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Abstract

In this article, we establish sufficient conditions for the existence, uniqueness and
stability of solutions for nonlinear fractional differential equations with delays and
integral boundary conditions.

MSC: 34A08; 34A30; 34D20

Keywords: Riemann-Liouvile derivatives; nonlinear fractional differential equation;
delay; integral boundary conditions; stability

1 Introduction

Fractional differential equations is a generalization of ordinary differential equations and
integration to arbitrary non-integer orders. The origin of fractional calculus goes back to
Newton and Leibniz in the seventeenth century. Fractional differential equations appear
naturally in a number of fields such as physics, engineering, biophysics, blood flow phe-
nomena, aerodynamics, electron-analytical chemistry, biology, control theory, etc. An ex-
cellent account of the study of fractional differential equations can be found in [1-11] and
the references therein. Boundary value problems for fractional differential equations have
been discussed in [12-22]. By contrast, the development of stability for solutions of frac-
tional differential equations is a bit slow. El-Sayed, Gaafar and Hamadalla [23] discuss the
existence, uniqueness and stability of solutions for the non-local non-autonomous system
of fractional order differential equations with delays

Dxi(t) = Y agOx() + Y _ byt — 1) + hi(t), >0,

Jj=1 Jj=1

where D* denotes the Riemann-Liouville derivative of order .
We consider nonlinear fractional differential equations with delay and integral boundary
conditions of the form

D*x(t) =Y _aj(t)f (t,x(8), x(t - T7)), £>0, 11
j=1

x(t)=¢(t) fort<0 and tli%l, ¢(t) =0, 1.2)

I%(8)|=0 = 0, (1.3)
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wherea € (0,1),f : R* x R? — R are continuous functions, a;(t), ¢(t) are given continuous
functions, 7; > 0, =1,2,...,# are constants.
In this article our aim is to show the existence of a unique solution for (1.1)-(1.3) and its

uniform stability.

2 Preliminaries
In this section, we introduce notation, definitions and preliminary facts which are used
throughout this paper.

Definition 2.1 The fractional integral of order o > 0 of a function f : R* — R of order
a € R* is defined by

1 t
0= s [ ¢ ds
4 L(a) Jo s
provided the right-hand side exists pointwise on R*. I is the gamma function.

For instance, I°f exists for all « > 0 when f € C°(R*) N LIIOC(R"); note also that when
f € CO(R}), then I°f € C°(R$) and moreover I%f(0) = 0.

Definition 2.2 The Riemann-Liouville fractional derivative of order « € (0,1) of a func-
tion f : R* — R is given by

(o4 _i 1-a _ 1 i ‘ _ )
D) = GO = m fo (£ - $)7f(5) ds.

Definition 2.3 Let f : R* x R? — R be continuous functions and satisfy the Lipschitz

conditions
[f(t,x,y,') —f(t,u,v,')’ <klx—ul+kly;—vil, k>0,ki>0,j=1,2,...,n
for all x, yj, u, v; € R.
3 Existence of a unique solution for nonlinear fractional differential equations
(1.1)-(1.3)

Let X be the class of all continuous functions defined on R* with the norm

llx]l = sup {e ™ |x(2)

teR*

}, xex.

Theorem 3.1 Let f : R*R? — R be continuous and satisfy the Lipschitz condition: if

ok + kie™N)
NO(

<1,

where a; = maX;er+{|a;(t)|}, then nonlinear fractional differential equations (1.1)-(1.3) have

a unique positive solution.
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Proof For ¢t > 0, equation (1.1) can be written as

d n
Ell’“x(t) = > a(Of (tx(8),5(t - 7).
j=1

Integrating both sides of the above equation, we obtain

Io%x(t) = IM%%(8) |10 = Z/o aj(s)f(s,x(s),x(s - rj)) ds
j=1
then

I %(t) = Z/ aj(s)f(S,x(s),x(s - r,')) ds
j=1 0

Applying the operator by I* on both sides,
In(e) = Y I a(0)f (£, x(8), x(¢ - 7))

j-1

differentiating both sides, we obtain
x(8) = Z[“a, )f (,x(8), x(t - 7). (3.1)
Now, let F: X — X be defined by
Fx = anlo’a,«(t)f(t,x(t),x(t -17)).
j=1

Then

n

Y Fa)f (La),x(t - 1) - Y Ia(e)f (630, 5(t - T7))

j=1 j=1

|Ex(t) - Fy(0)| =

_S)a 1

F( ) a,(s)f(s,x(s) x(s— ) - a/(s)f(s,y(s),y(s - rj))} ds

n Lt — a-1
< ; fo % |a;(s)f (s,%(5), (s — 7)) — a;(s)f (s, ¥(8), ¥(s — 7)) | ds

_za]/
S}le:ﬂ/

k|x(s) y(s)|+k,|x s—T) - y(S—‘L'])“

- y(s)| ds
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n T/' (t—s)a71
P Gt S SR
+;ﬂ; ]./o @) (s — 7j) = y(s — 7))| ds
n t (t—s)a_l
ki | Ty T -y -5l ds
+§ﬂ1 1_/11 M) |x(s — 1) = y(s — 7)) | ds
By conditions (1.2), we have
|Fx(2) — Fy(t)| Zd;k/ F( ) |x(s y(s)| ds
n t (t—s)a_l
P ) S TN
+ ;ﬂl 1./11 (o) |x(s — 1) = y(s — 7)) | ds

and

e[ Fx(t) - Fy(0)|

<Z¢z} we N(t-s) Ns|x(s) ys){ds

[(a)

i t a-1
t—
2 kj/ : F(So)z) e NN (s — ) — yls - 17)| s
=1 5

= Za/< suple s -0} [ oL

teR*

n t—tj t— 9 _ +)e-1
+ Za,k}f %e—N([—Q)e—I\W ’x(e)_y(9)|d6
1 0

o)
™ Nt Ma—le—u
< a;k su x(t / du
Z / te]RIz | y( )H 0 NC)
n B (t 60— T)a ! _
+ ) aik; sup{e ™ |x(2) — y(¢) / —’e e do
2l el
t-t 01
- Z} 1 ] ||x y” N Z(l]k Sup Nt|x(t)—y(t)|}/0 U ﬁ(a)e_Nue_NTj du
Z/l ]k _Nt e Ny N7 pa-lo-u
< T x—yll + Za]k sup () - y(®)|} N / () du
Z} 1 ] -Nt _NT’
< le=yl+ Y a sup {e ™ |x(0) - (0]}
j=1
Yo ak > ajkie™" Nt
< x—yll + =———— sup e |x(t) — y(¢)
N I Y N« te]RI3 i g |

_ Sk + ke )
< N

Il =1l
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_Nt:
" aj(krkie ) .
% <1.So,the map F: X — X is a

contraction and it has a fixed point x = Fx, and hence there exists a unique x € X which is

Now, choose N large enough such that

a solution of integral equation (3.1).
We now prove the equivalence between integral equation (3.1) and nonlinear fractional
differential equations (1.1)-(1.3). Indeed, since x € X and I'"*x(¢) € C(X), applying the op-

erator '™ on both sides of (3.1), we obtain

Ix(t) = Y I Iay(e)f (£, 2(8), 2(t - 7))

j=1

= Z[a/(t)f(t,x(t);x(t - T/))

Jj=1

Differentiating both sides,

DI'“x(t) = Y Dlaj(t)f (t,%(t), x(t - ),

j-1

we get

D*x(t) = Y _ a(t)f (t,x(t),x(t - 7)), £>0,

j=1

which proves the equivalence of (3.1) and (1.1). We want to prove that lim,_, ¢+ x = 0. Since
a;(t)f (¢, %(t), x(t — 7)) are continuous on [0, T, there exist constants 7, M such that m <
a;()f (¢, %(t), x(t — 77)) < M. We have

I ay(0)f (6,2(0), x(¢ - 1) = ﬁ /0 (£ = 9 5)f (5,09, (s ) s,
which implies
m /Ot % ds < I°f (¢, %(£), x(¢ - 1))
= M/ (tr(o)e; s
nm / (tr : );1 5 < ;I“a,(t)f(t,x(t),x(t— %)
which in turn implies

t*
m
IN'a+1)

< ;Iaaj(t)f(t,x(t),x(t -5)) < nM Y
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and
lim > 7 1a)(0)f (6,2(0), (¢ - 7)) = 0
j=1

Then from (3.1) lim,_, ¢+ x(£) = 0 and from (1.2), we have lim;_, o+ ¢(£) = 0. O

Now, for ¢t € (—00, T], T < 00, the solution of nonlinear fractional differential equations
(1.1)-(1.3) takes the form

¢(t)’ t< 0,
x(t) =10, t=0,

P 1‘ fo - 8)*aj(s)f (s, x(s),x(s — 7)) ds, > 0.

4 Stability of a unique solution for nonlinear fractional differential equations
(1.1)-(1.3)
In this section, we study the stability of the solution of nonlinear fractional differential
equations (1.1)-(1.3).
The %(¢) is a solution of the nonlinear fractional differential equations

Dx(t) = Z/ L4 @Of (6 x@),x(t - 7)), £>0,
(P) 3x(t)=¢(t) fort<0 and lim,_o G(t) =0,
I"%(t)] =0 = 0

Definition 4.1 The solution of nonlinear fractional differential equation (1.1) is stable if
for any € > 0, there exists § > 0 such that for any two solutions x(¢) and %(¢) of nonlinear
fractional differential equations (1.1)-(1.3) and Jz respectively, one has [|¢(t) — PR <5,
then ||x(¢) = X(¢)|| < € for all £ > 0.

Theorem 4.2 The solution of nonlinear fractional differential equations (1.1)-(1.3) is uni-
formly stable.

Proof Let x(t) and %(¢) be the solutions of nonlinear fractional differential equations (1.1)-
(1.3) and P respectively, then for ¢ > 0, from (3.1), we have

> Iat)f (6x(0),x(t - 7)) - Y Ia;(e)f (£,%(0), %t - 7))

j=1 j=1

() - %(0)| =

n t(+_ -1
< Zf & ‘aj(s)f(s,x(s),x(s - r,)) - aj(s)f(s,x(s) x(s — r, ’ds

=170 'a)
n t (t S)a—l _
= ,X_I:ﬂ’k/() W\X(s)—x(s)\ds

+Za,»k,/0 (tr(s) (s — 7)) — p(s — 7)) ds

+Za,k/] 1_() |x(s 1) = %(s — 77)| ds
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and
e N w(t) - % ()|
a-1
<Z“1k/ (t- 2 —N(t-s) —Ns|x s)|ds
“ i (t_ )a—l —N(t—s+71j) ,—~N(s—7; Y
+;ajkj/0 ﬁe N(t=st7)) o=N( ’)|¢(S—Tj)—¢(5—fj)‘d5
a-1
Y L
Nt ,a-1,-u
< = ELI " la(e) - x@ﬂh/ ”FK;) du
t—6-1)% _
+;afk/tsel§£ Nt|¢(t) ¢(t)|}/_rj Te -N(-6) gp
n ) _ -7 (t—9— 4)0t—1 N
N ;ajk/tselﬁg{e Nt|x(t)—x(t)|}/o Ta;}e N(t-0) 49
< 2R 30
~Nt; Nt a-1,-Nu
Nt e 7 u e
+Za,k tseupz | (2) ¢(t)‘} /];I(tt/) @) du
n ~ ~N7j N(t-1) 1,-u
+leajlqtsel]g:{e_Nt|x(t)_x(t)HeNa /0 ur(:) du
27:1 ak - 27:1 a;kj e ~Nt ~
< =R 0 =FO] + ==gem— sup {e™ () ~F0)]}
n ke N -
+ Z’ﬂ% sup {e™|p(2) - $j(2)|}
teR*
(k + kie™") ~ ki
< Z) 19 N: e ”x(t)—x(t)H + &%Hd) (t) — B( )||
Then
" ai(k + ke ™N) - ajkie
[1_ 2 ;{* ° ]“x(t)—x(t)“ < Z”%Hqs(r) 3|
and

|lx(6) %) | <

Z?:l ajkie™% 1 Z}il aj(k + kje™%)
N¢ [ N N

}1 l6() -

" ajkie NI (ke ™
therefore, for € > 0, we can find § = (Z”l%)‘1 [1- %]e such that ||¢(f) —

5(t)|| < 8. Then ||x(t) — %(¢)|| < €, which proves that the solution x(¢) is uniformly stable.
O
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