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Abstract
In this paper, the author is concerned with the fractional equation

€D, ut) = F(t,ul),“ DGl u(®), “D§2u(r), te(0,1),
with the anti-periodic boundary value conditions

uO =-u(t), PP U o =P TCDP U(D) e,

P2 DB U010 = P22 DR u(t) e,

where CD2)’+ denotes the Caputo fractional derivative of order y, the constants «, o,
o, B, By satisfy the conditions 2 <@ <3,0<01 <1< <2,0< B <1< B <2
Different from the recent studies, the function f involves the Caputo fractional
derivative “Dj! u(t) and D32 u(t). In addition, the author put forward new anti-periodic
boundary value conditions, which are more suitable than those studied in the recent
literature. By applying the Banach contraction mapping principle and the
Leray-Schauder degree theory, some existence results of solutions are obtained.
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1 Introduction
In the present paper, we are concerned with the existence of solutions for the fractional

differential equation
Dg,ut) = f (£, u(®), “DgLu(t), D u(p)), te(0,1), 1.1)
with anti-periodic boundary value conditions

u(0) = —u(1), tPICDR ()0 = P CDR u(t) a1,

+

1.
ﬂ2*2cDﬁ2 - _ ﬁ272CDﬂ2 ( 2)
L 02 t(t)jr0 = —t 02 u(B)e=1,
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where D}, denotes the Caputo fractional derivative of order y, the constants o, o1, o,
B1, Ba satisfy conditions 2 <@ <3,0<a; <1<y <2,0<f1 <1< By <2,andf is a given
continuous function.

Differential equations of fractional order have recently proved to be valuable tools in
the modeling of many phenomena in various fields of science and engineering. Indeed, we
can find numerous applications in viscoelasticity, electrochemistry, control, porous media,
electromagnetism, etc. (see [1-5]). There has been a significant development in the study
of fractional differential equations and inclusions in recent years; see the monographs of
Podlubny [5], Kilbas et al. [6], Lakshmikantham et al. [7], Samko et al. [8], Diethelm [9],
and the survey by Agarwal et al. [10]. For some recent contributions on fractional differ-
ential equations, see [11-30] and the references therein.

Anti-periodic boundary value problems occur in the mathematic modeling of a variety
of physical processes and have recently received considerable attention. For examples and
details of anti-periodic fractional boundary conditions, see [16—22]. In [16], Agarwal and
Ahmad studied the solvability of the following anti-periodic boundary value problem for

nonlinear fractional differential equation:

D§,u(t) =f(t,u(t), te(0,T),3<a<4,
u(0) = —u(T), u'(0) = —u/(T), (1.3)
u//(o) — _u//(T)’ u///(o) — _u///(T)’

where D, denotes the Caputo fractional derivative of order . The existence results are
obtained by nonlinear alternative theorem.
In [17], Wang, Ahmad, Zhang investigated the following impulsive anti-periodic frac-

tional boundary value problem:

CD%u(t) =f(t,u®)), 2<a<3,te]f,

Au(ty) = Qe(u(tr)), k=12,...,p,

Au'(ty) = (u(ty)), k=12,...,p, (1.4)
A () = I (u(&)), k=1,2,...,p,

u(0) = ~u(l), u'(0) = -u/'(1), u"(0) = —u"(1),

where Df, denotes the Caputo fractional derivative of order «. By applying some well-
known fixed point principles, some existence and uniqueness results are obtained.
In [18], Ahmad, Nieto studied the following anti-periodic fractional boundary value

problem:

“Dix(t) = f(t,%(8)), t€[0,TL1<q<2, s
15
x(0) = —x(T), CDPx(0) = -“DPx(T), O<p<l,

where D7 denotes the Caputo fractional derivative of order ¢. By applying some standard

fixed point principles, some existence and uniqueness results are obtained.
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In [19], Wang and Liu considered the following anti-periodic fractional boundary value

problem:

CD%%(t) :f(t,x(t),Cqu(t)), tel0,T],0<g<l,1<a-gq, 16)
1.6
x(0) = —x(T), CDPx(0) = -“DPx(T), O<p<l.

By using Schauder’s fixed point theorem and the contraction mapping principle, some
existence and uniqueness results are obtained.

By careful analysis, we have found that the anti-periodic boundary value condition
D?x(0) = -“D?x(T) (0 < p < 1) in equations (1.5) and (1.6) actually is equivalent to the
boundary value condition *D?x(T) = 0 (0 < p < 1). It means that, in a sense, in (1.5)-(1.6),
the feature of anti-periodicity partially disappears. So, in the present paper, we put for-
ward new anti-periodic boundary value conditions (1.2) so that the anti-periodicity is ex-
pressed. In fact, when 8; — 1, 8, — 2, the anti-periodic boundary value conditions in (1.2)

are changed into the boundary value conditions
w0)=-u(l),  w(0)=-u'1),  u"(0)=-u"(1)

which are coincident with anti-periodic boundary value conditions (1.3) and (1.4) men-
tioned above. So, the anti-periodic boundary value conditions in (1.2) in the present pa-
per are more suitable than those in (1.5) and (1.6). Moreover, different from the literature
mentioned above, the function f in (1.1) involves the Caputo fractional derivative € Dj u(z)
and ©Dg2u(t), which brings more difficulty to the study. To investigate the existence, re-
searchers often equip a Banach space with the norm ||u|| = [|ullo + |“Dglullo + | Dy ullo-
However, if such a norm was taken in the study, the introduced conditions would get more
complex. So, we take the norm ||| = max{||z'||0, ||z#”]|0} by finding some implicit relations.
As a result, the conditions introduced are quite simple. By applying the Banach contrac-
tion mapping principle and the Leray-Schauder degree theory, some existence results of
solutions are obtained in this paper.

The organization of this paper is as follows. In Section 2, we present some necessary
definitions and preliminary results that will be used to prove our main results. In Section 3,
we put forward and prove our main results. Finally, we give two examples to demonstrate

our main results.

2 Preliminaries
In this section, we introduce some preliminary facts which are used throughout this paper.

Let N be the set of positive integers, R be the set of real numbers.

Definition 2.1 ([6]) The Riemann-Liouville fractional integral of order « > 0 of a function

y:(a,b] — Ris given by

D y(t) = ﬁ /0 (t—5)"""y(s)ds, te(a,b].
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Definition 2.2 ([6]) The Riemann-Liouville fractional derivative of order « > 0 of a func-

tion y : (@, b] — R is given by

=L (L) [
D‘”y(t)_l"(n—ot)< dt) /0 TR ds, te(ab],

where 7 = [«] + 1, [«] denotes the integer part of «.

Definition 2.3 ([6]) The Caputo fractional derivative of order & > 0 of a function y on

(a,b] is defined via the above Riemann-Liouville derivatives by

(D)@ - (DZ+ [y(t) - kz; L, a)kD @, xe @bl
Lemma 2.1 ([6]) Leta >0 and y € Cla, b]. Then

(D 13,y) () = y(x)
holds on [a, b].

Lemma 2.2 ([6]) IfO <« ¢ Nandye AC"[a,b), then

1 P AUO)
Da t) = d ’ t 1b ’
a+y( ) T(n—-a) g (t—s)o‘_’“l S, € [a, b]

where AC"[a,b] = {u: [a,b] — R and u"V € AC[a, b]}.

Lemma 2.3 ([13]) Letn € Nwithn>2,a € (n—1,n).Ify € C"[a,b] and D,y € C(a, b),
then

I,°D2 y(t) = y(t) -

holds on (a, b).

Let X = {u|u € C?[0,1], u(0) = —u(1)}. It is well known that X is a Banach space endowed
with the norm |[|u]|2 = max{|lullo, &' [lo, [l4" o}, where ||| = max;epo. |u?].

Forany u € X, from u(0) = —u(1), there exists a t,, € (0,1) such that u(t,) = 0. So, from the
fact that u(¢) = f;u u'(s)ds, t € [0,1], it follows that |u(¢)| < Ifttu le/ (s)| ds| < ||i'|lo, t € [0,1].
Thus, [lullo < [#[lo, and so [|ull2 = max{[|#|lo, [l#" [lo}.

In what follows, we regard X as the Banach space with the norm

lully = max{ |

or 141}

We have the following lemma.
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Lemma 2.4 For a given h € C[0,1], the function u is a solution of the following anti-
periodic boundary value problem:

D2, u(t)=h(t), te(0,1),
w(©0) = —u(),  PCD u(t) im0 = P ICDL u(t) e, (2.1)
tﬁ2‘2CDgiu(t)|t_>0 = —t52‘2CDgiu(t)|t:1.

Ifand only if u € C*[0,1] is a solution of the integral equation

(=) ! 1 w1 (@=20T(2-p) wmpi-1

t) = ./o —I‘(a) h(s)ds+/0 |:_2I’(oz)(1 e —4F(a 5 (1-s)
1- 1 +2t-2(2 - )t T'B-p2)
8(2-p1) NGRS

1- s)”ﬁ21i|h(s) ds. (2.2)

Proof Let u € C2[0,1] be a solution of (2.1). Then, by Lemma 2.3, we have
u(t) = co + 1t + et + I, h(t), telo,1], (2.3)

for some ¢y, ¢1, ¢, € R. Furthermore,

C b1 a 1-81 2¢y 2- By -Bi
Dq'u(t) = a5 £y TG_A) P+ 0 (), tel0,1], (2.4)
D u(t) = - (326 ﬂ ) 2P ), te[0,1). (2.5)

From (2.4)-(2.5), we have

C1 + 202
r2-g) rE-pa
2C2

INEES)

tP1CDR (r) = t+ PSP (), te(0,1), (2.6)

tP272C D2 (1) = +t22 1P (), te(0,1). (2.7)

Now, we show that

lim AU () = 0, lim %7218 h(t) =

t—0+ t—0+

In fact, since & € C[0,1], there exists an M > 0 such that |4(¢)| < M forall ¢ € [0,1]. Then,
from the fact that 0 < 81 <1< B3 <2 < < 3, we have

15" (o)

a—p1-1
Mo /31) /(t s) h(s)ds

1 _qya-fi-1
< Fa—ﬁl)/ (t-s) |h(s)’ds

a—p1-1
“Ta-p) ﬂl)/ -s)f s

— a—P1
= (a—ﬂ1+l)t , te(0,1].
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Thus,

M
PP < — 1 e q(0,1],
75 ()’_F(a—ﬁ1+1) (©1]

and so
lim AP () = 0,
t—0+

noting that 2 <o < 3.

Similarly, we also have

200 < “2 te(0,1],

M
—_—t
-p2+1)

and so
lim 72721577 h(t) = 0,
t—0+

noting that 2 <o < 3.
So, from (2.6)-(2.7), we have

p1-1C pb1 —_a
Do\ ub)ie0 = Totgy (2.8)

-1C B 2 o—f
tﬂl Doiu(t)‘tﬂ = ﬁ + ﬁ -I-IO+ lh(l),

B2—2C b2 =20
£ Do u(t)jt—0 = r(3-82)’ (2.9)

-2C b 2 -p
£ 72D u) =1 = gy +lox Q).

Thus, by the boundary value condition in (2.1), combined with (2.3), (2.8)-(2.9), we

have
2¢o + ¢+ ¢y + 15, h(1) =0, (2.10)
g T o .
1“(347?,32) + ISP h) = 0. (2.12)

From (2.10)-(2.12), we have

1, I'2-81) op B =T (B - B2) 4-p,
¢o = —510+h(1) t— o h(1) - 8(2——ﬁ1)13+ h(1), (2.13)
_ T2-B) a-py LB~ B2) ap,
G=-— I, h(1) + 12_8) 1,7 h(1), (2.14)
= -Mzg;ﬂ2h(1). (2.15)

4
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Substituting (2.13)-(2.15) into (2.3), we obtain

ult) = I8, h(t) - %13;;1(1) L0220
1- 2t —2(2 = By)t? by
A +8(2 - /3(1) A LG - B)E2h(), tel0,1].

That is, u satisfies (2.2).
Conversely, if u is a solution of the fractional integral equation (2.2), then by finding the

second derivative for both sides of (2.2), we have

" _ a-3
u'(t) = Mo 2)/ (t—5)*"h(s)ds
_ 1—‘(3 - ﬁZ) _ a-p-1
721_‘(01 5 ), (1 s) h(s)ds, te]0,1]. (2.16)

Noting that % € C[0,1], it follows from (2.16) that # € C?[0,1]. Again, by Lemma 2.1 and
(2.2), a direct computation shows that the solution given by (2.2) satisfies (2.1). This com-
pletes the proof. d

Now, we define the operator A as

o— 1
(Ah) = /(t—s) 1h(s ds+/|:— L (1—5)"‘_1+—(1 20rQ@ '31)( —g)* Al
0

20 () 4T (a - By)
1_,‘31 +2t—2(2—[31)t2 F(?’ _,32) a—po-1
52— B Tl 5) (1-5s) ]h(s) ds (2.17)

for h € C[0,1].
From the proof of Lemma 2.4, we know that the operator A maps C[0,1] into X.
Now, we establish the following lemma, which will play an important role in the forth-

coming analysis.

Lemma 2.5 Foranyu € X and 0 <oy <1< ay <2, we have
(@) Nullo = llello, andso lllo < llzell2;
() 1Dl = gty Il amd 0 1 DLl < e
(i) 1°DE2ullo < gy 1" lo, and so CDG2ullo < ey Il
Proof Conclusion (i) has been proved as before. We come to show that conclusions (ii)-
(iii) are true. Obviously, when a; =1, o = 2, the conclusions are true. So, we only consider

the case 0 < o) <1< @ < 2. In fact, by Lemma 2.2, for any z € X, we have

C a1 _ 1 ! _ o,/
’ D0+u(t)‘ = —F(l—al) /O(t )™ u'(s)ds
/ ]‘ ‘ -]
—||”Hom/0 (£-s)™ds
1

€[0,1].

P
T I2-o)
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So,
D5 uly = [
R N R
Similarly, we have that ||“Dg2u|lo < m e’ llo- O

We also need the following lemmas.

Lemma 2.6 ([31]) Let X be a Banach space. Assume that S is an open bounded subset of
X with0 € Q, and T : Q — X is a completely continuous operator such that

I Tull < llull, Vueo2

Then T has a fixed point in Q.

Lemma 2.7 (Leray-Schauder [31]) Let X be a Banach space. Assume that T : X — X is
a completely continuous operator and the set V = {u € X|u = nTu,0 < u <1} is bounded.
Then T has a fixed point in X.

3 Main results
We list the following hypotheses which will be used in the sequel:

(H1) feC([0,1] x R x R x R,R).
(Hy) 2<a<3,0<a; <1<y <2,0<B1<l<pBr<2.
(H3) There exist constants L1, Ly, and L3 such that

lf(f,xz,yz,zz) —f(t,xl,y1,21)| < Lilxa —x1| + Lolya = 31| + Ls|z2 — 21|

for x;,y;,z; € R, i=1,2,3,and ¢ € [0,1].
First, we establish the following lemma to obtain our main results.

Lemma 3.1 Assume that (H;)-(Hy) hold. Then the operator T : X — X is completely con-
tinuous, where T is defined by

(Tu)(t) = (AFu)(¢), (Fu)(8) = f (£, u(t), “ D3t u(t), “D2u(t)), te[0,1],
and the operator A is given by (2.17).

Proof For any u € X, we have that “Dgu, “Dy2u € C[0,1]. Then Fu € C[0,1] from the
hypothesis (H;). Thus, Tu € X from (2.17) and the proof of Lemma 2.4.
First, by a direct computation, we know that the following relations hold:

N T r'2-p1)
(Tu)'(¢) = /0 71_‘(0[ D Fu(s)ds — 42”0[ 5

+F(3—/32) '1-202- Bt
Fla-p6)Jo 42-81)

1
/ (1 - 8)* Pl Fy(s) ds
0

(1 - s)* P Fu(s) ds, (3.1)
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von t (t _ S)a—3
(Tw)"(t) = ; m

_Ir@-5) !
2T (e = B2) Jo

(Fu)(s)ds
(1 — )* PN (Fu)(s) ds. (3.2)

Now, we show that T is a compact operator.
Let V be an arbitrary bounded set in X. Then there exists an L > 0 such that ||u||, < L.
Thus, by Lemma 2.5, it follows that |u(¢)| < L, |“Dg" u(t)| < %L, D2 u(t)| < =L

T2-c ['(3-a3)
forall u € V and ¢t € [0,1].
So, by the hypothesis (H;), there exists an M > 0 such that
|(Fu)(©)| <M, tel0,1], forallue V. (3.3)

Consequently, by (3.1), (3.3) and observing that |1 — 2(2 — 1)¢| <2(2 - $1), £ € [0,1], we
have

T@  2T@—pi+l)  20(a=p+1)

and so
, 1 re-a) I'(3-pBa)
Il = (r(a) Tr@-pi+1) 20— B, + 1>)M' G4
Similarly, by (3.2), (3.3), we have
" 1 I'(3-p2)
10l = (5 2 ™ =

Thus,

1 re-g) = TG-p) >M.

1 Tull2 < (F(O{ —1) + Wa-p1+1) 2I'(e-p2+1)

That is, TV is uniformly bounded.

Now, we show that TV is equicontinuous.

In fact, forany u € V and 1, t; € [0,1] with # < £,, since |Fu(t)| <M, t € [0,1], from (3.1)
it follows that

ty —t)I'(3 - B2)

1
(71 () - (T ()] < s (87 = 71) /0 ( (1 — 5yl g

2T (a = f2)
= M[m(t‘;‘1 L %(Q - tl):|, (3.6)
and
|(Tw)" () — (Tw)"(1)] < Faj\f 5 [£72 - 627 + (6 - )2 (3.7)

So, inequalities (3.6)-(3.7) imply that T'V is equicontinuous. By the Arzela-Ascoli theorem,
T is a compact operator.
Finally, we prove that T is continuous.
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Assume that {u,} is an arbitrary sequence in X with u, — ug, uo € X. Then there is an
L > 0 such that |lu,llo <L, lu,llo <L, l#)llo <L,n=0,1,2,...,and so

L

[“DGunlo = F2—a)

DG un n=0,12,...,

L
”0S F(S—ot )’
2

from Lemma 2.5.

On the other hand, for an arbitrary ¢ > 0, there is a § > 0 such that

lf(t»xZ)yZ’ 22) _f(t)xlyyl; Zl)| <€ (38)

forall £ € [0,1], x; € [-L,L], yi € [-F
[y2 — 1| <6, |22 — z1] < 8, because of the uniform continuity of f on

[0,1] x [-L,L] x [— L , L :| X |:— L , L :|
Fr2-e) I'C-am) I'B-ay) T'B-ay)

2a1 20tl]zle[ —3a2) —F3a2]w1th|x2—x1|<8

In view of the fact that u,, — ug, there is an N > 1 such that
llety — uollo <6, 1Dy, — “Dghuo], <8, D52, — “DG2uo], < 8 (3.9)
when n > N.

Thus, from (3.1)-(3.2) together with (3.8)-(3.9), by a similar deducing as (3.4)-(3.5), we
have

| (Tia)’ = (Tuo)'|, = [ 1 T@-g) . TB-p) }

M@  2T@—pi+1)  2T(a=p+1)

and
, , 1 I'(3-p2)
| (Tun)” = (Tuo)"| = [F(a—l) ’ 2F(a—ﬂz+1>] '
Hence,
1 r@-p) FG-p)
| Ty — Tuoll> < |:F(oz -1 * 2T (a - B1 +1) ¥ 2l — Ba + 1)i|8'
That is, T is continuous in X. -

To state our main results in this paper, we first introduce some notations for conve-

nience.
T | (£%,9,2)|
Letfb = llm\x\+\y|+|z|—>0 maXe[o,1] KHT;?;M foo llm\x\+\y\+\z|—>oo maXee(o,1] |l£|+|’;,‘y+z‘z|
r'(2-p1) ['(3-p2) L3
Set D = - 1) + 55D T by ET L Foay r(s = L=Li+ t5ay + Toag)

where L; (i = 1,2, 3) are given in (Hj).

We are in a position to state the first result in the present paper.

Theorem 3.1 Suppose (H;)-(Hs) hold. If DL < 1, then BVP (1.1)-(1.2) has a unique solution.

Page 10 of 15
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Proof For any u,v € X, by (H3) and Lemma 2.5, we have

[f(t u(t), D u(t ),CDgiu(t)) —f(& @), D w(e), “ DY v(t))‘
< Li|u(t) - v(t)| + Lo | Dyl u(t) — “Dgiv(t)| + L3 |“Dg2 u(t) - “Dy2v(2)|

<Lillu-v|o+Lsy ||CDgl+(u—v) ||0 +Ls || “Dg2 (u - V)||0

Ls
<Lillu=vlo+ = ||(u v+ 7||(u—v)”||0

re

S p— L3 lu—v
+ + u-v
“\"Tre-a) ' TG-w) 2

=L{lu—vl>.

So, it follows from (3.1) that
/ / ¢ (t_s)w_2 2 ,31 a—pr-1
(T (6) - (T (1) < {/0 o a5+ o ﬂl)/ (15l ds

FG-p) [111-22- Bt
+
Fa-p)Jo 42-5)

Thus, observing that |1 — 2(2 — 81)¢]| < 2(2 — B1), we have

1 r'2-p1) . I'(3-p)
I'a) 2F(a—ﬁ1+1) 2l — By + 1)

Jezuy - o) < | [t

Similarly,

7 7 1 F(g_ﬂ)
|(Tw)" - (19", < [F(a_l) + zr(a_ﬁ; 1)]L||M—V||2~

Thus,

re-p) . (- pBa) ]L||u—v||
(- B +1)  2T(a— By +1) 2

1
Tu—-Tv|, <
I Tu v||2_[r(a_1)+

= DL|ju—-v|>.

As DL <1, T is a contraction mapping. So, by the contraction mapping principle, T has
a unique fixed point u. That is, u is the unique solution of BVP (1.1)-(1.2) by Lemma 2.4.

Our next existence result is based on Lemma 2.6.

Theorem 3.2 Assume that (H;)-(Hy) hold. If fo < A, then BVP (1.1)-(1.2) has at least one

solution, where )\ = (DE)™L.

Proof By Lemma 3.1, we know that 7': X — X is completely continuous. Again, in view of

fo < A, there exists an r; > 0 such that
If (&x,,2)| < A(1xl + 1yl +12l), £€[0,1]

when |x| + |y| + |z| < n.

(1-s)xFt ds}LHu —|l2.

Page 11 of 15
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Take r = E~'ry, where E = (1 + 2—a1) + Faeay 3 Taay)- Set 2 ={x € X : ||z <r}. Forany u € 9%,
we have that u € X with | u|y = 7. Thus, |ullo <7, ||#|lo < r,and ||#”|log < r.So, Lemma 2.5

ensures that

1 . 1
[°Doiulo < rr—aym 17Poiulo = Fe—am™
Therefore,
C C 2 1 1 _
(@) + |8 o) + | D0+u(t)’_( o F(g_az))r—rl, tefo,l

Thus, from (3.10), it follows that

" 1 1
[f(t u(t), CD0+u(t) CD0+z,t( ))’ < A(l+ TZ—a) + F(S—az))r

= AEr, te]0,1].

Thus, by a similar deducing to that in (3.4) and (3.5), we have

/ 1 re-pa) FB-p)
I(Twy |, < A(F(a) + 2N (- B+ 1) " 2T (a — o + 1)>Er

and

y 1 re-pa)
|(Tw)" ||, < & (rw_4)+zrw—ﬂ1+D>En

Thus, || Tu||; < ADEr, where D =
1 Tull2 <7 = [luella.

+ Zlf((z_ﬁ‘) +3 FB-A2) _ A ). = (DE)™!, we have that

(a— 1) a-p1+1) = 2I0(a—pPo+1) "

So, by virtue of Lemma 2.6, T has at least one fixed point u. That is, u is a solution of
BVP (1.1)-(1.2) by Lemma 2.4. The proof is complete. a

The last result of this section is based on the Leray-Schauder fixed point theorem,
namely Lemma 2.7.

Theorem 3.3 Suppose that (Hy)-(Hy) hold. If fx < A, then BVP (1.1)-(1.2) has at least one
solution, where ). = (DE)™!

Proof As before, T : X — X is completely continuous. From f, < A, we can choose a € €
(0, 1) such that f5, < A — &. Then there is an R > 0 such that

If&,%,9,2)| < (h = &)(Ix] + |yl + |z])

holds when |x| + |y| + |z] > R for ¢ € [0,1].
Let M = maxX;e[o,1,jx|+|y+|z1<r |f (£;%, %, 2)|. Then we always have

[f(t,%,9,2)| <M+ (n—e)(Ix] + [yl + |2]). (3.11)

Set V={u:ueX,u=uTu,0 < u<1}. Now, we show that V is a bounded set.
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In fact, for any u € V, from Lemma 2.5 and (3.11), it follows that
[f(t u(t), “D! u(t), € D2 u(t))|

<M+()L—s)(|u(t)|+|CD u(t|+|CD u(t)|)

<M+ (—¢)(llullo + | “Dghu|, + | “De2ul,)

<M+(A—s)(1+ 1 + 1 )IIuII
= F2-a) T@-ay))

=M+ (A—g)E|ull, fortel[0,1]. (3.12)

Thus, by (3.1) combined with (3.12) and observing that |1 —2(2 — 1)¢]| < 2(2 — 1), we have

immediately
(Tuy 0) {/ e )M AL ﬁl’/u A ds
(3 ,82 a—po-1
2r(a ﬁz)/ (1-3) ds}[M+(A &)E|ul2]

- [ 1 re-a) I'(3-p)
r

@ " W@-pirD) 2 fo+ 1)] [M+ G- o)Elulz]. (313)

Similarly, we have

LI -5
F(O{—l) 2F(Ol—,32+1)

|(Tuy' ()] < [ ] M+ G- )ENulls]. (314)

So, from (3.13)-(3.14), we have

N r'e-a) . I'(3-B)
Ta-1) 2F(a-pi+1) 20(a—pB+1)

= DM + (. — )E||ul,.

I Tl < [ ] - [M + (A = &)E]||ull2
Now, the relation u# = uTu with 0 < u < 1 implies
lull2 = ull Tulla < DM + (A — €)DE|| .

Because LDE = 1, the above inequality implies |||, < % That is, V is a bounded set. So,
by Lemma 2.7, we have that T has at least one fixed point u. That is, « is a solution of BVP
(1.1)-(1.2) by Lemma 2.4. This completes the proof. |

Example 3.1 Consider the following anti-periodic boundary value problem:

5 7
D2, ut) = £ Ll _)\e—f1n[1+(CDg+ (t))2+(CDg+ u(®))?],

T+t T+]u(t)

u(0) = —u(1), t"CDéJru(t)‘t_,o =—t 2CD0+u(t)‘t L (3.15)

len3 1
2D u(t) 10 = —t 2 D0+M(t)\z:1,

sfr

(16+3n)(8+1"
f=2 ket In(l + 52 + 22) satisfies [f(t,%2,.,22) —f(t,x1,y1,21)| < A(lxg — ] + [y2 —

t+1 1+|x|

5 3

where o« = S, =3,0= %, B = %, By = %, and 0 < A < Clearly, the function
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r2-p1) '(3-f2) _ (16+37m) L B
y1|+|2z2 —z1|). Further, D = o 1) + 3T _ﬂ11+1) + zr(a-ﬁ22+1) N L=L1+% )+ —F(3—3a2) =
)»S;l; .As DL = )\—(16;3;_i+r( < 1, all the assumptions of Theorem 3.1 are satisfied.

Hence BVP (3.15) has a unique solution.

Example 3.2 Consider the following anti-periodic boundary value problem:

5 3 7
DG, u(t) = psinu(t) + e [(CDE, u(t))® - (°DE, u(t))?], te(0,1),
1 1
w(0) = —u(l), 2D ult)io = ~t2DZ,u®) -1, (3.16)
1 3 1 3
£2CDg, u(t) 40 = —t 2D, u(t) 41,

25 =B g 7 g 1 8l (d)

wherea =3, a1=J, 0=, fr=7 =5, and 0 < < (16+37)(8+T(3)) " Clearly, the func-
tion f = pusinx + eCOSt(yS - Zz) satisfies fo < 1, where fy = llm‘x‘+‘y‘+‘2|~>0 maXe(o,1] \'a):\(i\y;lyjlil :
_ 1 r2-g) F3-py) _ (16+31) p _ 1 1 8T

Further, D =t + Fapis) + eapord = syx * £ = 1 Ty ¥ ) © 1) 7

1
= (DE)™! = __SVal) —. As fo < A, all the assumptions of Theorem 3.2 are satisfied.
(16+37)(8+T'(7))

Hence BVP (3.16) has at least one solution.
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