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Abstract
The switching signal design for global exponential stability of discrete switched
systems with interval time-varying delay and linear fractional perturbations is
considered in this paper. Some LMI stability criteria are proposed to design the
switching signal and guarantee the global exponential stability for a discrete
switched time-delay system. Nonnegative inequalities are introduced to improve the
conservativeness of the proposed results. A procedure is provided to guarantee the
stability of a switched system and design the switching signal. Finally, some numerical
examples are illustrated to show the main results.
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1 Introduction
A switched system is composed of a family of subsystems and a switching signal that spec-
ifies which subsystem is activated to the system trajectories at each instant of time [].
Switched systems are often encountered in many practical examples such as automated
highway systems, automotive engine control system, constrained robotics, robot manu-
facture, and stepper motors. Many complicate system behaviors, such as multiple limit
cycles and chaos, are produced by a switching signal in systems [–]. It is also well
known that the existence of delay in a system may cause instability or bad performance
in closed control systems [–]. Time-delay phenomena usually appear in many prac-
tical systems such as AIDS epidemic, chemical engineering systems, hydraulic systems,
population dynamic model, and rolling mill. Hence stability analysis and stabilization for
discrete switched systems with time delay have been studied in recent years [–, , , ,
, –].
There are three basic problems in dealing with the stability of discrete switched systems:

() Find the stability or controller design of switched systems under an arbitrary switching
signal [, , , , ]; () Identify the useful stabilizing switching signal for switched sys-
tems []; () Construct the stabilizing switching signal for switched systems [, ]. In this
paper, the stability conditions for switching signal design of uncertain discrete switched
time-delay systems will be developed. It is interesting to note that the stable property
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for each subsystem cannot imply that the overall system is also stable under an arbitrary
switching signal []. Another interesting fact is that the stability of a switched system can
be achieved by choosing a switching signal even when each subsystem is unstable [, ].
Although many important results have been proposed to design the switching signal of
switched time-delay systems, but there are only few reports concerning the switching sig-
nal design of discrete switched time-delay systems [, ]. Some additional nonnegative
inequalities are used to improve the conservativeness for the obtained results [, ]. In-
terval time-varying delay and linear fractional perturbations of a system are also included
in our problem under consideration. In this paper, a new scheme for switching signal de-
sign is developed to guarantee global exponential stability of a switched systemwith inter-
val time-varying delay and linear fractional perturbations. By the proposed approach, our
results are shown to be less conservative than some recent reports in our demonstrated
numerical examples.
The notation used throughout this paper is as follows. For a matrix A, we denote the

transpose by AT , symmetric positive (negative) definite by A >  (A < ), maximal eigen-
value by λmax(A), minimal eigenvalue by λmin(A), n×m dimension byA(n×m).A≤ Bmeans
that matrix B – A is symmetric positive semi-definite. I denotes the identity matrix. For
a vector x, we denote the Euclidean norm by ‖x‖. Define �N = {, , . . . ,N}, A \ B = {x|x ∈
A and x /∈ B}, ‖xk‖s =maxθ=–rM ,–rM+,..., ‖x(k + θ )‖.

2 Problem statement and preliminaries
Consider the following uncertain discrete switched time-delay system:

x(k + ) =
[
Aσ +�Aσ (k)

]
x(k) +

[
Bσ +�Bσ (k)

]
x
(
k – r(k)

)
, k = , , , , . . . , (a)

x(θ ) = φ(θ ), θ = –rM, –rM + , . . . , , (b)

where x(k) ∈ �n, xk is the state defined by xk(θ ) := x(k + θ ), ∀θ ∈ {–rM, –rM + , . . . , }, σ is
a switching signal in the finite set {, , . . . ,N} and will be chosen to preserve the stability
of the system, φ(k) ∈ �n is an initial state function, time-varying delay r(k) is a function
from {, , , , . . .} to {, , , , . . .} and  ≤ rm ≤ r(k)≤ rM , rm and rM are two given positive
integers. Matrices Ai,Bi ∈ �n×n, i = , , . . . ,N , are constant. �Ai(k) and �Bi(k) are two
perturbed matrices satisfying the following condition:

[
�Ai(k) �Bi(k)

]
=Mi · �i(k) · [NAi NBi], i ∈ {, , . . . ,N}, (c)

�i(k) =
[
I – �i(k)�i

]–
�i(k), �i�

T
i < I, (d)

where Mi, NAi, and NBi, i = , , . . . ,N , and �i are some given constant matrices with ap-
propriate dimensions. �i(k) is an unknown matrix representing the perturbation which
satisfies

�T
i (k)�i(k) ≤ I. (e)

Definition  System (a)-(e) is said to be globally exponentially stablewith a convergence
rate α if there are two positive constants  < α <  and 
 such that

∥∥x(k)∥∥ ≤ 
 · ‖x‖s · αk , k = , , , , . . . .
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Define the switching domains of a switching signal by

�i(α,P,Ui,Ai) =
{
x(k) ∈ �n : xT (k)

(
AT
i PAi – α ·Ui

)
x(k) < 

}
, i = , , . . . ,N , (a)

where the constant  < α <  is a convergence rate, matrices P > , Ui >  are given from
the proposed results, and

�� = �, �� = � \ ��, �� = � \ �� \ ��, . . . ,

��N = �N \ �� \ · · · \ ��N–.
(b)

Now the main results are provided in the following theorem.

Theorem  If for some constants  < α < ,  ≤ αi ≤ , i ∈ �N , and
∑N

i= αi = , there exist
some n × n matrices P > , Q > , R > , R > , R > , S > , T > , Ui > , i ∈ �N , Vl ∈
�n×n, Vl ∈ �n×n, Vl ∈ �n×n, l = , , , , and constants εi > , i ∈ �N , such that the
following LMI conditions hold for all j = , , . . . ,N :

αrMR –V > , αrMR –V > , αrmR –V > ,

αrMR –V > , V –V > ,
(a)

V =

[
V V

∗ V

]
> , V =

[
V V

∗ V

]
> ,

V =

[
V V

∗ V

]
> , V =

[
V V

∗ V

]
> ,

(b)

��j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

j    j j  j

∗ j   j j  j

∗ ∗ j     
∗ ∗ ∗ j    
∗ ∗ ∗ ∗ j  j 
∗ ∗ ∗ ∗ ∗ j j 
∗ ∗ ∗ ∗ ∗ ∗ j j

∗ ∗ ∗ ∗ ∗ ∗ ∗ j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

[
�(n×n) (n×n)

∗ (n×n)

]
< , ∀j = , , . . . ,N , (c)

N∑
i=

αi ·
(
AT
i PAi – α ·Ui

)
< , (d)

where

j = –P + (rM – rm + ) ·Q + T +Uj – α–AT
j PAj,

� = rM · (R + R) + rm · R, j = (Aj – I)T�, j = AT
j P,

j = εj ·NT
Aj, j = –αrM ·Q, j = BT

j �, j = BT
j P,

j = εj ·NT
Bj, j = –αrMS, j = –αrm · (T – S), j = –�,
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j = �TMj, j = –α · P, j = PMj,

j = –εj · I, j = εj · �T
j , j = –εj · I,

� = rM ·V + rm ·V + rM ·V – rm · (V –V) +V� +�T
 V

T


+V� +�T
 V

T
 +V� +�T

 V
T
 +V� +�T

V
T
,

� = [I –I  ](n×n), � = [I  –I ](n×n),

� = [I   –I](n×n), � = [ I –I ](n×n).

Then system (a)-(e) is globally exponentially stable with the convergence rate  < α <  by
the switching signal designed by

σ
(
k,x(k)

)
= i, whenever x(k) ∈ ��i, (e)

where ��i is defined in (a), (b).

Proof Define the Lyapunov functional

V (xk) = α–kxT (k)Px(k) +
k–∑

i=k–r(k)

α–ixT (i)Qx(i) +
–rm∑

j=–rM+

k–∑
i=k+j

α–ixT (i)Qx(i)

+
∑

j=–rM+

k–∑
i=k–+j

α–iyT (i)[R + R]y(i) +
∑

j=–rm+

k–∑
i=k–+j

α–iyT (i)Ry(i)

+
k––rm∑
i=k–rM

α–ixT (i)Sx(i) +
k–∑

i=k–rm

α–ixT (i)Tx(i), ()

where P > ,Q > , R > , R > , R > , S > , T > , and y(i) = x(i+)–x(i). The forward
difference of Lyapunov functional () along the solutions of system (a)-(e) has the form

�V (xk) = V (xk+) –V (xk)

= α–k · [α– · xT (k + )Px(k + ) – xT (k)Px(k)
]

+
k∑

i=k+–r(k+)

α–ixT (i)Qx(i) –
k–∑

i=k–r(k)

α–ixT (i)Qx(i)

+ α–k · (rM – rm) · xT (k)Qx(k) –
k–rm∑

i=k+–rM

α–ixT (i)Qx(i)

+ α–k · rM · yT (k)[R + R]y(k) –
k–∑

i=k–rM

α–iyT (i)[R + R]y(i)

+ α–k · rm · yT (k)Ry(k) –
k–∑

i=k–rm

α–iyT (i)Ry(i)

+ α–k · [αrm · xT (k – rm)Sx(k – rm) – αrM · xT (k – rM)Sx(k – rM)
]

+ α–k · [xT (k)Tx(k) – αrm · xT (k – rm)Tx(k – rm)
]
. (a)
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By some simple derivations, we have

k∑
i=k+–r(k+)

α–ixT (i)Qx(i) –
k–∑

i=k–r(k)

α–ixT (i)Qx(i)

= α–kxT (k)Qx(k) +
k–∑

i=k+–r(k+)

α–ixT (i)Qx(i)

–
k–∑

i=k–r(k)+

α–ixT (i)Qx(i) – α–(k–r(k))xT
(
k – r(k)

)
Qx

(
k – r(k)

)

≤ α–kxT (k)Qx(k) +
k–∑

i=k+–rM

α–ixT (i)Qx(i)

–
k–∑

i=k+–rm

α–ixT (i)Qx(i) – α–(k–r(k))xT
(
k – r(k)

)
Qx

(
k – r(k)

)

= α–kxT (k)Qx(k) – α–(k–r(k))xT
(
k – r(k)

)
Qx

(
k – r(k)

)
+

k–rm∑
i=k+–rM

α–ixT (i)Qx(i).

From the above derivation, we can obtain the following result:

�V (xk) = V (xk+) –V (xk)

≤ α–k ·
{

α– · xT (k + )Px(k + ) – xT (k)[P – T]x(k)

+ xT (k)
[
(rM – rm + ) ·Q]

x(k) – αrM · xT(
k – r(k)

)
Qx

(
k – r(k)

)
+

[
x(k + ) – x(k)

]T[
rM · (R + R) + rm · R

][
x(k + ) – x(k)

]

– αrM ·
[ k–∑
i=k–r(k)

yT (i)Ry(i) +
k–r(k)–∑
i=k–rM

yT (i)Ry(i) +
k–∑

i=k–rM

yT (i)Ry(i)

]

– αrm ·
[ k–∑
i=k–rm

yT (i)Ry(i)

]
– αrm · xT (k – rm)[T – S]x(k – rm)

– αrM · xT (k – rM)Sx(k – rM)

}
. (b)

Define

XT (k) =
[
xT (k) xT (k – r(k)) xT (k – rM) xT (k – rm)

]
.

By system (a)-(e), LMIs in (b), and
∑k–

i=k–r(k) y(i) = x(k) – x(k – r(k)), we have

k–∑
i=k–r(k)

[
X(k)
y(i)

]T [
V V

∗ V

][
X(k)
y(i)

]

= r(k)XT (k)VX(k) + XT (k)V
[
x(k) – x

(
k – r(k)

)]

http://www.advancesindifferenceequations.com/content/2013/1/39
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+
k–∑

i=k–r(k)

yT (i)Vy(i) ≥ , (a)

k–∑
i=k–rM

[
X(k)
y(i)

]T [
V V

∗ V

][
X(k)
y(i)

]

= rMXT (k)VX(k) + XT (k)V
[
x(k) – x(k – rM)

]
+

k–∑
i=k–rM

yT (i)Vy(i) ≥ , (b)

k–∑
i=k–rm

[
X(k)
y(i)

]T [
V V

∗ V

][
X(k)
y(i)

]

= rmXT (k)VX(k) + XT (k)V
[
x(k) – x(k – rm)

]
+

k–∑
i=k–rm

yT (i)Vy(i) ≥ , (c)

k–r(k)–∑
i=k–rM

[
X(k)
y(i)

]T [
V V

∗ V

][
X(k)
y(i)

]

=
(
rM – r(k)

)
XT (k)VX(k) + XT (k)V

[
x
(
k – r(k)

)
– x(k – rM)

]

+
k–r(k)–∑
i=k–rM

yT (i)Vy(i) ≥ . (d)

Assume σ (k,x(k)) = j ∈ �N , then we can obtain the following result from system (a)-(e):

x(k + ) =
[
Aj +�Aj(k)

]
x(k) +

[
Bj +�Bj(k)

]
x
(
k – r(k)

)
,

α– · xT (k + )Px(k + ) = XT (k)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
–

⎡
⎢⎢⎢⎣

�j
�j




⎤
⎥⎥⎥⎦–

j

⎡
⎢⎢⎢⎣

�j
�j




⎤
⎥⎥⎥⎦

T⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
X(k),

[
x(k + ) – x(k)

]T[
rM · (R + R) + rm · R

][
x(k + ) – x(k)

]

= XT (k)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
–

⎡
⎢⎢⎢⎣

�j
�j




⎤
⎥⎥⎥⎦–

j

⎡
⎢⎢⎢⎣

�j
�j




⎤
⎥⎥⎥⎦

T⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
X(k),

and

�V (xk) + α–k

×
[
r(k)XT (k)VX(k) + XT (k)V

[
x(k) – x

(
k – r(k)

)]
+

k–∑
i=k–r(k)

yT (i)Vy(i)

]

+ α–k ·
[
rMXT (k)VX(k) + XT (k)V

[
x(k) – x(k – rM)

]

http://www.advancesindifferenceequations.com/content/2013/1/39
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+
k–∑

i=k–rM

yT (i)Vy(i)

]

+ α–k ·
[
rmXT (k)VX(k) + XT (k)V

[
x(k) – x(k – rm)

]
+

k–∑
i=k–rm

yT (i)Vy(i)

]

+ α–k ·
[(

rM – r(k)
)
XT (k)VX(k) + XT (k)V

[
x
(
k – r(k)

)
– x(k – rM)

]

+
k–r(k)–∑
i=k–rM

yT (i)Vy(i)

]

≤ α–k · [xT (k)(α–AT
j PAj –Uj

)
x(k) +XT (k) · j ·X(k)

]

– α–k ·
k–∑

i=k–r(k)

yT (i)
[
αrMR –V

]
y(i)

– α–k ·
k–∑

i=k–rM

yT (i)
[
αrMR –V

]
y(i)

– α–k ·
k–∑

i=k–rm

yT (i)
[
αrmR –V

]
y(i)

– α–k ·
k–r(k)–∑
i=k–rM

yT (i)
[
αrMR –V

]
y(i), (a)

where

j = �j –

⎡
⎢⎢⎢⎣

�j
�j




⎤
⎥⎥⎥⎦–

j

⎡
⎢⎢⎢⎣

�j
�j




⎤
⎥⎥⎥⎦

T

–

⎡
⎢⎢⎢⎣

�j
�j




⎤
⎥⎥⎥⎦–

j

⎡
⎢⎢⎢⎣

�j
�j




⎤
⎥⎥⎥⎦

T

, (b)

�j =

⎡
⎢⎢⎢⎣

j   
 j  
  j 
   j

⎤
⎥⎥⎥⎦

+ rM ·V + rm ·V + rM ·V – rm · (V –V)

+V� +�T
 V

T
 +V� +�T

 V
T
 +V� +�T

 V
T
 +V� +�T

V
T
,

�j = (Aj +�Aj – I)T�, �j = (Aj +�Aj)TP,

�j = (Bj +�Bj)T�, �j = (Bj +�Bj)TP,

klj,k, l = , , . . . , ,�,�,�, and � are defined in (c).

Define

�j =

[�j �j

∗ j

]
=

[�j j

∗ j

]
+ �j�j(k)�T

j +�j�
T
j (k)�

T
j , (c)

http://www.advancesindifferenceequations.com/content/2013/1/39
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where

�j =

⎡
⎢⎢⎢⎣

�j �j
�j �j

 
 

⎤
⎥⎥⎥⎦ , j =

⎡
⎢⎢⎢⎣

j j

j j

 
 

⎤
⎥⎥⎥⎦ , j =

[
j 
 j

]
,

�j =
[
    T

j T
j

]T
, �j =

[
NAj NBj    

]T
.

By condition (d) with Lemma  and the switching signal defined in (e), we can obtain
the following result:

xT (k)
(
α–AT

j PAj –Ui
)
x(k)≤ , ∀x(k) ∈ ��j. (d)

By Lemmas  and , the condition ��j <  in (c) will imply �j <  in (c). �j <  in (c) will
also imply j <  in (b). From the condition (d) and j <  in (b) with (a) and (b), we
have

�V (xk) = V (xk+) –V (xk) ≤ , k = , , , , . . . ,

V (xk+) ≤ V (xk), k = , , , , . . . .

This implies

V (xk) ≤ V (x), k = , , , , . . . ,

α–k · λmin(P) ·
∥∥x(k)∥∥ ≤ V (xk) ≤ V (x) ≤ δ · ‖x‖s ,

where

δ = λmax(P) +
[
rM + rM(rM – rm)

] · λmax(Q) + rM · λmax(R + R) + rm · λmax(R)

+ (rM – rm) · λmax(S) + rm · λmax(T).

By some simple derivations, we have

∥∥x(k)∥∥ ≤ √
δ/λmin(P) · αk · ‖x‖s, k = , , , , . . . .

By Definition , system (a)-(e) is globally exponentially stable with the convergence rate
 < α <  with the switching signal in (e). This completes this proof. �

Remark  Consider the discrete linear switched system:

x(k + ) = Aσx(k).

Now we can choose the Lyapunov function as V (xk) = α–kxT (k)Px(k) with matrix P > ,
the forward difference of the Lyapunov function is given by

�V (xk) = V (xk+) –V (xk) = α–k · [α– · xT (k + )Px(k + ) – xT (k)Px(k)
]
.

http://www.advancesindifferenceequations.com/content/2013/1/39
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With σ (k,x(k)) = j ∈ �N , we have

x(k + ) = Ajx(k),

and

�V (xk) = α–k · xT (k)[α– ·AT
j PAj –Uj +Uj – P

]
x(k),

where matrix Ui satisfies Ui >  and Ui – P < . If the condition in Lemma  is satisfied,
then we can obtain the following two results:

xT (k)
[
α– ·AT

j PAj –Uj
]
x(k) < , whenever x(k) ∈ ��j,

�V (xk) < .

In order to achieve the exponential stability of a discrete switched system, the condition
in Lemma  will be a reasonable choice and a feasible setting.

Remark  Thematrix uncertainties in (c)-(e) are usually called linear fractional pertur-
bations []. The parametric perturbations in [, , ] are the special conditions of the
considered perturbations with �i = , i ∈N .

Remark Under the same switching signal defined in (e), the switching domains of [, ]
are selected as:

�i(P,U ,Ai) =
{
x(k) ∈ Rn : xT (k)

[
(rM – rm) ·U –AT

i P – PAi
]
x(k) < 

}
, i = , , . . . ,N ,

where matrices P >  and U > . It is noted that above selections are similar to switching
signal design in continuous switched systems []. Hence the proposed switching domain
design approach is the discrete version of [, ] and shown to be useful from numerical
simulations.

In what follows, we consider the non-switched uncertain discrete time-delay system:

x(k + ) =
[
A +�A(k)

]
x(k) +

[
B +�B(k)

]
x
(
k – r(k)

)
, k = , , , , . . . , (a)

x(θ ) = φ(θ ), θ = –rM, –rM + , . . . , , (b)

where φ(k) ∈ �n is an initial state function, time-varying delay r(k) is a function from
{, , , , . . .} to {, , , , . . .} and  ≤ rm ≤ r(k) ≤ rM , rm and rM are two given positive
integers. Matrices A,B ∈ �n×n are constant. �A(k) and �B(k) are two perturbed matrices
satisfying the following condition:

[
�A(k) �B(k)

]
=M · �(k) · [NA NB], (c)

�(k) =
[
I – �(k)�

]–
�(k), ��T < I, (d)

http://www.advancesindifferenceequations.com/content/2013/1/39
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where M, NA, and NB, and � are some given constant matrices with appropriate dimen-
sions. �(k) is an unknown matrix representing the perturbation which satisfies

�T (k)�(k)≤ I. (e)

The following sufficient conditions for the stability of system (a)-(e) can be obtained
in a similar way to Theorem .

Theorem  If a given constant  < α < , there exist some n × n matrices P > , Q > ,
R > , R > , R > , S > , T > , Vl ∈ �n×n, Vl ∈ �n×n, Vl ∈ �n×n, l = , , , ,
and constants ε >  such that (a), (b), and the following LMI conditions are satisfied:

�� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

       

∗       

∗ ∗      
∗ ∗ ∗     
∗ ∗ ∗ ∗    
∗ ∗ ∗ ∗ ∗   
∗ ∗ ∗ ∗ ∗ ∗  

∗ ∗ ∗ ∗ ∗ ∗ ∗ 

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

[
�(n×n) (n×n)

∗ (n×n)

]
< ,

where

 = –P + (rM – rm + ) ·Q + T ,  = (A – I)T�,

 = ATP,  = ε ·NT
A ,  = –αrM ·Q,

 = BT�,  = BTP,  = ε ·NT
B ,

 = –αrMS,  = –αrm · (T – S),  = –�,

 = �TM,  = –α · P,  = PM,

 = –ε · I,  = ε · �T ,  = –ε · I,
� and � are defined in (c).

Then system (a)-(e) is globally exponentially stable with the convergence rate  < α < .

Remark  In Theorems  and , the global asymptotic stability of switched system
(a)-(e) and non-switched system (a)-(e) can be achieved by setting α = . The non-
negative inequalities in (a)-(d) are used to improve the conservativeness of the obtained
results.

Remark  If we wish to select a switching signal to guarantee the stability of switched
system (a)-(e), the following procedures are proposed.
Step  Test the exponential stability of each subsystem of switched system (a)-(e) by

Theorem  with A = Ai, B = Bi,M =Mi, NA =NAi, NB =NBi, � = �i,
i = , , . . . ,N . If the sufficient conditions in Theorem  have a feasible solution
for some i ∈N , the switching signal is selected by σ = i and the stability of the
switched system in (a)-(e) can be guaranteed.

http://www.advancesindifferenceequations.com/content/2013/1/39
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Step  If the obtained stability results for each subsystem of switched time-delay system
(a)-(e) do not satisfy the requirement in Step , we can use Theorem  to
design the switching signal to guarantee the global exponential stability of
switched time-delay system (a)-(e).

From the results in Steps -, we can propose a less conservative stability result of the
system.

3 Illustrative examples
Example  Consider system (a)-(e) with no perturbations and the following parameters
(Example . of []):

A =

[
. .
–. –.

]
, A =

[
–. –.
. .

]
,

B =

[
. .
–. –.

]
, B =

[
. .
–. –.

]
.

()

In order to show the obtained results, the allowable delay upper bounds and switching
laws in (a), (b) that guarantee the global asymptotic and exponential stability for system
(a)-(e) with () are provided in Table .

Example  Consider system (a)-(e) with the following parameters (Example  of []):

A =

[
. .
 .

]
, A =

[
. 
 .

]
, B =

[
–. 
–. –.

]
,

B =

[
. 
. .

]
, M =M =

[
. 
 .

]
,

NA =NA =NB =NB =

[
. 
 .

]
, � = � = .

()

The delay upper bounds and switching signals (e) with stability domains in (a), (b)
that guarantee the global asymptotic stability for system (a)-(e) with () are provided
in Table .

Table 1 The obtained results for our proposed results in this paper

The delay upper bound and stability switching domains for switched system (1a)-(1e) with (9)

[6] rm = 1, rM = 2 (α = 1, globally asymptotically stable)
��1 = {[x1 x2]T ∈ R2 : –12.0213x21 – 38.8254x1x2 – 31.6356x

2
2 < 0}, ��2 =�2 \ ��1

Our results rm = 1, rM = 178 (α = 1, globally asymptotically stable) (σ = 1)

rm = 1, rM = 392 (α = 1, globally asymptotically stable) (σ = 2)

rm = 1, rM = 186 (α = 1, globally asymptotically stable) (α1 = α2 = 0.5)
��1 = {[x1 x2]T ∈ R2 : 0.2018x21 + 0.3982x1x2 – 0.2247x22 < 0}, ��2 =�2 \ ��1

rm = 1, rM = 20 (α = 0.95, globally exponentially stable) (α1 = α2 = 0.5)
��1 = {[x1 x2]T ∈ R2 : 0.6762x21 + 1.8317x1x2 + 0.2681x22 < 0}, ��2 =�2 \ ��1

http://www.advancesindifferenceequations.com/content/2013/1/39
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Table 2 Some obtained results for our proposed results in this paper

The delay upper bound and stability switching domains for switched system (1a)-(1e) with (10)

[10] rm = 1, rM = 5 (α = 1) (under arbitrary switching signal condition)

[4] rm = 1, rM = 6 (α = 1) (under arbitrary switching signal condition)

[6] Results fail (switching signal cannot be selected even when no perturbations)

Our
result

rm = 1, rM = 7 (α = 1, globally asymptotically stable) (σ = 1)

rm = 1, rM = 19 (α = 1, globally asymptotically stable) (σ = 2)

rm = 1, rM = 10 (α = 1) (Choose α1 = 0.1 and α2 = 0.9)

Switching signal in (3e) with ��1 = {[x1 x2]T ∈ R2 : 5.8081x21 + 7.1275x1x2 + 1.7783x22 < 0}, ��2 =�2 \ ��1

Table 3 The obtained results for our proposed results in this paper

The delay upper bound and stability switching domains for switched system (1a)-(1e) with (11)

[4, 10] Results fail (under arbitrary switching signal condition)

[6, 7] Results fail (switching signal cannot be selected even when no perturbations)

Our
results

Fail to guarantee the stability of each subsystem in Theorem 2

rm = 1, rM = 7 (α = 1, globally asymptotically stable) (α1 = α2 = 0.5)
Switching signal in (3e) with ��1 = {[x1 x2]T ∈ �2 : 27.9396x21 + 3.3182x1x2 – 18.2592x22 < 0}, ��2 =�2 \ ��1

Example  Consider system (a)-(e) with the following parameters:

A =

[
. .
 .

]
, A =

[
. 
. .

]
, B =

[
 
. –.

]
,

B =

[
–. 
. –.

]
, M =M =

[
. 
 .

]
,

NA =NA =NB =NB =

[
. 
 .

]
, � = � = . · I.

()

The delay upper bounds and switching signals (e) with stability domains in (a), (b)
that guarantee the global asymptotic stability for system (a)-(e) with () are provided in
Table .

Note that thematricesA andA in this example are not Hurwitz, the results in [, , ],
and [] cannot find any feasible solution to guarantee the stability of a switched system
for arbitrary and designed switching signals. The proposed results in [] and [] are sub-
jected to an arbitrary switching signal condition, we illustrate the comparisons here only
for showing the advantage for switching signal design of the proposed results in this paper.
Switched system (a)-(e) with () is asymptotically stable by the switching signal de-

signed by

σ
(
k,x(k)

)
=

⎧⎨
⎩, x(k) ∈ ��,

, x(k) ∈ � \ ��,
()

where

�� =
{
[x x]T ∈ � : .x + .xx – .x ≤ 

}
.
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Figure 1 State trajectories for the selected
switching signal in (12) (solid line: x1, dotted
line: x2).

Figure 2 State trajectories for the arbitrary
switching signal (solid line: x1, dotted line: x2).

Table 4 The obtained results for our proposed results in this paper

The delay upper bound and stability switching domains for switched system (1a)-(1e) with (13)

[4, 10] Results fail (under arbitrary switching signal condition)

[7] rm = 1, rM = 4 (α = 1, globally asymptotically stable)
��1 = {[x1 x2]T ∈ R2 : –0.9918x21 – 0.035x1x2 – 1.4672x

2
2 < 0}, ��2 =�2 \ ��1

Our results rm = 1, rM = 7 (α = 1, globally asymptotically stable) σ = 1 (Theorem 2)

With initial state φ(θ ) = [ – ]T , θ = –,–, . . . , –, , state trajectories for the selected
switching signal in () and the arbitrary switching signal are shown in Figure  and Fig-
ure , respectively.

Example  Consider system (a)-(e) with no perturbations and the following parameters
(Example  of []):

A =

[
–. .
. –.

]
, A =

[
 .
. 

]
,

B =

[
–. .
. –.

]
, B =

[
. .
. .

]
.

()

The delay upper bounds and switching signals (e) with stability domains in (a), (b)
that guarantee the global asymptotic stability for system (a)-(e) with () are provided
in Table .

http://www.advancesindifferenceequations.com/content/2013/1/39


Lien et al. Advances in Difference Equations 2013, 2013:39 Page 14 of 15
http://www.advancesindifferenceequations.com/content/2013/1/39

Note that the eigenvalues of A are . and ., Theorem  and Theorem  with
the second subsystem cannot use to guarantee the stability of system (a)-(e) with ().

4 Conclusion
In this paper, the switching signal design to guarantee the global exponential stability for
uncertain discrete switched systems with interval time-varying delay and linear fractional
perturbations has been considered. Some nonnegative inequalities and LMI approach are
used to improve the conservativeness of the proposed results. A procedure has been pro-
posed to test the stability of the switched system and design the switching signal. The
obtained results are shown to be less conservative and useful via numerical examples. In
the future, switching signal designs for robust stabilization and performance (guaranteed
cost control,H∞ control, nonfragile control, passivity analysis and passive control) can be
investigated and developed [, , ].

Appendix
Lemma  If there exist some constants  < α < ,  ≤ αi ≤ , i ∈ N ,

∑N
i= αi = , some ma-

trices P > , Ui >  such that

N∑
i=

αi ·
(
AT
i PAi – α ·Ui

)
< ,

we have

N⋃
i=

��i = �n and ��i ∩ ��j = �, ∀i �= j,

where � is an empty set of �n and ��i is defined in (a), (b).

Proof This lemma can be proved in a similar way to [–]. �

Lemma  [] For a given matrix S =
[ S S
∗ S

]
with S = ST, S = ST, the following con-

ditions are equivalent:
() S < ,
() S < , S – SS–ST < .

Lemma [] Suppose that�i(k) is defined in (d) and satisfies (e), then for real matrices
Vi,Wi, and Xi with Xi = XT

i , the following statements are equivalent:
(I) The inequality is satisfied

Xi +Vi�i(k)Wi +WT
i �T

i (k)V
T
i < ;

(II) There exists a scalar εi >  such that

⎡
⎢⎣
Xi Vi εi ·WT

i

∗ –εi · I εi · �T
i

∗ ∗ –εi · I

⎤
⎥⎦ < ,

where the matrix �i is defined in (d).

http://www.advancesindifferenceequations.com/content/2013/1/39
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