
Ahmad et al. Advances in Difference Equations 2013, 2013:373
http://www.advancesindifferenceequations.com/content/2013/1/373

RESEARCH ART ICLE Open Access

A new class of fractional boundary value
problems
Bashir Ahmad1*, Ahmed Alsaedi1, Afrah Assolami1 and Ravi P Agarwal1,2

*Correspondence:
bashirahmad_qau@yahoo.com
1Department of Mathematics,
Faculty of Science, King Abdulaziz
University, P.O. Box 80203, Jeddah,
21589, Saudi Arabia
Full list of author information is
available at the end of the article

Abstract
In this paper, a fractional boundary value problem with a new boundary condition is
studied. This new boundary condition relates the nonlocal value of the unknown
function at ξ with its influence due to a sub-strip (η, 1), where 0 < ξ < η < 1. The main
results are obtained with the aid of some classical fixed point theorems and
Leray-Schauder nonlinear alternative. A demonstration of applications of these results
is also given.
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1 Introduction
We study a boundary value problem of Caputo-type fractional differential equations with
new boundary conditions given by

{
cDqx(t) = f (t,x(t)),  < q ≤ , t ∈ [, ],
x() = , x(ξ ) = a

∫ 
η
x(s)ds,

(.)

where cDq denotes the Caputo fractional derivative of order q, f is a given continuous
function, and a is a positive real constant.
In (.), the second condition may be interpreted as a more general variant of nonlocal

integral boundary conditions, which states that the integral contribution due to a sub-strip
(η, ) for the unknown function is proportional to the value of the unknown function at
a nonlocal point ξ ∈ (, ) with ξ < η < . We emphasize that most of the work concern-
ing nonlocal boundary value problems relates the contribution expressed in terms of the
integral to the value of the unknown function at a fixed point (left/right end-point of the
interval under consideration), for instance, see [–] and references therein.
The recent development in the theory, methods and applications of fractional calculus

has contributed towards the popularity and importance of the subject. The tools of frac-
tional calculus have been effectively applied in the modeling of many physical and engi-
neering phenomena. Examples include physics, chemistry, biology, biophysics, blood flow
phenomena, control theory, wave propagation, signal and image processing, viscoelas-
ticity, percolation, identification, fitting of experimental data, economics, etc. [–]. For
some recent work on the topic, we refer to [–] and the references therein.
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2 Preliminaries
Let us recall some basic definitions on fractional calculus.

Definition . The Riemann-Liouville fractional integral of order q for a continuous
function g is defined as

Iqg(t) =


�(q)

∫ t



g(s)
(t – s)–q

ds, q > ,

provided the integral exists.

Definition . For at least nth continuously differentiable function g : [,∞) → R, the
Caputo derivative of fractional order q is defined as

cDqg(t) =


�(n – q)

∫ t


(t – s)n–q–g(n)(s)ds, n –  < q < n,n = [q] + ,

where [q] denotes the integer part of the real number q.

Lemma . For any y ∈ C[, ], the unique solution of the linear fractional boundary value
problem

{
cDqx(t) = y(t),  < q ≤ , t ∈ [, ],
x() = , x(ξ ) = a

∫ 
η
x(s)ds

(.)

is

x(t) =
∫ t



(t – s)q–

�(q)
y(s)ds

+
t
A

{
a

∫ 

η

(∫ s



(s – u)q–

�(q)
y(u)du

)
ds –

∫ ξ



(ξ – s)q–

�(q)
y(s)ds

}
, (.)

where

A = ξ –
a

(
 – η) �= . (.)

Proof It is well known that the general solution of the fractional differential equation in
(.) can be written as

x(t) = c + ct +
∫ t



(t – s)q–

�(q)
y(s)ds, (.)

where c, c ∈R are arbitrary constants.
Applying the given boundary conditions, we find that c = , and

c =

A

{
a

∫ 

η

(∫ s



(s – u)q–

�(q)
y(u)du

)
ds –

∫ ξ



(ξ – s)q–

�(q)
y(s)ds

}
.

Substituting the values of c, c in (.), we get (.). This completes the proof. �
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3 Existence results
Let P = C([, ],R) denote the Banach space of all continuous functions from [, ] to R

endowed with the norm ‖x‖ = sup{|x(t)|, t ∈ [, ]}.
In relation to the given problem, we define an operator T :P →P as

(T x)(t) =
∫ t



(t – s)q–

�(q)
f
(
s,x(s)

)
ds

+
t
A

{
a

∫ 

η

(∫ s



(s – u)q–

�(q)
f
(
u,x(u)

)
du

)
ds –

∫ ξ



(ξ – s)q–

�(q)
f
(
s,x(s)

)
ds

}
,

where A is given by (.). Observe that problem (.) has solutions if and only if the oper-
ator T has fixed points.
For the sake of computational convenience, we set

ω =


|A|
{


�(q + )

(|A| + ξ q) + a
�(q + )

(
 – ηq+)}. (.)

Theorem. Let f : [, ]×R→R be a jointly continuous function satisfying the Lipschitz
condition

(H) |f (t,x) – f (t, y)| ≤ L|x – y|, ∀t ∈ [, ], x, y ∈R, L > .

Then problem (.) has a unique solution if Lω < , where ω is given by (.).

Proof Let us denote supt∈[,] |f (t, )| = γ and show that T Br ⊂ Br , where Br = {x ∈ P :
‖x‖ ≤ r} with r > ωγ ( –ωL)–. For x ∈ Br , t ∈ [, ], we have

∥∥(T x)
∥∥ ≤ sup

t∈[,]

{∫ t



(t – s)q–

�(q)
∣∣f (s,x(s)) – f (s, ) + f (s, )

∣∣ds
+

t
|A|

[
a

∫ 

η

(∫ s



(s – u)q–

�(q)
∣∣f (u,x(u)) – f (u, ) + f (u, )

∣∣du)
ds

+
∫ ξ



(ξ – s)q–

�(q)
∣∣f (s,x(s)) – f (s, ) + f (s, )

∣∣ds]}

≤ (Lr +M) sup
t∈[,]

{
tq

�(q + )
+

t
|A|

[
a( – ηq+)
�(q + )

+
ξ q

�(q + )

]}

≤ (Lr +M)


|A|
{


�(q + )

(|A| + ξ q) + a
�(q + )

(
 – ηq+)}

= (Lr +M)ω ≤ r,

which implies that T Br ⊂ Br .
Now, for x, y ∈P and for each t ∈ [, ], we obtain

‖T x – T y‖ ≤ sup
t∈[,]

{∫ t



(t – s)q–

�(q)
∣∣f (s,x(s)) – f

(
s, y(s)

)∣∣ds
+

t
|A|

(
a

∫ 

η

(∫ s



(s – u)q–

�(q)
∣∣f (u,x(u)) – f

(
u, y(u)

)∣∣du)
ds

+
∫ ξ



(ξ – s)q–

�(q)
∣∣f (s,x(s)) – f

(
s, y(s)

)∣∣ds)}
≤ Lω|x – y|.

http://www.advancesindifferenceequations.com/content/2013/1/373


Ahmad et al. Advances in Difference Equations 2013, 2013:373 Page 4 of 8
http://www.advancesindifferenceequations.com/content/2013/1/373

Since L < /ω, by the given assumption, therefore the operator T is a contraction. Thus, by
Banach’s contraction mapping principle, there exists a unique solution for problem (.).
This completes the proof. �

The next result is based on Krasnoselskii’s fixed point theorem [].

Theorem . Let f : [, ]×R →R be a continuous function satisfying (H) and

(H) |f (t,x)| ≤ μ(t), ∀(t,x) ∈ [, ]×R, and μ ∈ ([, ],R+).

Then problem (.) has at least one solution on [, ] if

L
|A|

{
a( – ηq+)
�(q + )

+
ξ q

�(q + )

}
< .

Proof Fixing r ≥ ‖μ‖ω, we consider Br = {x ∈P : ‖x‖ ≤ r} and define the operators � and
� on Br as

(�x)(t) =
∫ t



(t – s)q–

�(q)
f
(
s,x(s)

)
ds,

(�x)(t) =
t
A

{
a

∫ 

η

(∫ s



(s – u)q–

�(q)
f
(
u,x(u)

)
du

)
ds

–
∫ ξ



(ξ – s)q–

�(q)
f
(
s,x(s)

)
ds

}
.

For x, y ∈ Br , it is easy to show that ‖(�x) + (�y)‖ ≤ ‖μ‖ω ≤ r, which implies that �x +
�y ∈ Br .
In view of the assumption L{ 

|A| (
a(–ηq+)
�(q+) + ξq

�(q+) )} < , the operator � is a contrac-
tion. The continuity of f implies that the operator � is continuous. Also, � is uniformly
bounded on Br as ‖�x‖ ≤ ‖μ‖/�(q + ). Moreover, � is relatively compact on Br as

∥∥(�x)(t) – (�x)(t)
∥∥ ≤ fm

�(q + )
(∣∣tq – tq

∣∣ + |t – t|q
)
,

where sup(t,x)∈[,]×Br |f (t,x)| = fm <∞. Hence, by the Arzelá-Ascoli theorem,� is compact
on Br . Thus all the assumptions of Krasnoselskii’s fixed point theorem are satisfied. So
problem (.) has at least one solution on [, ]. This completes the proof. �

Our next result is based on the following fixed point theorem [].

Theorem. Let X be a Banach space.Assume that T : X → X is a completely continuous
operator and the set V = {u ∈ X|u = εTu,  < ε < } is bounded. Then T has a fixed point
in X.

Theorem . Assume that there exists a positive constant L such that |f (t,x)| ≤ L for all
t ∈ [, ], x ∈P . Then there exists at least one solution for problem (.).

Proof As a first step, we show that the operator T is completely continuous. Clearly, the
continuity of T follows from the continuity of f . Let D ⊂ P be bounded. Then, ∀x ∈ D, it

http://www.advancesindifferenceequations.com/content/2013/1/373
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is easy to establish that |(T x)(t)| ≤ Lω = L. Furthermore, we find that

∣∣(T x)′(t)
∣∣ ≤

∣∣∣∣
∫ t



(t – s)q–

�(q – )
f
(
s,x(s)

)
ds

+

A

{
a

∫ 

η

(∫ s



(s – u)q–

�(q)
f
(
u,x(u)

)
du

)
ds –

∫ ξ



(ξ – s)q–

�(q)
f
(
s,x(s)

)
ds

}∣∣∣∣
≤ L

[
tq–

�(q)
+


|A|

{
a( – ηq+)
�(q + )

+
ξ q

�(q + )

}]

≤ L
[


�(q)

+


|A|
{
a( – ηq+)
�(q + )

+
ξ q

�(q + )

}]
= L.

Hence, for t, t ∈ [, ], it follows that

∣∣(T x)(t) – (T x)(t)
∣∣ ≤

∫ t

t

∣∣(T x)′(s)
∣∣ds≤ L(t – t).

Therefore, T is equicontinuous on [, ]. Thus, by theArzelá-Ascoli theorem, the operator
T is completely continuous.
Next, we consider the set V = {x ∈ P : x = εT x,  < ε < }. To show that V is bounded,

let x ∈ V , t ∈ [, ]. Then

x(t) =
∫ t



(t – s)q–

�(q)
f
(
s,x(s)

)
ds

+
t
A

{
a

∫ 

η

(∫ s



(s – u)q–

�(q)
f
(
u,x(u)

)
du

)
ds –

∫ ξ



(ξ – s)q–

�(q)
f
(
s,x(s)

)
ds

}

and |x(t)| = ε|(T x)(t)| ≤ Lω = L. Hence, ‖x‖ ≤ L, ∀t ∈ [, ]. So V is bounded. Thus,
Theorem . applies and, in consequence, problem (.) has at least one solution. This
completes the proof. �

Our final result is based on Leray-Schauder nonlinear alternative.

Lemma . (Nonlinear alternative for single-valued maps []) Let E be a Banach space,
E be a closed, convex subset of E, V be an open subset of E and  ∈ V . Suppose that
U : V → E is a continuous, compact (that is, U (V ) is a relatively compact subset of E)
map. Then either

(i) U has a fixed point in V , or
(ii) there are x ∈ ∂V (the boundary of V in E) and κ ∈ (, ) with x = κU (x).

Theorem . Let f : [, ]×R →R be a continuous function. Assume that

(H) there exist a function p ∈ C([, ],R+) and a nondecreasing functionψ :R+ →R
+ such

that |f (t,x)| ≤ p(t)ψ(‖x‖), ∀(t,x) ∈ [, ]×R;
(H) there exists a constantM >  such that

M
[

ψ(M)‖p‖
|A|

{


�(q + )
(|A| + ξ q) + a

�(q + )
(
 – ηq+)}]–

> .

Then problem (.) has at least one solution on [, ].

http://www.advancesindifferenceequations.com/content/2013/1/373
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Proof Let us consider the operator T : P → P defined by (.) and show that T maps
bounded sets into bounded sets in P . For a positive number r, let Br = {x ∈ P : ‖x‖ ≤ r}
be a bounded set in P . Then, for x ∈ Br together with (H), we obtain

∣∣(T x)(t)
∣∣ ≤

∫ t



(t – s)q–

�(q)
p(s)ψ

(‖x‖)ds + t
|A|

{
a

∫ 

η

(∫ s



(s – u)q–

�(q)
p(u)ψ

(‖x‖)du)
ds

+
∫ ξ



(ξ – s)q–

�(q)
p(s)ψ

(‖x‖)ds}

≤ ‖p‖ψ(‖x‖)[ 
|A|

{


�(q + )
(|A| + ξ q) + a( – ηq+)

�(q + )

}]

≤ ‖p‖ψ(r)ω.

Next, it will be shown that T maps bounded sets into equicontinuous sets ofP . Let t, t ∈
[, ] with t < t and x ∈ Br . Then

∣∣(T x)(t) – (T x)(t)
∣∣ ≤

∣∣∣∣
∫ t



(t – s)q–

�(q)
p(s)ψ(r)ds –

∫ t



(t – s)q–

�(q)
p(s)ψ(r)ds

+
(t – t)

|A|
{
a

∫ 

η

(∫ s



(s – u)q–

�(q)
p(u)ψ(r)du

)
ds

–
∫ ξ



(ξ – s)q–

�(q)
p(s)ψ(r)ds

}∣∣∣∣
≤ ψ(r)‖p‖

[ |tq – tq |
�(q + )

+
|t – t|

|A|
{
a( – ηq+)
�(q + )

+
ξ q

�(q + )

}]
.

Clearly, the right-hand side tends to zero independently of x ∈ Br as t → t. Thus, by the
Arzelá-Ascoli theorem, the operator T is completely continuous.
Let x be a solution for the given problem. Then, for λ ∈ (, ), following the method of

computation used in proving that T is bounded, we have

∥∥x(t)∥∥ =
∥∥λ(T x)(t)

∥∥ ≤
[

ψ(‖x‖)‖p‖
|A|

{


�(q + )
(|A| + ξ q) + a

�(q + )
(
 – ηq+)}]

,

which implies that

‖x‖
[

ψ(‖x‖)‖p‖
|A|

{


�(q + )
(|A| + ξ q) + a

�(q + )
(
 – ηq+)}]–

≤ .

In view of (H), there existsM such that ‖x‖ �=M. Let us chooseN = {x ∈P : ‖x‖ <M+}.
Observe that the operator T :N → P is continuous and completely continuous. From

the choice ofN , there is no x ∈ ∂N such that x = λT (x) for some λ ∈ (, ). Consequently,
by Lemma ., we deduce that the operator T has a fixed point x ∈N which is a solution
of problem (.). This completes the proof. �

4 Examples
Example . Consider a fractional boundary value problem given by

{
cD 

 x(t) = 
(t+) (

|x|
+|x| ) – sin t, t ∈ [, ],

x() = , x(/) = 
∫ 
/ x(s)ds.

(.)

http://www.advancesindifferenceequations.com/content/2013/1/373
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Here, q = /, a = , η = /, ξ = / and f (t,x) = 
(t+) (

|x|
+|x| ) – sin t. With the given val-

ues, ω � . and L = / as |f (t,x) – f (t, y)| ≤ /|x – y|. Clearly, Lω � . < .
Therefore, by Theorem ., there exists a unique solution for problem (.).

Example . Consider a fractional boundary value problem given by

{
cD 

 x(t) = 
π

√
+t (tan

– x + π
 ), t ∈ [, ],

x() = , x(/) =
∫ 
/ x(s)ds.

(.)

Observe that |f (t,x) – f (t, y)| ≤ 
π
|x – y| implies that L = /π and |f (t,x)| ≤ √

+t = μ(t).
With the given data, it is found that A = / and

L
|A|

{
a( – ηq+)
�(q + )

+
ξ q

�(q + )

}
=


π

√
π

[



(
 –

(



)/)
+



√


]
� . < .

Clearly, all the conditions of Theorem . are satisfied. Hence there exists a solution for
problem (.).

Example . Consider the problem

{
cD/x(t) = 

(t+) (|x| + ), t ∈ [, ],
x() = , x(/) =

∫ 
/ x(s)ds.

(.)

Here, q = /, ξ = /, a = , η = /, |f (t,x)| ≤ 
 (|x| + ) and ω � .. Let us fix

p(t) = , ψ(|x|) = 
 (|x| + ). Further, by the condition

M
{
ψ(M)‖p‖

(


|A|
{


�(q + )

(|A| + ξ q) + a
�(q + )

(
 – ηq+)})}–

> ,

it is found thatM >M with M � .. Thus, Theorem . applies and there exists a
solution for problem (.) on [, ].
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