,_1+9. (2.10)

n

1l o-«a

Since & < min{z, 7%} and ¢ is arbitrary, by (2.10), we obtain

__ logN(ry 7)
lim — =0
n—oo  logr,

Hence, A(f) =0 (f) =0. g

Proof of Theorem 1.1 Suppose that f(z) (£ 0) is a meromorphic solution of equation (1.8)
with o (f) < co.

(1) Suppose that B(z) satisfies the condition (i): o (B) > 1 and §(c0,B) = § > 0. Thus, for
sufficiently large ,

m(r,B) > gT(r,B). (2.11)

Clearly, o (f) > 0(B) by (1.8). By Lemma 2.1, we see that for any given ¢ (0 < ¢ < %),

m(r,f (jzc(+z)c;)) _0(FO ) (=1,2), (212)

Page 5 of 9


http://www.advancesindifferenceequations.com/content/2013/1/60

Liu Advances in Difference Equations 2013, 2013:60
http://www.advancesindifferenceequations.com/content/2013/1/60

and
(r,hl(z)e‘”) < T(r, hl(z)e‘”) <7, (2.13)

By (1.8), we have that

flz+¢) f(z+c1)
-B(z) = + hy(z)e** . (2.14)
@ Y T
Substituting (2.11)-(2.13) into (2.14), we deduce that
8
3 T(r,B) < m(r,B)
flz+¢) flz+c¢)
m(r, h(z)e” +m(r, +mlr,
(&) %) 1@
< ey O(rﬂ(f)—1+5)‘ (215)
By 0(B) = 0, there is a sequence r; (1 <71y <rp < -+, rj = 00) satisfying
T(r;,B)>r} ™~ (2.16)
Thus, by (2.15) and (2.16), we obtain
éra(B)_a < plre o re (2.17)
27 = j ’ .

(B

where M (> 0) is some constant. Combining (2.17) and ¢ < < , it follows that

g 1‘7(3 “(1+0(1)) <Mr°(f e
So that, it follows that o (f) > o (B) + 1 = max{o(B),1} + L.

(2) Suppose that B(z) satisfies the condition (ii): o (B) < 1. Using the same method as in
(1), we can obtain o (f) > max{c(B),1} + 1.

(3) Suppose that B(z) satisfies the condition (iii): B(z) = /(z)e??, where b is a nonzero
constant, /o(z) (# 0) is a meromorphic function with o (%) < 1.

Now we need to prove o (f) > 2. Contrary to the assertion, suppose that o (f) = a < 2.
We will deduce a contradiction. Set z = re’’ . Then

Re{az} = §(az,0)|a|r = |a|r cos(arga + 6),

Re{bz} = 8(bz,0)|b|r = |b|rcos(argb + 6).

(2.18)

In what follows, we divide this proof into three subcases: (a) arga # arg b; (b) arga = arg b
and |a| #|b|; (c) a = b.

Subcase (a). Since arga # arg b and (2.18), it is easy to see that there exists a ray argz = 6
such that

Re{az} = 8(az,0y)|a|r = |a|rcos(arga + 6y) < 0,

Re{bz} = §(bz,600)|b|r = |b|rcos(argb + 6y) > 0.

(2.19)


http://www.advancesindifferenceequations.com/content/2013/1/60

Liu Advances in Difference Equations 2013, 2013:60
http://www.advancesindifferenceequations.com/content/2013/1/60

By (1.8) and (2.19), we see that f(z) cannot be a rational function. By Lemma 2.1, (2.12)

holds. By Lemma 2.2 and (2.19), it is easy to see that for any given &; (0 < &; < min{%, 2‘7‘)‘ )
and for sufficiently large 7,

’ho (reieo)eb’eieo ’ > exp{(l —£1)|b|8(bz, Ho)r}, (2.20)
and

|h1 (reieo)e“reigo | < exp{(l —¢&1)|alé(az, 90)r} <1 (2.21)
Thus, by (1.8), (2.12), (2.20) and (2.21), we deduce that

exp{(1 - &1)[bI3(bz,60)r} < |l (re )™ |

f(rei90 .+ ) N |h1 (reieo)e“’eigo ’ f(rei90'+ a)
f(releo ) f(releo)
< 2expf{r 11}, (2.22)

By 8(bz,0y) = cos(argh + 6p) >0, o (f) =« <2 and & < 2%“, it is easy to see that (2.22) is a
contradiction. Hence, o (f) > 2.

Subcase (b). By arga = arg b and |a| # |b|, we see that f(z) cannot be a rational function.
By Lemma 2.1, (2.12) holds. By arga = arg b and (2.18), we take 6, = —arga, then §(az, 6;) =
8(bz,01) =1 and

Re{are‘pl} =lalr and Re{brei("} = |b|r. (2.23)
Now suppose that |b| > |a|. By Lemma 2.2, for any given &; (0 < &, < min{2 — ¢, 2(‘&"1‘@") b,

|h0 (re"el)el”eig1 | > exp{(l - 82)|b|r}, (2.24)
and

|h1 (re"el)e"“?ig1 | < exp{(l + 82)|a|r}. (2.25)

Thus, by (1.8), (2.12), (2.24) and (2.25), we deduce that

i

exp{(l - 82)|b|r} < |h0(rei91)ebre

f(ret + ¢y) f(re™ +c1)
- f(reigl) f(rei91)
< exp{r*D7 2} 4 exp{(1 + &2)lalr} exp{r" 12}, (2.26)

+ |Iy (re™ )e‘"eig1 ‘

Since &3 <2 — o, we have that o (f) —1 + &3 = ¢ — 1 + &, < 1. Combining this and (2.26), we

obtain

exp{(l - 82)|h|r} < exp{(l + 82)|a|r(1 + 0(1))}(1 + 0(1)). (2.27)

By &, < %, we see that (2.27) is a contradiction.

Page 7 of 9
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Now suppose that |d| < |a|. Using the same method as above, we can also deduce a con-
tradiction.

Hence, o (f) > 2 in Subcase (b).

Subcase (c). We first affirm that f(z) cannot be a nonzero rational function. In fact, if f(z)
is a rational function, then e** [/ (2)f (z + 1) + ho(2)f (2)] = —f(z + cp) is a rational function.
So that /11 (2)f (z + ¢1) + ho(2)f (z) = 0, that is, f(z + c) = 0, a contradiction.

By Lemma 2.1, (2.12) holds. By a = b, equation (1.8) can be rewritten as

e“f(z+c) +m2)f (z+ )+ holz)f(2) = 0. (2.28)

Using the same method as in the proof of (1), we can obtain o (f) > 2.
(4) Suppose that ¢(z) (£ 0) is a meromorphic function with o (¢) < max{o(B),1} + 1. Set
g(z) = f(2) — p(2). Substituting f(z) = g(z) + ¢(z) into (1.8), we obtain

&z +c2) + (2)e”g(z + c1) + B(2)g(2)
=—[p(z+c2) + m(2)ep(z + c1) + B(2)p(2) . (2.29)

If (z + ¢3) + M (2)e™@(z + 1) + B(2)p(z) = 0, then ¢(z) is a nonzero meromorphic solution
of (1.8). Thus, by the proof above, we have that o (¢) > max{o (B),1} + 1. This contradicts
our condition that o (¢) < max{o (B),1} + 1. Hence, ¢(z + 2) + I (z)e**¢(z + 1) + B(z)p(z) # 0,
and

o((p(z +6) + (2)ePp(z +c1) + B(z)ga(z)) < max{o(B), 1} +1<0o(f)=0(g).
Applying this and Lemma 2.3 to (2.29), we deduce that
Mf —¢) = A(g) = 0(g) > max{o(B),1} +1.
Thus, Theorem 1.1 is proved. d

3 Proof of Theorem 1.2

Suppose that f; is a meromorphic solution of (1.9) with
o(fo) < max{o(B),l} + 1.

If f*(z) (£ fo(2)) is another meromorphic solution of (1.9) satisfying o (f*) < max{o (B),1} +
1, then

o(f —fo) <max{o(B),1} + 1.

But f~ —f, is a solution of the corresponding homogeneous equation (1.8) of (1.9). By The-
orem 1.1, we have o (f* - fy) > max{o(B),1} + 1, a contradiction. Hence equation (1.9) pos-
sesses at most one exceptional solution fy with o (fy) < max{o (B),1} + 1.

Now suppose that f is a meromorphic solution of (1.9) with

max{o(B),l} +1<o0(f)<o0.
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Since o (f) > max{o (B), o (F), o (h(z)e**)}, applying Lemma 2.3 to (1.9), we obtain

Mf)=o(f).

Thus, Theorem 1.2 is proved.
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