RESEARCH Open Access

q-Dirichlet type L-functions with weight α

Hacer Ozden*

*Correspondence: hozden@uludag.edu.tr Department of Mathematics, Faculty of Art and Science, University of Uludag, Bursa, Turkey

Abstract

The aim of this paper is to construct q-Dirichlet type L-functions with weight α . We give the values of these functions at negative integers. These values are related to the generalized q-Bernoulli numbers with weight α .

AMS Subject Classification: 11B68; 11S40; 11S80; 26C05; 30B40

Keywords: generalized Bernoulli polynomials; Dirichlet *L*-function; Hurwitz zeta function; generalized g-Bernoulli numbers with weight α

1 Introduction

Recently Kim, Simsek, Yang and also many mathematicians have studied a two-variable Dirichlet *L*-function.

In this paper, we need the following standard notions: $\mathbb{N} = \{1, 2, ...\}$, $\mathbb{N}_0 = \{0, 1, 2, ...\} = \mathbb{N} \cup \{0\}$, $\mathbb{Z}^+ = \{1, 2, 3, ...\}$, $\mathbb{Z}^- = \{-1, -2, ...\}$. Also, as usual \mathbb{Z} denotes the set of integers, \mathbb{R} denotes the set of real numbers and \mathbb{C} denotes the set of complex numbers. We assume that $\ln(z)$ denotes the principal branch of the multi-valued function $\ln(z)$ with the imaginary part $\Im(\ln(z))$ constrained by $-\pi < \Im(\ln(z)) \le \pi$.

In this paper, we study the two-variable Dirichlet L-function with weight α . We give some properties of this function. We also give explicit values of this function at negative integers which are related to the generalized Bernoulli polynomials and numbers with weight α .

Throughout this presentation, we use the following standard notions: $\mathbb{N} = \{1, 2, ...\}$, $\mathbb{N}_0 = \{0, 1, 2, ...\} = \mathbb{N} \cup \{0\}$, $\mathbb{Z}^+ = \{1, 2, 3, ...\}$, $\mathbb{Z}^- = \{-1, -2, ...\}$. Also, as usual \mathbb{Z} denotes the set of integers, \mathbb{R} denotes the set of real numbers and \mathbb{C} denotes the set of complex numbers.

Let χ be a primitive Dirichlet character with conductor $f \in \mathbb{N}$. The Dirichlet L-function is defined as follows:

$$L(s,\chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s},\tag{1}$$

where $s \in \mathbb{C}$ ($\Re(s) > 1$) (see [1–22] and the references cited in each of earlier works). The function $L(s,\chi)$ is analytically continued to the complex s-plane, one has

$$L(1-n,\chi) = -\frac{B_{n,\chi}}{n},\tag{2}$$

where $n \in \mathbb{Z}^+$ and $B_{n,\chi}$ denotes the usual generalized Bernoulli numbers, which are defined by means of the following generating function (see [1–22]):

$$\sum_{a=0}^{f-1} \frac{\chi(a)e^{at}t}{e^{ft}-1} = \sum_{n=0}^{\infty} B_{n,\chi} \frac{t^n}{n!}.$$

2 Two-variable q-Dirichlet L-function with weight α

The following generating functions are given by Kim *et al.* [3] and are related to the generalized Bernoulli polynomials with weight α as follows:

$$F_q^{(\alpha)}(x,t,\chi) = \frac{\alpha t}{[\alpha]_q} \sum_{m=0}^{\infty} q^{\alpha(x+m)} \chi(m) e^{t[x+m]_{q^{\alpha}}} = \sum_{n=0}^{\infty} \tilde{B}_{n,\chi,q}^{(\alpha)}(x) \frac{t^n}{n!},$$
(3)

where

$$q \in \mathbb{C} \quad (|q^{\alpha}| < 1).$$

Remark 2.1 By substituting $\chi \equiv 1$ into (3), we have

$$F_q^{(\alpha)}(x,t) = \frac{\alpha t}{[\alpha]_q} \sum_{m=0}^{\infty} q^{\alpha(x+m)} e^{t[x+m]_{q^{\alpha}}} = \sum_{n=0}^{\infty} \tilde{B}_{n,\chi,q}^{(\alpha)}(x) \frac{t^n}{n!},$$

which is defined by Kim [12].

Remark 2.2 By substituting $\alpha = 1$ into (3), we have

$$\lim_{q\to 1} \tilde{B}_{n,\chi,q}^{(\alpha)}(x) = B_{n,\chi}(x),$$

where $B_{n,\chi}(x)$ denotes generalized Bernoulli polynomials attached to Drichlet character χ with conductor $f \in \mathbb{N}$ (see [1–22]).

By applying the derivative operator

$$\frac{\partial^k}{\partial t^k} F_q^{(\alpha)}(x,t) \bigg|_{t=0}$$

to (3), we obtain

$$\frac{k\alpha}{[\alpha]_q} \sum_{m=0}^{\infty} q^{\alpha(x+m)} \chi(m) [m+x]_{q^{\alpha}}^{k-1} = \tilde{B}_{k,\chi,q}^{(\alpha)}(x), \tag{4}$$

where

$$|q^{\alpha}| < 1.$$

Observe that when $\chi \equiv 1$ in (4), one can obtain recurrence relation for the polynomial $\tilde{B}_{k,a}^{(\alpha)}(x)$.

By using (4), we define a *two-variable q-Dirichlet L-function* with weight α as follows.

Definition 2.3 Let $s, q \in \mathbb{C}$ ($|q^{\alpha}| < 1$). The two-variable q-Dirichlet L-functions with weight α are defined by

$$\tilde{L}_{q}^{(\alpha)}(s,\chi|x) = \frac{-\alpha}{[\alpha]_{q}} \sum_{m=0}^{\infty} \frac{q^{\alpha(x+m)}\chi(m)}{[m+x]_{q}^{s}}.$$
 (5)

Remark 2.4 Substituting x = 1 into (5), then the q-Dirichlet L-functions with weight α are defined by

$$\tilde{L}_q^{(\alpha)}(s,\chi|1) = \frac{-\alpha}{[\alpha]_q} \sum_{m=0}^{\infty} \frac{q^{\alpha(m+1)}\chi(m)}{(1+q^{\alpha}[m])^s}.$$

Remark 2.5 By applying the Mellin transformation to (3), Kim *et al.* [12] defined two-variable *q*-Dirichlet *L*-functions with weight α as follows: Let |q| < 1 and $\Re(s) > 0$, then

$$\tilde{L}_q^{(\alpha)}(s,\chi|x) = \frac{1}{\Gamma(s)} \int_0^\infty t^{s-1} F_q^{(\alpha)}(x,-t) \, dt \quad \left(\min\left\{\Re(s),\Re(x)\right\} > 0\right).$$

For x = 1, by using (5), we obtain the following corollary.

Corollary 2.6 Let $q, s \in \mathbb{C}$. We assume that $\Re(q) < \frac{1}{2}$ and $|q^{\alpha}| < 1$. Then we have

$$\tilde{L}_q^{(\alpha)}(s,\chi|1) = \frac{-\alpha(1-q^\alpha)^s}{[\alpha]_q} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \binom{n+s-1}{n} \chi(m) q^{\alpha n(m+1)}.$$

Remark 2.7 Substituting $\alpha = 1$ into (5) and then $q \rightarrow 1$, we have

$$\tilde{L}(s, \chi | x) = -\sum_{m=0}^{\infty} \frac{\chi(m)}{(m+x)^s}$$
$$= -L(s, \chi | x),$$

which gives us a two-variable Dirichlet L-function (see [6, 11, 16, 18-20, 22]). Substituting x = 1 into the above equation, one has (2).

Theorem 2.8 *Let* $k \in \mathbb{Z}^+$. *Then we have*

$$\tilde{L}_{q}^{(\alpha)}(1-k,\chi|x) = -\frac{\tilde{B}_{k,\chi,q}^{(\alpha)}(x)}{k}.$$
(6)

Proof By substituting s = 1 - k with $k \in \mathbb{Z}^+$ into (5), we have

$$\tilde{L}_q^{(\alpha)}(1-k,\chi|x) = \frac{-\alpha}{[\alpha]_q} \sum_{m=0}^{\infty} q^{\alpha(x+m)} \chi(m) [m+x]_{q^{\alpha}}^{k-1}.$$

Combining (4) with the above equation, we arrive at the desired result.

Remark 2.9 If $q \rightarrow 1$, then (6) reduces to (1).

Remark 2.10 Substituting $\chi = 1$ into (5), we modify Kim's *et al.* zeta function as follows (see [12]):

$$-\tilde{\zeta}_{q}^{(\alpha)}(s,x) = \tilde{L}_{q}^{(\alpha)}(s,1|x) = \frac{-\alpha}{[\alpha]_{q}} \sum_{m=1}^{\infty} \frac{q^{\alpha[m+x]}}{[m+x]_{q^{\alpha}}^{s}} \quad (\Re(s) > 1).$$
 (7)

This function gives us Hurwitz-type zeta functions with weight α . It is well known that this function interpolates the q-Bernoulli polynomials with weight α at negative integers, which is given by the following lemma.

Lemma 2.11 *Let* $n \in \mathbb{Z}^+$. *Then we have*

$$\tilde{\zeta}_q^{(\alpha)}(1-n,x) = -\frac{\tilde{B}_{n,q}^{(\alpha)}(x)}{n}.$$
(8)

Now we are ready to give relationship between (7) and (5). Substituting m = a + kn, where a = 0, 1, ..., k; n = 0, 1, 2, ... into (5), we obtain

$$\begin{split} \tilde{L}_{q}^{(\alpha)}(s,\chi|x) &= \frac{-\alpha}{[\alpha]_{q}} \sum_{a=0}^{k} \sum_{n=0}^{\infty} \frac{q^{\alpha(x+a+kn)}\chi(a+kn)}{[a+kn+x]_{q^{\alpha}}^{s}} \\ &= \frac{-\alpha}{[\alpha]_{q}} \sum_{a=0}^{k} q^{\alpha(x+a)}\chi(a) \sum_{n=0}^{\infty} \frac{q^{kn\alpha}}{[k]_{q^{\alpha}}^{s} \left[\frac{a+x}{k}+n\right]_{q^{\alpha k}}^{s}} \\ &= \frac{-\alpha}{[\alpha]_{q}[k]_{q^{\alpha}}^{s}} \frac{[\alpha]_{q^{\alpha k}}}{\alpha^{k\alpha}} \sum_{a=0}^{k} q^{\alpha(x+a)}\chi(a) \tilde{\zeta}_{q^{k\alpha}}^{(k\alpha)} \left(s, \frac{a+x}{k}\right). \end{split}$$

Therefore, we have the following theorem.

Theorem 2.12 *The following relation holds true*:

$$\tilde{L}_{q}^{(\alpha)}(s,\chi|x) = \frac{-\alpha^{1-k\alpha}[\alpha]_{q^{\alpha k}}}{[\alpha]_{q}[k]_{q^{\alpha}}^{s}} \sum_{r=0}^{k} q^{\alpha(x+a)}\chi(a)\tilde{\zeta}_{q^{k\alpha}}^{(k\alpha)}\left(s,\frac{a+x}{k}\right). \tag{9}$$

By substituting s = 1 - n with $n \in \mathbb{Z}^+$ into (9) and combining with (8) and (6), we give explicitly a formula of the generalized Bernoulli polynomials with weight α by the following theorem.

Theorem 2.13 The following formula holds true:

$$\tilde{B}_{n,\chi,q}^{(\alpha)}(x) = \frac{\alpha^{1-k\alpha}[\alpha]_{q^{\alpha k}}}{[\alpha]_q[k]_q^{1-n}} \sum_{a=0}^k q^{\alpha(x+a)} \chi(a) \tilde{B}_{n,q}^{(\alpha)} \left(\frac{a+x}{k}\right). \tag{10}$$

By using (10), we obtain the following corollary.

Corollary 2.14 *The following formula holds true*:

$$\tilde{B}_{n,\chi,q}^{(\alpha)}(x) = \frac{\alpha^{1-k\alpha}[\alpha]_{q^{\alpha k}}[k]_{q^{\alpha}}^{n-1}}{[\alpha]_q} \sum_{a=0}^k \sum_{j=0}^n \binom{n}{j} q^{\alpha(x+a)} \chi(a) \left(\frac{a+x}{k}\right)^{n-j} \tilde{B}_{j,q}^{(\alpha)}.$$

Competing interests

The author declares that she has no competing interests.

Authors' contributions

The author completed the paper herself. The author read and approved the final manuscript.

Acknowledgements

Dedicated to Professor Hari M Srivastava.

The present investigation was supported by the Commission of Scientific Research Projects of Uludag University, project number UAP(F) 2011/38 and UAP(F) 2012-16. We would like to thank the referees for their valuable comments.

Received: 5 December 2012 Accepted: 5 February 2013 Published: 21 February 2013

References

- Cangul, IN, Ozden, H, Simsek, Y: Generating functions of the (h, q) extension of twisted Euler polynomials and numbers. Acta Math. Hung. 120, 281-299 (2008)
- Choi, J, Anderson, PJ, Srivastava, HM: Carlitz's q-Bernoulli and q-Euler numbers and polynomials and a class of generalized q-Hurwitz zeta functions. Appl. Math. Comput. 215, 1185-1208 (2009)
- Dolgy, DV, Kim, T, Lee, SH, Lee, B, Rim, S-H: A note on the modified q-Bernoulli numbers and polynomials with weight α. Abstr. Appl. Anal. 2011, Article ID 545314 (2011)
- 4. Kim, T: On explicit formulas of p-adic q-L-function. Kyushu J. Math. 48, 73-86 (1994)
- 5. Kim, T: Power series and asymptotic series associated with the *q*-analogue of two-variable *p*-adic *L*-function. Russ. J. Math. Phys. **12**, 186-196 (2005)
- 6. Kim, T: A new approach to p-adic q-L-functions. Adv. Stud. Contemp. Math. 12, 61-72 (2006)
- 7. Kim, T: On the weighted *q*-Bernoulli numbers and polynomials. Adv. Stud. Contemp. Math. **21**, 207-215 (2011)
- 8. Kim, T, Bayad, A, Kim, YH: A study on the p-adic q-integral representation on \mathbb{Z}_p associated with the weighted q-Bernstein and q-Bernoulli polynomials. J. Inequal. Appl. **2011**, Article ID 513821 (2011)
- Kim, T, Dolgy, DV, Lee, B, Rim, S-H: Identities on the weighted q-Bernoulli numbers of higher order. Discrete Dyn. Nat. Soc. 2011, Article ID 918364 (2011)
- 10. Kim, T, Rim, S-H, Simsek, Y, Kim, D: On the analogs of Bernoulli and Euler numbers, related identities and zeta and *L*-functions. J. Korean Math. Soc. **45**, 435-453 (2008)
- Kim, T, Simsek, Y: Analytic continuation of the multiple Daehee q-l-functions associated with Daehee numbers. Russ. J. Math. Phys. 15. 58-65 (2008)
- 12. Kim, T, Lee, SH, Han, H-H, Ryoo, CS: On the values of the weighted *q*-zeta and *q-L*-functions. Discrete Dyn. Nat. Soc. **2011**, Article ID 476381 (2011)
- Ozden, H, Simsek, Y: A new extension of q-Euler numbers and polynomials related to their interpolation functions. Appl. Math. Lett. 21, 934-939 (2008)
- 14. Ozden, H, Simsek, Y: Interpolation function of the (h, q)-extension of twisted Euler numbers. Comput. Math. Appl. **56**, 898-908 (2008)
- 15. Simsek, Y. q-Analogue of the twisted I-series and q-twisted Euler numbers. J. Number Theory 110, 267-278 (2005)
- 16. Simsek, Y: On twisted *q*-Hurwitz zeta function and *q*-two-variable *L*-function. Appl. Math. Comput. **187**, 466-473 (2007)
- Simsek, Y: Twisted (h, q)-Bernoulli numbers and polynomials related to twisted (h, q)-zeta function and L-function.
 J. Math. Anal. Appl. 324, 790-804 (2006)
- 18. Simsek, Y: Twisted *p*-adic (*h*, *q*)-*L*-functions. Comput. Math. Appl. **59**, 2097-2110 (2010)
- 19. Simsek, Y, Kim, D, Rim, S-H: On the two-variable Dirichlet *q-L*-series. Adv. Stud. Contemp. Math Jang'jun Math. Soc. **10**, 131-142 (2005)
- 20. Srivastava, HM, Kim, T, Simsek, Y: *q*-Bernoulli numbers and polynomials associated with multiple *q*-zeta functions and basic *L*-series. Russ. J. Math. Phys. **12**, 241-268 (2005)
- 21. Srivastava, HM, Choi, J: Zeta and q-Zeta Functions and Associated Series and Integrals. Elsevier, New York (2012)
- 22. Young, PT: On the behavior of some two-variable *p*-adic *L*-function. J. Number Theory **98**, 67-86 (2003)

doi:10.1186/1687-1847-2013-40

Cite this article as: Ozden: q-Dirichlet type L-functions with weight α . Advances in Difference Equations 2013 2013:40.

Submit your manuscript to a SpringerOpen journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ► Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com