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Abstract

The aim of this paper is to construct g-Dirichlet type L-functions with weight ac. We
give the values of these functions at negative integers. These values are related to the
generalized g-Bernoulli numbers with weight .
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1 Introduction
Recently Kim, Simsek, Yang and also many mathematicians have studied a two-variable
Dirichlet L-function.

In this paper, we need the following standard notions: N = {1,2,...}, Ny ={0,1,2,...} =
NU{0}, Z* ={1,2,3,...}, Z~ = {-1,-2,...}. Also, as usual Z denotes the set of integers, R
denotes the set of real numbers and C denotes the set of complex numbers. We assume
that In(z) denotes the principal branch of the multi-valued function In(z) with the imagi-
nary part J(In(z)) constrained by -7 < J(In(z)) < 7.

In this paper, we study the two-variable Dirichlet L-function with weight «. We give
some properties of this function. We also give explicit values of this function at negative
integers which are related to the generalized Bernoulli polynomials and numbers with
weight or.

Throughout this presentation, we use the following standard notions: N = {1,2,...},Ng =
{0,1,2,...}=NU{0}, Z* ={1,2,3,...}, Z~ = {-1,-2,...}. Also, as usual Z denotes the set of
integers, R denotes the set of real numbers and C denotes the set of complex numbers.

Let x be a primitive Dirichlet character with conductor f € N. The Dirichlet L-function

is defined as follows:
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where s € C (9i(s) > 1) (see [1-22] and the references cited in each of earlier works). The

function L(s, x) is analytically continued to the complex s-plane, one has
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L(l—n,x)=—7x, )
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where n € Z* and B,,, denotes the usual generalized Bernoulli numbers, which are defined
by means of the following generating function (see [1-22]):
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2 Two-variable g-Dirichlet L-function with weight o
The following generating functions are given by Kim et al. [3] and are related to the gen-
eralized Bernoulli polynomials with weight « as follows:
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F(x,t,x) = Zq"‘(’”’”x(M) el =N "B ()=, (3)
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Remark 2.1 By substituting x =1 into (3), we have
F;a)(x, t) = q an x+m) t[x+m]q ZBna))( q(x)_,
m=0

which is defined by Kim [12].

Remark 2.2 By substituting « =1 into (3), we have

cljl—IHB”X q( ) = Bn,x (x)’

where B,, , (x) denotes generalized Bernoulli polynomials attached to Drichlet character x
with conductor f € N (see [1-22]).

By applying the derivative operator

k

oY F(x,1)

t=0

to (3), we obtain
q x*m)x(m)[m + x] k (%), (4)
x q

where

’q“| <1

Observe that when x =1 in (4), one can obtain recurrence relation for the polynomial
B&(w).

By using (4), we define a two-variable q-Dirichlet L-function with weight « as follows.
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Definition 2.3 Let s,q € C (|]¢%| < 1). The two-variable g-Dirichlet L-functions with
weight « are defined by

q x+W1 X(m
L s, x |x) = E (5)
0 I’I’l + x

Remark 2.4 Substituting x = 1 into (5), then the g-Dirichlet L-functions with weight «
are defined by

Z gy X(m)

L x|1)
(sxl (g lm

Remark 2.5 By applying the Mellin transformation to (3), Kim et al. [12] defined two-
variable g-Dirichlet L-functions with weight « as follows: Let |g| < 1 and R(s) > 0, then

1 [® .
Ls, =55 /0 PE (x,—t)dt  (min{%(s),R(x)} >0).

For x =1, by using (5), we obtain the following corollary.

Corollary 2.6 Let q,s € C. We assume that R(q) < % and |q*| < 1. Then we have

L;a)(s,)d )_ 0[(1 Q) ZZ(”+S ) (m)qanm+1

m=0 n=0

Remark 2.7 Substituting @ =1 into (5) and then g — 1, we have

= o x(m)
L(S’ X |x) == X
V; (m + x)s

=—L(s, x |x),

which gives us a two-variable Dirichlet L-function (see [6, 11, 16, 18—20, 22]). Substituting

x =1 into the above equation, one has (2).

Theorem 2.8 Let k € Z*. Then we have

Rla)
B ®)
L0k, ) = -2 (6)
k
Proof By substituting s = 1 — k with k € Z* into (5), we have
L1 -k xlx) = il Zq‘“‘”” X (m)[m + %]
9 m=0
Combining (4) with the above equation, we arrive at the desired result. a

Remark 2.9 If g — 1, then (6) reduces to (1).
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Remark 2.10 Substituting x =1 into (5), we modify Kim’s et al. zeta function as follows
(see [12]):

a[m+x

~\9(s,) = L) (s, 1]0) = 2; o+ o1 (R >1). (7)

This function gives us Hurwitz-type zeta functions with weight «. It is well known that
this function interpolates the g-Bernoulli polynomials with weight o at negative integers,
which is given by the following lemma.

Lemma 2.11 Let n € Z*. Then we have

(@
Brg(x ) ®)

&1 -nx) =-

Now we are ready to give relationship between (7) and (5). Substituting m = a + kn, where
a=0,1,...,k;n=0,1,2,... into (5), we obtain

a(x+a+kn)

kn)
@, _ q 'x(a+
7 & X1 = ZZ [a+kn + x]ja

qzzO
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Therefore, we have the following theorem.

Theorem 2.12 The following relation holds true:

1 ka[a

7 (a ak ax+a) a+x
Ls, xJx) = — ek, Zq :m(, X ) )

By substituting s = 1 — n with n € Z* into (9) and combining with (8) and (6), we give ex-
plicitly a formula of the generalized Bernoulli polynomials with weight o by the following
theorem.

Theorem 2.13 The following formula holds true:

al—ka [Ol]

k
7k a(x+a) B(a) (ﬂ X ) ) 10
o], [T Zu: @B .

BY) (%) =

By using (10), we obtain the following corollary.
Corollary 2.14 The following formula holds true:

. 1k[ 2k K1 n_
B o = ZZ() oY) B

a=0 j=0
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