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1 Introduction

In recent years, the existence of positive periodic solutions of the prey-predator model has
been widely studied [1-3]. The qualitative analysis of predator-prey systems is an interest-
ing mathematical problem and has attracted a great attention of many mathematicians and
biologists [4, 5]. Recently, Xu and Chen [6] investigated the two-species ratio-dependent
predator-prey different model with time delay. Since a realistic model requires the inclu-
sion of the effect of changing environment, recently, Shihua and Feng [7] have considered

the following model:

X () = ;) (a1 (1) - an () (1) — 2530 )

+ Dy (£)(x2(8) — 21 (2)) — 1 (2),
x5 (£) = 22 (£)(aa(t) — aza () (£)) + Do (£)(x1(£) — x2(2)) — ha(2),
w4 (£) = 3(£) (a3 (2) — aa ()3 (0) + riED ) — s (o),

(t)x3(t—7)+x1 (t-7)

(1.1)

where D;(¢) (i =1,2), a;(t) (i = 1,2,3), an(t), ai13(t), axn(t), ax(t) and m(t) are strictly posi-
tive continuous w-periodic functions.

In the paper, we will study the following model:

() = (@ (6,2 (1)) - 5l
+ Dy (8) (2 (2) — x1(2)) — I (2),
x5() = %2(£) (@2 (&, %2(2)) + Do (8) (x1(£) — x2(2)) — ha(2),

Xy(8) = x3(t) (a3 (t) — an(t)s () + 7 PHED ) — ha(2),

(t)x3(t—7)+x1 (t-7)

(12)
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where D;(t) (i = 1,2), a13(t), az1(¢), m(t) are the same as in model (1.1). Some assumptions
on the above functions on g;(¢,x) (i = 1,2) will be given in next section.

Our aim in this paper is to establish a sufficient condition for the existence and attrac-
tivity of at least a positive w-periodic solution of model (1.2).

2 Main result
To obtain the existence of positive periodic solutions of system (1.2), we summarize some
concepts and results from [5] that will be basic for this section.

Let X, Z be Banach spaces, let L : DomL C X — Y be a linear mapping, and let N : X —
Z be a continuous mapping. The mapping L will be called a Fredholm mapping of index
zero if dimKer L = codimIm L < +oc0 and Im L is closed in Z. If L is a Fredholm mapping of
index zero, there exist continuous projectors P: X — Z and Q: Z — Z such that ImP =
KerL and ImL = Ker Q = Im(/ — Q). It follows that L/DomL NKerP: (I - P)X — ImL is
invertible. We denote the inverse of that map by Kp. If 2 is an open-bounded subset of X,
the mapping N will be called L-compact on £ if QN(2) is bounded and Kp(/ - Q)N :  —
X is compact. Since Im Q is isomorphic to Ker L, there exists an isomorphism J : In Q —
KerL.

In the proof of our existence theorem, we will use the continuation theorem of Gaines
and Mawhin [8].

Lemma 2.1 [8] Let L be a Fredholm mapping of index zero and let N be L-compact on Q.
Suppose the following:
(i) foreach A € (0,1), every solution x of Lx = ANx is such that x € 9$2;
(i) QNx #0 foreach x € 92 NKerL;
(iii) deg{/JON,Q2NKerL,0} #0.

The Lx = Nx has at least one solution in Dom L N .
For convenience, we introduce the notations

, fM = max [f(t)

te[0,w]

te[Ow] ’

1 L
f—W/O f@®dt,  f*= min |[f(0)

where f is a continuous w-periodic function.
Our main result on the global existence of a positive periodic solution of system (1.2) is
stated in the following theorem.

Theorem 2.1 Assume that

(Hy) there exists a constant A such that for Vx € R, t € R, when x > A,
&1 (tr ex) < 0;

(Hy) there exists a constant B such that for Vx € R, when x > B,
£ (tr ex) =< 0;

(Hs) there exists a constant C (C < A) such that for Vx € R, t € R, when x < C,

M
a
e'gi(te’) > <f) e+
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(Ha) there exists a constant D (D < B) such that forNx € R, t € R, when x < D,
eg(t. ") = n;

(Hs) alle® > Him!

Then system (1.1) has at least one positive w-periodic solution.

Proof Consider the system

(t u3 ()
uy(t) = gi(t,e1?) - %

+ Dy()(e2 -0 — 1) — Jy (e,
uy(2) = ga(t,€210) + Dy (8) (10720 1) — Iy ()2

et (t- _
uy(t) = —as(t) — aq(t)es® + W hs(t)es ),

(2.1)

Letx;(¢) = e, i = 1,2,3, then system (1.2) changes into system (2.1). Hence it is easy to see
that system (2.1) has a w-periodic solution (z (¢), u}(2), u3(t))”, then (e11®, 2(0) 3T
is a positive w-periodic solution of system (1.2). Therefore, for (1.2) to have at least one
positive w-periodic solution, it is sufficient that (2.1) has at least one w-periodic solution.
In order to apply Lemma 2.1 to system (2.1), we take

X = Z = {u(t) = (wr(8), un (8), u3()) " € C(R,R®), u(t + w) = (1)}

and
3
llull = ” (Ml(t), uy(t), us( t) Z |u t)’
i=1
for any u € Z (or Z). Then X and Z are Banach spaces with the norm || - ||. Let
a 43 (8) u
ai(t,en®) - m([;if% + Dy(t)(e2 010 — 1) — y ()2
Nu = &(t,€29) + Dy (£) (10720 — 1) — iy (£)e2) , ueX,
—a3(t) — ay(t)es® & % ha(£)e 3
m(t)e"3(t +etl
du(t 1 [
Lu=u = M(), pu:—f ult)dt, uelX;
dt w Jo
1 w
Qz= —/ zZ(t)dt, zeZ.
wJo
Then it follows that

w
KerL = R®, ImL = {zeZ:/ Z(t)dt:()} is closed in Z,
0
dimKerL =3 = codimImLZ,
and P, Q are continuous projectors such that

ImP =KerlL, KerQ=ImL =Im(I - Q).
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Therefore, L is a Fredholm mapping of index zero. Furthermore, the generalized inverse
(toL) Kp:ImL — Ker? N Dom L is given by

Kp(z) = /Otz(s)ds— % /OW/Otz(s)dsdt.

Thus
Uw [, Fi(s)ds
ONu = | 1/w fow Fy(s)ds
1/w fow F3(s)ds
and

fot Fi(s)ds—1/w [ fot Fi(s)dsdt + (1/2 — t/w) [, Fi(s)ds
Kp(I - Q)Nu = fot Ex(s)ds—1/w [y fot Fy(s)dsdt+ (112 - t/w) [} Fx(s)ds |,
fot F3(s)ds—1/w [y fot Fs(s)dsdt + (1/2 — t/w) [, Fs(s)ds

where

a3 (5)8”3(5) . )
_ W + D1 (s) (euz(s) ui(s) _ 1) —(s)e ul(s),

F(s) = &2(5,€29) + Dy (s) (1720 — 1) — Iy (s)e™2)

Fi(s) = gi(s,e1")

and

as(s)e" ¢

_ —u3(s)
m(s)eug(s—r) + et1(s-7) hg (S)e :

Fs(s) = —as(s) — a4(s)e“3(5) +

Obviously, QN and Kp(I — Q)N are continuous. It is not difficult to show that Kp(/ —
Q)N() is compact for any open bounded Q C X by using the Arzela-Ascoli theorem.
Moreover, QN() is clearly bounded. Thus, N is L-compact on Q with any open bounded
set 2 C X.

Now we reach the point where we search for an appropriate open bounded subset €2 for
the application of the continuation theorem (Lemma 2.1). Corresponding to the operator

equation Lx = ANx, X € (0,1), we have

u3 (t)
1 (2) = Mg (8, € ) — —a3es”

m(t)et3(0) et (0)
+ Dy (2) (€207 — 1) — g (£)e1 ],
U5 (6) = A [ga(6,€%2) + Da(0)(e1 920 - 1) — hy(p)e-20),
uq (t-1)
Uy (£) = A—as(t) — aq(t)ens® 4 e 1 - — h3()e W),

m([)eug(t)w”l(t’f

(2.2)

Assume that u = u(¢) € X is a solution of system (2.2) for a certain A € (0,1).
Because of (u1(2), u2(2), us(£))” € X, there exist &, n; € [0, w] such that

u;i(&;) = max u(t), ui(n;) = min u(¢), i=1,2,3.
te[o,w] te[o,w]


http://www.advancesindifferenceequations.com/content/2013/1/52

Du and Wu Advances in Difference Equations 2013, 2013:52 Page 5 of 14
http://www.advancesindifferenceequations.com/content/2013/1/52

It is clear that

W(E)=0,  w(n)=0, i=1,2,3.

From this and system (2.2), we obtain

a3 (6r)e"s @)
(f’-‘l)eu?) (1) + em

a (sl,eul(fl)) - o Dl(%-l)(euz(fl)—m(él) _ 1) _ hl(sl)e—m(ci) =0, (2.3)

& (%-276142(52)) + D2(§2)(eu1(€2)—u2(€2) _ 1) _ hz(sz)e—uz(&) =0, (2.4)

az (&3)e"1 6370

m(Es)ens(Es—n)ve 1637

—as(§s) — a(£3)e® + s — h3(E5)e ™ = 0, (25)

(m)
w1 (m)Y _ a3 (m)e” uz (m)-ur(m) _
& (771: ¢ ) m(n;)ersn) 4 em(m) * Dl(m)(e 1)
— Iy (py)e 1 =0, (2.6)
& (nz,e’“(’”)) + Dg(ng)(e”l(”)_’“(”) _ 1) _ hz(nz)e—uz(ﬂz) =0, (2.7)

az (nz)e )

_ —uz(n3) _
m(n3)esmz—0)+e"1(370) hs(s)e =0. 28

—a3(n3) — as(n3)e”s ) +

There are two cases to consider for (2.3) and (2.4).
Case 1. Assume that u1(&1) > uy (&), then u1(&1) > uo(&1).
From this and (2.3), we have

a e#3(83)
ai(&,e®)) = 13(61)

- ua (§1)-u1(§1) _ _u1 ()
= e 5 gt~ DiE(e 1) + (&)™ > 0,

which, together with condition (H;) in Theorem 2.1, gives

ui (&) < A. (2.9)
Thus

uy (&) <u (&) <A. (2.10)

Case 2. Assume that u;(&1) < uy (&), then u1(&2) < uy(&5).
From this and (2.4), we have

& (Sz,euz(&)) - _Dz(sz)(em(sz)—uz(sz) _ 1) + hz(éz)e’”“gz) >0,
which, together with condition (H;) in Theorem 2.1, gives

u(§2) < B. (2.11)
Thus

u1(&1) <uy (&) < B. (2.12)
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From Case 1 and Case 2, we obtain

w1 (&) < max{A4,B) < 4, (2.13)

u»(&,) < max{A, B} = d,. (2.14)
From (2.5), we get

u1(§3-T)
1265 < 4,(E5)e® < az (§3)e"'™ M
B N m(“;‘g)eus(fs—t)w”l(f?’*f) 31

Thus
M
uﬁag{ﬁﬁgé. (215)
Ay

There are two cases to consider for (2.6) and (2.7).
Case 1. Assume that u;1(11) < uy(n2), then u;(n;) < uz(n1). From this and (2.5), we have

a3 (np)e*s )
m(nl)e’43(ﬂl) + eul(ﬂl

a e#3(m) a1z \M
13(m) + Iy ()™ m) asy o, hi\’le—m(m)’
m(nl)eu’a‘(’]l) + eul(ﬂl) m

a (m,eul(m)) _ ) _Dl(m)(euz(m)—ul(m) _ 1) + hl(m)e—ul(m)

which, together with condition (Hs) in Theorem 2.1, gives

ui(m) > C. (2.16)
Hence
uy(n2) > w1 (1) > C. (2.17)

Case 2. Assume that u;(1;) > u3(n2), then u;(n2) > u3(n3). From this and (2.7), we have
o (nz’euz(ﬂz)) — _Dz(nz)(eul(ﬂz)—uz(nz) _ 1) + hz(nz)e—uz(nz) < hiz\/le—uz(ﬂz)’

which, together with condition (Hy) in Theorem 2.1, gives

uy(n2) > D. (2.18)
Hence
ui(m) > uz(n2) > D. (2.19)

From Case 1 and Case 2, we have

uy () > min{C, D} ' py, (2.20)

uz(n2) > min{C, D} = p;. (2.21)
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From Theorem 2.1(Hs), we get

/
ug(n3)>ln< Mh3 1)' (2.22)

a3 —as

From (2.11)-(2.22), we obtain, for V¢ € R,

|ia ()] < max{|dil, |n]} €' Ry,

|us(0)] < max{ldi,1on1} < Ry
and
|us(2)] < max{lasl, |ps|} < Rs.

Clearly, R; (i =1,2,3) are independent of A. Denote M = Zig:l R; + Ry, here Ry is taken
sufficiently large such that each solution (a*, 8%,y *)7 of the system

oy @3€ 5B 1) T o
F41 (t,e ) m(tg)eV ™ + D1 (6 1) hle =0,
§4) (tz,eﬁ) + l_)z (e"“ﬂ - 1) - I:lze_ﬂ =0, (2.23)
. o
—a3 —ase + A hse™” =0

m(ty)e? + e*

satisfies ||(c*, B*,¥*)T || = |a*| + |B*| + |y *| < M, provided that system (2.23) has a solution
or a number of solutions, and that

max{|dil, | o} + max{|dil, |p1|} + max{|ds], |ps]} < M,

where ¢; € (0, w) will appear in QNu below.

Now we take € = {u = (u1(8), u2(2), us(£))T € X : ||u|| < M}. This satisfies condition (i) of
Lemma2.1. When u € 3QNKer L = dQNR3, i is a constant vector in R® with Z?:l |u;| = M.
If system (2.23) has one or more solutions, then

a13e'3 Y — 7o
gi(t,e") - W +Dy(e2™ —1) —me™

QNu = B(tr,€"2) + Dy(e172 — 1) — hye ™ #(0,0,0)7,
—a3 —ase + m(tZ)lz’f;re”l — hze™

where ¢; € (0, w) are one constant.
If system (2.23) does not have a solution, then naturally

QNu #(0,0,0)7.

This shows that condition (ii) of Lemma 2.1 is satisfied finally. We will prove that condi-
tion (iii) of Lemma 2.1 is satisfied. We only prove that when u € 3Q N KerL = 9 N R3,
deg{JQNu, 3Q NKerL,(0,0,0)7} #0. When u € 3Q NKerL = 3Q N R3, u is a constant vec-
tor in R3 with Z?:l |u;| = M. Our proof will be broken into three steps as follows.
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Step 1. We prove
deg{JQNu, 2 NKerL,(0,0,0)"}

_ T
_ az e _
=de t,e),g(tr,e"?), —a3 —ase® + ———— —hze™3 | ,
g{(g(1 )g(z ) 3 4 m(ta)e" + e 3

QNKerL, (0,0, 0)T}.

To this end, we define the mapping ¢; : DomL x [0,1] — X by

a(t,em)
¢1(UI, Uz, us, Ml) = g2(t27 euz)

— da1etl
_ ug 4 43¢ -
ase™ + m(ty)e"3 +et1

a13e"3 . (oH2—t L. o
_W+Dl(82 1—1)—1’1131

+ U1 Dy(er2 1) — ]:lzeuz )
—asz — l:lge_u3

where p; € [0,1] is a parameter, when u = (u1,up,u3)” € 3Q N KerL = 9Q N R, u is
a constant vector in R® with Zil |u;| = M. We will show that when u € 92 N KerL,
¢1(u1, uy, uz, 1) # 0, if the conclusion is not true, i.e., the constant vector u with Zil |ui| =
M satisfies ¢ (u1, uy, us, 1) = 0, then from

& (tl, e”1) + Hl(ﬂ +l_)1 (euz—ul _ 1)) _ Ijlle"l -0
m(t3)e’s + e )
@a(t2e”) + 1 (Ba(e 7 ~1) ~Tne) =,

Egle’”

—dge" + ——— (a3 + h3e ™) =0
m(ty)e"s + e Ml( )

it follows the arguments of (2.11)-(2.22) that
lw| <R, i=1,2,3.

Thus
3 3
D lwil <) Ri<M,
i=1 i=1

which contradicts the fact that Zf’zl |u;| = M.
According to topological degree theory, we have
deg{(JQN, 2 NKerL,(0,0,0)")}
= deg{¢>1(u1, Uy, U3, l)T, QN KCI'L, (0, 0, O)T}
= deg{qbl(ul, uy,us3,0)T, 2N KerL, (0,0, O)T}

= deg{ (gl (tl; eul):gZ (tZr euz), —546143 + ase”

T
— = ) ,QnKerL,(0,0,0)7}.
m(ty)e!s + e

Page 8 of 14
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Step 2. We prove

531 e

T
deg{ (gl(tl,e“l),gz(tz,e“z),—ﬁ4e”3 + ) ,2NKerL, (0, 0,0)T}

m(ty)e!s + e

531 el

T
= deg{ (El — Eue”l,g(tz, e”z), —a.e™ + ) ,Q2NKerlL, (0,0, O)T},

m(ty)e#s + et

where a;, a;; are two chosen positive constants such that

C<lnf—1 <A.
ai

To this end, we define the mapping ¢, : DomL x [0,1] — X by

51 — Ene’”
o1y, Uy, U3, [L2) = Lo £(t2,€")
—546143 + #’f:ie”l
gi(t,e")
+(1-p2) & (t, ")
—Gges + el

m(ty)e"3 +e1

wa(@ —ane) + (1 - pa)gi(t, e)
= o(tn,€"2) )
—aze’s + #ﬁ:ieul
where 5 € [0,1] is a parameter. We will prove that when u € 0QNKer L, ¢y (141, uo, us, i2) #
(0,0,0)”. When u € 32 NKerL = 3Q N R?, u is a constant vector in R with 37 | |u;| = M.
Now we consider two possible cases:

(i) wm=A; (i) w <A.

(i) When u; > A, from condition (iii) in Theorem 2.1, we have g(¢;,¢e"1) < 0. More-
over, a; — aje < a; —apet <0, thus (@ — ane”) + (1 — po)g(ty, ) < 0. Therefore,
b1 (w1, uz, 3, 112) #(0,0,0)7.

(if) When u; < A, if u3 < C, from condition (Hs) in Theorem 2.1, we have g(¢;,¢e"1) > 0.
However, @, — ane™ > a; —ane > 0. Therefore, ¢ (i1, U, us, (t2) #(0,0,0)T. If u; > C, we
also consider two possible cases: (a) uy > B; (b) u; < B. (a) When u, > B, from condition
(H,) in Theorem 2.1, we have

&(t2,€) <0.

Therefore ¢, (uy, us, us3, t2) # (0,0,0)T. (b) When uy < B, if uy < D, then from condition
(Hy) in Theorem 2.1, we obtain g, (£, €“?) > 0. Consequently, ¢ (i1, uz, us, j12) # (0,0,0)7.
If uy > D, we can claim when u € 9Q NKerL = dQ N R, ¢y (uy, us, us3, i12) #(0,0,0)7. Oth-
erwise, from

5316”1

B IR |
m(ty)e!s + el
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we have

o B

ay
and
s —agse’ + \/(—546'01)2 +4 — 541’1’1(1,‘4)5316/)1
e —
2a4m(ts) ’

ie.,

Uus < 11’1531 - ]nﬁ4,

—de” + \/(_E4e01)2 +4 —aym(ty)az e

>1In
" 2agm(ts)

Thus

|ur| < max{|dy], | o1},

|uz| < max{|d|, |1}
and
|us| < max{|ds], | ps|}.

Therefore

3
> il < max{|dal, |prl} + max{|dil, | pu]}

i=1

+max({|dsl, | o3} < M,

which contradicts the fact that Z?Zl |u;| = M. Based on the above discussion, for any u €
0Q N KerL, we have ¢y (u1, uy, us, i12) # (0,0,0)7. According to topological degree theory,
we obtain

Egle"l r T
o) QNKerlL,(0,0,0)
e

deg{ (gl(tl»eul)ng(tbeuz)»—ﬁzLeus + W

= deg{¢a(u1,u2,u3,1)", 2 N KerL,(0,0,0)"}
= deg{¢2(uli U, U3, O)T; Q n KerL, (0, 0, O)T}

— T
= deg{ (al —ane, gy (ty, €2, ~a4e" + — ) ,QNKerL, (0,0, 0)T}.

m(ty)e*s + et

Step 3. We prove

- m T
deg{ (al —ane", g (ty, "), —ase™ + a1 ) ,QNKerL, (0,0, O)T}
m

(ts)e#s + et

_ aze”
= deg{ (al —ane,a, —aype?, —a.e™ +

T
— = ) ,QnKerL,(0,0,0)7}.
m(ty)e!s + e

Page 10 of 14
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To this end, we define the mapping ¢3 : DomL x [0,1] — X by

a; — aue’“
¢3 (w1, uz, U3, 13) = p3 ay — daye™
_Z. o3 4 @e
a,e + m(ts)e"3 +etl
a; — aue”l
+ (1~ p3) &(tr,e"?)
7.3 azetl
ase + m(ty)e"3 +etl
a; — aue’“
= | us(@r —axne™) + (1 - u3)g(ts, ) |,
= Lu3 az el
ase + m(ty)e"3 +etl

where u3 € [0,1] is a parameter and a5, a;; are two chosen positive constants such that D <
In :Tzz < B. We will prove that when u € 3Q N Ker L, ¢3(u1, us, u3, 112) # (0,0,0)7. If it is not
true, then the constant vector u satisfies ¢z (i1, 42, u3, i12) # (0,0,0)T with Z?:l |u;| = M.
Thus we have

a; — zzue’“ = 0, (224)
us(az — axne™) + (1 - u3)ga(t2, ) = 0, (2.25)
—aduet + el _ (2.26)

m(ty)e"3 +etl

(2.24) implies

ay
C<u;=Iln— <A. (2.27)
ai

We claim that u, < B; otherwise, if u, > B, then from condition (H,) in Theorem 2.1, we

have
a- ug)gz (tz,euz) <0.

Consequently,

13 (az — aze) + (1 - u3)ga (ta, €2) < 0,
which contradicts (2.23). We also claim that uy > D. Ifuy < D, then g,(£,, €*2) > 0. However,

s — dye"? > ay — areP > 0.
Thus

us (“2 - ﬂzzeuz) +(1- MS)gZ(tZ’eMZ) >0,

which contradicts (2.24). (2.26) gives

—
_ as e
—ase®+ ———— =0
m(ty)e!s + el
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that is,

Uus < 111531 - 11154,

—ag.e’ + \/(—546'01)2 +4 — Z4m(t4)ﬁglepl
2a,m(ty)

usz >1In
Thus

1| < max{|di, | pl},

|uz| < max{|di], 1]}

and

|us| < max{|ds, | ps]}.

Therefore

3
> 1wl < max{|da, |prl} + max{|dil, | pu]}

i=1

+max({|dal, | o3} < M,

which leads to a contradiction. Therefore, by means of topological degree theory, we have

ﬁgle”l

deg{ (Ill — aue“l,gz (tz, 6”2), —546143 + ), QN KerL, (0, 0, O)T}

m(ty)e!s + e
= deg{¢>3(u1, Us, U3, l)T, QN KerL, (O, 0, O)T}
= deg{¢s(u1,u2,u3,0)", 2 N KerL,(0,0,0)"}

531 e

= deg{ (al —ane™,ay — are?, —ase’ + >, QNKerlL, (0,0, O)T}.

m(ty)e"s + et

From the proof of the three steps above, we obtain

deg{JQNu, 2 NKerL,(0,0,0)"}

531 e

= deg{ (al —ane™,a, —are?, —aze’ + ), QNKerlL, (0,0, O)T}.

m(ty)e"3 + e

Because of condition (Hs) in Theorem 2.1, the system of algebraic equations

a —anx = O,
as —any =0,

= azx_ _
614[ + m(ty)z+x — 0

has a unique solution (x*,y*,z*)” which satisfies

a a agx® +\/(asx*)? + dagm(ty)az x*
x=250, y*=_2>0’ oo V(@sx*) am(ty)az

— > 0.
an a 2asm(ts)
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Thus
das et
degi | a1 —ane™,ay — aype™,—ase™ + . ,QNKerL,(0,0,0)"
m(ty)e!s + e
—ﬂux* 0 0
=sign| 0 —any* 0 =-1
0 —dur — az m(ta)x*z*

[m(tg)z* +x*]2

Therefore, from (2.20), we have
deg{JQNu, 2 NKerL,(0,0,0)"} = -1.
This completes the proof of Theorem 2.1. d

3 An example
Consider the system

x; =21 (ar(t) — an(B)x (t) - 5};9;37”1) + Dy () (2 (2) — x1(2)),
xy = %o (t) (a2 (t) — aza (£)x2(2)) + Da(8)(x1(£) — x2(2)), (3.1)
%y = x3(0) (a3 (t) + t)is;((t )xT1>(ix1T(i )

where 7 > 0 is a positive constant, all the parameters are positive continuous w-periodic
functions with periodic w > 0.

In Theorem 2.1, gi1(¢,€*) = a1(t) — an(t)e*, g2(t,€°) = ax(t) — an(t)e®. It is easily shown
that if x > ln( o ) A, then gi(t,e*) <0 and if x > ln(aM) B, then gy(t,€*) < 0. We also
can show if

a! = ()M

xflnilm=C,
an

M
alte)= (%)

and if x < ln =D, then g(t, €*) >
2

(Hi) ai" > (2™,

(Hy) @31 > as.

By Theorem 2.1, we have the following theorem.

Theorem 3.1 If (H;) and (Hy) hold, the system (3.1) has at least one positive w-periodic

solution. Consider the system

21 (E)(@(0) - an (e (0) - L) 1D (1) (ea(6) — 1 (1),

x5 = %2(t)(@2(2) — aza (£)x2 () + D2 (8) (1(£) — x2(2)), (3.2)

az1 ()33 (t-1)
(t)( 613(1‘,‘) t)x t— t)+x1(t r))
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where z > 0 is a positive constant, all the parameters are positive continuous w-periodic
functions with periodic w > 0.

In Theorem 2.1, g1 (¢, €*) = a1 (t) —an(t)e*, g2(t, €°) = as(t) —azn(t)e’. Itis easily shown that
M

ifx>1n a! =A,theng(t,e*) <0andifx>In a% = B, then g;(¢, ¢*) < 0. We also can show
(5))

al
“jié_ a13 )M M
if x < In #ﬁ =Cate)= (%) andifx <In é = D, then g(t,¢*) > 0.

(H) ai'> GEM,
(H/Z) 531 >53.

By Theorem 2.1, we have the following theorem.

Theorem 3.2 If (H}) and (H,) hold, system (3.2) has at least one positive w-periodic solu-
tion.
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