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Abstract
In this paper, we propose a new modification of the multistage generalized
differential transform method (MsGDTM) for solving fractional differential equations.
In MsGDTM, it is the key how to impose an initial condition in each sub-domain to
obtain an accurate approximate solution. In several literature works (Odibat et al. in
Comput. Math. Appl. 59:1462-1472, 2010; Alomari in Comput. Math. Appl.
61:2528-2534, 2011; Gökdoğan et al. in Math. Comput. Model. 54:2132-2138, 2011),
authors have updated an initial condition in each sub-domain by using the
approximate solution in the previous sub-domain. However, we point out that this
approach is hard to apply an effect of memory which is the basic property of
fractional differential equations. Here we provide a new algorithm to impose the
initial conditions by using the integral operator that enhances accuracy. Several
illustrative examples are demonstrated, and it is shown that the proposed technique
is robust and accurate for solving fractional differential equations.

1 Introduction
In recent years, fractional differential equations have been considered as an important
mathematical modeling in various fields of applied sciences and engineering because of
describing memory properties. Several numerical methods for solving fractional differen-
tial equations have been introduced. Authors in [, ] presented the predictor-corrector
approach based on the Adams-Bashforth-Moulton type numerical method that has been
successful to obtain the stable approximate solutions formany fractional differential equa-
tions. Some of semi-analyticmethods for solving fractional problems such as theAdomian
decomposition method (ADM) [–], homotopy analysis method (HAM) [–], homo-
topy perturbation method (HPM) [, ], variational iteration method (VIM) [–] and
generalized differential transformmethod (GDTM) [–] have been introduced to pro-
vide analytic or numeric approximations. In this paper, we propose a new modification
of multistage generalized differential transform method (MsGDTM) to obtain an accu-
rate approximate solution for solving fractional differential equation. The new proposed
method gives an algorithm to impose an accurate initial condition in each sub-domain
which contains the effect of memory. The paper is organized as follows. Section  intro-
duces some definitions and notations of fractional calculus that we shall use. In Section ,
we present the basic ideas and some properties of GDTM. Difference between the stan-
dardMsGDTMand the proposedMsGDTMare described in Section . Several numerical
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illustrations are demonstrated, and they show the effectiveness of the proposed method
in Section . Finally, we give a conclusion.

2 Preliminary
In this section we give some basic definitions and properties of the fractional calculus
presented in this work.

Definition A real-valued function f (t), t > , is said to be in the space Cμ, μ ∈ R if there
exists a real number p, p < μ such that f (t) = tpf(t), where f(t) ∈ C[,∞), and it is said to
be in the space Cm

μ if and only if f (m) ∈ Cμ,m ∈N.

Definition The Riemann-Liouville fractional integral operator of order α ≥  of a func-
tion f (t) ∈ Cμ, t > a≥ , μ ≥ –, is defined by

Jαa f (t) =

{


�(α)
∫ t
a (t – s)α–f (s)ds, α > ,

f (t), α = .

The operator Jαa satisfies the following properties: For f (t) ∈ Cμ, t > a ≥ , μ ≥ –,
α,β ≥  and γ > –,
. Jαa J

β
a f (t) = Jβa Jαa f (t) = Jα+β

a f (t),
. Jαa (t – a)γ = �(γ+)

�(γ+α+) (t – a)γ+α .
The Riemann-Liouville fractional derivative is defined by

Dα
a f (t) =

dm

dtm
(
Jm–α
a f (t)

)
,

where m –  < α ≤ m and m ∈ N. The Riemann-Liouville fractional derivative has been
studied by many mathematicians. However, it is not suitable to model real world physical
phenomena because it has difficulties to define the fractional order physical conditions
such as initial condition. Here, we shall introduce a modified fractional differential oper-
ator Dα

a proposed by Caputo [].

Definition The fractional derivative in the Caputo sense of f (t), f (t) ∈ Cm
–, t > a ≥ ,

m ∈N, t >  is defined by

Dα
a f (t) =

{
Jm–α
a ( dm

dtm f (t)), m –  < α <m,
dm
dtm f (t), α =m.

Lemma . If m –  < α ≤m,m ∈N and f (t) ∈ Cm
μ , t > a ≥ , μ ≥ –, then

. Dα
a Jαa f (t) = f (t),

. Jαa Dα
a f (t) = f (t) –

∑m–
k=

dk
dtk f (a)

(t–a)k
k! .

3 Generalized differential transformmethod
The differential transformmethod (DTM) that is based on the Taylor series has been suc-
cessful to achieve accurate approximate solutions for the linear and nonlinear problems
[–]. It differs from the traditional Taylor series in calculating coefficients. In DTM,
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all coefficients in Taylor series can be determined by solving the recursive equation that
is induced from the given differential equation. In order to apply the DTM to solve frac-
tional problems, we adopt the generalized Taylor formula that was introduced in []. In
what follows we describe the basic idea of the generalized differential transform method
(GDTM) and its properties. Let us introduce the generalized Taylor series formula with
the Caputo fractional derivative.

Theorem . (Generalized mean value theorem []) Suppose that f (t) ∈ C[a,b] and
Dα

a f (t) ∈ C(a,b], for  < α ≤ , we have

f (t) = f (a) +


�(α)
Dα

a f (η)(t – a)α

with a ≤ η ≤ t for all t ∈ (a,b].

Let us define (Dα
a )n by

(
Dα

a
)n =Dα

a ·Dα
a · · ·Dα

a (n-times).

Theorem . (Generalized Taylor’s formula []) Suppose that (Dα
a )kf (t) ∈ C(a,b] for k =

, , . . . ,n + , where  < α ≤ , then we have

f (t) =
n∑
i=

(t – a)iα

�(iα + )
((
Dα

a
)if )(a) + ((Dα

a )n+f )(η)
�((n + )α + )

(t – a)(n+)α

with a ≤ η ≤ t, for all t ∈ (a,b].

Let us define the generalized differential transform (GDT) of the kth derivative of f (t)
at t = t as follows:

F(k) =


�(αk + )
[(
Dα

t

)kf (t)]t=t ,
where  < α ≤ , k = , , , . . . , and the generalized differential inverse transform of F(k)
is defined as follows:

f (t) =
∞∑
k=

F(k)(t – t)αk .

In case of α = , the GDT reduces to the classical differential transform.

Theorem . Several fundamental properties of the GDT are listed below [].
. If f (t) = g(t)± h(t), then F(k) =G(k)±H(k).
. If f (t) = ag(t), then F(k) = aG(k), where a is a constant.
. If f (t) = g(t)h(t), then F(k) =

∑k
r=G(r)H(k – r).

. If f (t) =Dα
tg(t), then F(k) = �(α(k+)+)

�(αk+) G(k + ).
. If f (t) = (t – t)nα , then F(k) = δ(k – n), where δ(k) =

{ if k = ,
 otherwise.
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. If f (t) =Dβ
tg(t),m –  < β ≤m, then

F(k) =
�(αk + β + )

�(αk + )
G

(
k +

β

α

)
.

4 Themultistage generalized differential transformmethod with an effect of
memory

4.1 The standard generalized multistage differential transformmethod
The basic idea of multistage generalized differential transform method (MsGDTM) is to
apply the standard GDTM to the given problem in each sub-domain. In order to describe
the MsGDTM, let us consider the following fractional initial value problem:

Dα
ty(t) = f

(
t, y(t)

)
, t > , y(t) = y. ()

In order to apply the GDTM, we assume that the solution y(t) is expanded by the gener-
alized Taylor series at t = t

y(t) =
∞∑
k=

Y (k)(t – t)αk ,

where

Y (k) =


�(αk + )
[(
Dα

t

)kf (t)]t=t .
Some fundamental properties in Theorem . give the following recursive relation for the
differential transform:

�(α(k + ) + )
�(αk + )

Y (k + ) = F(k), k = , , , . . . , ()

where F(k) is the generalized differential transform of f (t, y(t)) at t = t. Combined with
Y (), that is, the initial condition y(t), the recursive equation () can be easily solved.
Recalling that GDTM is based on the generalized Taylor series, an approximate solution
can be obtained in a radius of convergence R

R = |t – t|α lim
n→∞

∣∣∣∣ �(nα + )
�((n + )α + )

· (D
α
t )

n+f (t)
(Dα

t )nf (t)

∣∣∣∣
t=t

.

In other words, it is impractical to achieve an accurate approximation by using the GDTM
outside the radius of convergence R. To overcome this difficulty, the standard GDTM is
applied in each sub-domain, which is called the MsGDTM.
For the equally spaced partition P:  = t < t < · · · < tN– < tN = T , where the nodes ti = i ·

h, h = T/N . On the ith sub-domain �i ≡ (ti, ti+), i = , , . . . ,N –, we define y(t)|�i ≡ yi(t)
and f (t)|�i ≡ fi(t). The generalized differential transform Yi(k) of yi(t) at t = ti is defined
by

Yi(k) =


�(αk + )
[(
Dα

ti

)kyi(t)]t=ti .
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The generalized differential inverse transform of Yi(k) is defined by

yi(t) =
∞∑
k=

Yi(k)(t – ti)αk .

Then the generalized differential transform Yi(k) is obtained by solving the following re-
cursive relation:

�(α(k + ) + )
�(αk + )

Yi(k + ) = Fi(k), k = , , , . . . , ()

where Fi(k) is the generalized differential transform of f (t, y(t)) at t = ti. Suppose that si,ni
is the ni-partial sum of yi(t) in �i, that is,

yi(t) ≈
ni∑
k=

Yi(k)(t – ti)αk ≡ si,ni (t).

Then the solution y(t) in () can be approximated by

y(t) ≈
N–∑
i=

χ�i (t)si,ni (t),

where

χ�i (t) =

{
 if t ∈ �i,
 otherwise.

In order to solve (), it is necessary to have the initial condition yi(ti) in each sub-domain
�i, i ≥ . For i = , the initial condition gives Y() = y(). However, there are no given
initial conditions yi(ti), i ≥ . In the standard multistage differential transform method
(MsDTM) for solving differential equations with integer order, the initial condition yi(ti)
can be approximated by computing si–,ni– (ti). In other words, Yi() = si–,ni– (ti), i ≥ .
This approach has been successful to obtain accurate approximate solutions []. In the
MsGDTM for solving fractional differential equations the same technique has been em-
ployed in [, ].

4.2 Effect of memory in the standard multistage generalized differential
transformmethod

Suppose that yi(t) is a solution of the following problem:

Dα
ti yi(t) = fi

(
t, yi(t)

)
, t ∈ �i = (ti, ti+), i≥ . ()

The analytical solution of () with an initial condition yi(ti) can be obtained by taking the
Riemann-Liouville integral operator as follows:

yi(t) = yi(ti) +


�(α)

∫ t

ti
(t – τ )α–fi

(
τ , yi(τ )

)
dτ . ()
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Lemma. Suppose yi(t) =
∑∞

k= Yi(k)(t– ti)αk and fi(t) =
∑∞

k= Fi(k)(t– ti)αk .Then Eq. ()
has the following recursive relation:

�(α(k + ) + )
�(αk + )

Yi(k + ) = Fi(k), k = , , , . . . .

Proof Since Jαti (t – ti)γ = �(γ+)
�(γ+α+) (t – ti)γ+α , substituting the generalized Talyor series of

yi(t) and fi(t) into () gives

∞∑
k=

Yi(k)(t – ti)αk = yi(ti) +
∞∑
k=

�(αk + )
�(αk + α + )

Fi(k)(t – ti)αk+α .

Since Yi() = yi(ti), it completes the proof. �

This gives that Eq. () has the same recursive relation () with Yi() = yi(ti). Thus, the
standard MsGDTM finds an approximate solution of () with an initial condition yi(ti) ≈
si–,ni– (ti). Solving the recursive relation, the solution yi(t) can be approximated by yi(t) ≈
si,ni (t). Therefore it is easy to see that the standard MsGDTM approximates the value of
yi(ti+) as follows:

yi(ti+) ≈ yi(ti) +


�(α)

∫ ti+

ti
(ti+ – τ )α– f̃i

(
τ , yi(τ )

)
dτ

≈ si–,ni– (ti) +


�(α)

∫ ti+

ti
(ti+ – τ )α– f̃i

(
τ , yi(τ )

)
dτ

= si,ni (ti+), ()

where f̃i(t) =
∑ni

k= Fi(k)(t – ti)αk .
In what follows we describe that the value of yi(ti+) in the analytical approach does have

an addition term compared to Eq. (). This term results from the effect of memory for the
fractional derivative operator. Taking the Riemann-Liouville integral operator to (), the
solution y(t) can be computed at t = ti+, ti by

y(ti+) = y(t) +


�(α)

∫ ti+

t
(ti+ – τ )α–f

(
τ , y(τ )

)
dτ ,

and

y(ti) = y(t) +


�(α)

∫ ti

t
(ti – τ )α–f

(
τ , y(τ )

)
dτ .

Thus, for i≥ , the value of y(ti+) can be rewritten by

y(ti+) = y(ti) +


�(α)

∫ ti+

ti
(ti+ – τ )α–f

(
τ , y(τ )

)
dτ

+


�(α)

∫ ti

t

{
(ti+ – τ )α– – (ti – τ )α–

}
f
(
τ , y(τ )

)
dτ . ()

http://www.advancesindifferenceequations.com/content/2013/1/371


Kim and Jang Advances in Difference Equations 2013, 2013:371 Page 7 of 14
http://www.advancesindifferenceequations.com/content/2013/1/371

Hence the value of y(ti+) can be approximated by

y(ti+) ≈ y(ti) +


�(α)

∫ ti+

ti
(ti+ – τ )α– f̃i

(
τ , y(τ )

)
dτ

+


�(α)

i–∑
k=

∫ tk+

tk

{
(ti+ – τ )α– – (ti – τ )α–

}
f̃k

(
τ , y(τ )

)
dτ . ()

As seen in () and (), it is clear that the standard MsGDTM is missing the memory term:

memory≡ 
�(α)

i–∑
k=

∫ tk+

tk

{
(ti+ – τ )α– – (ti – τ )α–

}
f̃k

(
τ , y(τ )

)
dτ .

Thus it is difficult to obtain an accurate approximation by using the standard MsGDTM
for solving the fractional differential equations.
In order to avoid this difficulty, it is necessary to introduce a new algorithm to impose

thememory term at each sub-domain�i. Here, as described in [], we apply the piecewise
linear interpolation of f (τ , y(τ )) in �k at k = , , . . . , i +  to obtain the value of y(ti+) as
follows:

y(ti+) = y(t) +


�(α)

∫ ti+

t
(ti+ – τ )α–f

(
τ , y(τ )

)
dτ

≈ y(t) +


�(α)

i∑
k=

∫ tk+

tk
(ti+ – τ )α– f̂k

(
τ , y(τ )

)
dτ

= y(t) +
hα

�(α + )

i+∑
k=

ak,i+f
(
tk , y(tk)

)
,

where

f̂k(t) =
t – tk+
tk+ – tk

fk(tk) +
t – tk

tk+ – tk
fk(tk+),

ak,i+ =

⎧⎪⎨
⎪⎩
iα+ – (i – α)(i + )α , if k = ,
(i – k + )α+ + (i – k)α+ – (i – k + )α+, if  ≤ k ≤ i,
, if k = i + .

Since the approximation of yi(t) in each sub-interval �i can be obtained by using the
GDTM, yi(t) ≈ si,ni (t), the initial condition y(ti+) can be evaluated by

y(ti+) ≈ y(t) +
hα

�(α + )

i∑
k=

ak,i+f
(
tk , sk,nk (tk)

)
. ()

5 Numerical illustrations
In this sectionwe demonstrate numerical results of several examples by using the standard
MsGDTMand the proposedMsGDTM(P-MsGDTM) in () for various fractional orderα.
To confirm the numerical accuracy, we also present the numerical results obtained by
the fractional Adams-Bashforth-Moulton method (FABM) []. To apply the GDTMs, we
assume that the solution y(t) belongs to (Dα)ky(t) ∈ C(,T), where k >  and T > . On

http://www.advancesindifferenceequations.com/content/2013/1/371
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Table 1 Comparison of numerical results by the standard MsGDTM, the P-MsGDTM and the
FABM for α = 0.9 in Example 1

t MsGDTM (h = 0.001) P-MsGDTM (h = 0.01) FABM (h = 0.001)

0.1 0.25272 0.15163 0.15071
0.2 0.59515 0.31730 0.31486
0.3 0.99844 0.50264 0.49866
0.4 1.40196 0.70268 0.69754
0.5 1.74493 0.90929 0.90367
0.6 1.99830 1.11312 1.10786
0.7 2.16673 1.30556 1.30143
0.8 2.27100 1.48018 1.47770
0.9 2.33272 1.63336 1.63561
1.0 2.36830 1.76411 1.76527

both the standardMsGDTMand the P-MsGDTM, the approximate solutions are obtained
by using five generalized differential transforms. That is, yi(t) ≈ ∑

k= Yi(k)(t – t)αk . All
solutions are computed up to time t = . when the fractional order α varies from .
to ..

Example  Consider the fractional Riccati equation []

Dαy(t) = y(t) – y(t) + , st > ,

where  < α ≤ , subject to the initial condition y() = .
Table  shows a comparison of the numerical results obtained by the standard Ms-

GDTM, the P-MsGDTM and the FABM for the fractional order α = .. The time step
is chosen as h = . in the standard MsGDTM and the FABM, and h = . in the
P-MsGDTM. The numerical results in the P-MsGDTM are in a good agreement with the
ones in FABM at each time t = ., . . . , .. However, the standardMsGDTM gives inaccu-
rate approximate solutions. For α = ., ., . and ., the comparisons of the numerical
results are shown in Figure . It is easy to see that the P-MsGDTM gives accurate numer-
ical solutions for all α, but the standard MsGDTM does not. As the fractional order α

is getting smaller, the standard MsGDTM gives an inaccurate approximate solution in a
shorter range of time.

Example  Consider the fractional differential equation []

Dαy(t) = –y(t),

where  < α ≤ , subject to the initial conditions y() = .
The exact solution can be written analytically, y(t) = Eα(–tα), where Eα(z) is the one-

parameter Mittag-Leffler function as follows:

Eα(z) =
∞∑
k=

(z)k

�(αk + )
.

The numerical results obtained by the standard MsGDTM, the P-MsGDTM are com-
pared with the exact solution for the fractional order α = . in Table . It is shown that
the numerical approximations by the P-MsGDTM agree with the exact solution in three

http://www.advancesindifferenceequations.com/content/2013/1/371
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Figure 1 Numerical comparisons for the fractional order α = 0.5, 0.6, 0.7 and 0.8: FABM (h = 0.001),
MsGDTM (h = 0.001) and P-MsGDTM (h = 0.01) in Example 1.

Table 2 Comparison of numerical results by the standard MsGDTM, the P-MsGDTM and the
exact solution for α = 0.9 in Example 2

t MsGDTM (h = 0.005) P-MsGDTM (h = 0.005) Exact solution

0.1 0.83816 0.87835 0.87809
0.2 0.70252 0.78628 0.78576
0.3 0.58883 0.70881 0.70807
0.4 0.49354 0.64201 0.64109
0.5 0.41367 0.58367 0.58261
0.6 0.34672 0.53227 0.53111
0.7 0.29061 0.48673 0.48549
0.8 0.24358 0.44618 0.44488
0.9 0.20416 0.40994 0.40859
1.0 0.17112 0.37744 0.37606

decimal places for all t. However, the standard MsGDTM gives only reliable approxima-
tions when the time is close to zero and the error is getting larger as the time increases.
Figure  presents the comparisons of the numerical results by the standardMsGDTM and
P-MsGDTM and the exact solutions for the fractional order α = ., ., . and ..

Example  Consider the following fractional differential equation:

Dαy(t) = exp
[
y(t)

]
– y(t),

where  < α ≤ , subject to the initial conditions y() = .

http://www.advancesindifferenceequations.com/content/2013/1/371
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Figure 2 Numerical comparisons for the fractional order α = 0.5, 0.6, 0.7 and 0.8: MsGDTM (h = 0.005)
and P-MsGDTM (h = 0.005) in Example 2.

Table 3 Differential transforms Gi(k) for g(t) = exp[y(t)], k = 0,1, 2, 3, 4

k Gi(k)

0 exp[Yi(0)]
1 Yi(1) exp[Yi(0)]
2 ((Yi(1))2/2 + Yi(2)) exp[Yi(0)]
3 ((Yi(1))3/3! + Yi(1)Yi(2) + Yi(3)) exp[Yi(0)]
4 ((Yi(1))4/4! + (Yi(1))2Yi(2)/2! + (Yi(2))2/2 + Yi(1)Yi(3) + Yi(4)) exp[Yi(0)]

Table 4 Comparison of numerical results by the standard MsGDTM, the P-MsGDTM and the
FABM for α = 0.9 in Example 3

t MsGDTM (h = 0.01) P-MsGDTM (h = 0.1) FABM solution (h = 0.001)

0.1 0.15248 0.12301 0.12229
0.2 0.28534 0.21661 0.21653
0.3 0.40432 0.29700 0.29824
0.4 0.51386 0.36926 0.37165
0.5 0.61766 0.43587 0.43916
0.6 0.71902 0.49846 0.50237
0.7 0.82132 0.55820 0.56252
0.8 0.92843 0.61608 0.62056
0.9 1.04548 0.67294 0.67735
1.0 1.18035 0.72956 0.73367

http://www.advancesindifferenceequations.com/content/2013/1/371
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Figure 3 Numerical comparisons for the fractional order α = 0.5, 0.6, 0.7 and 0.8: MsGDTM (h = 0.01)
and P-MsGDTM (h = 0.1) in Example 3.

Table 5 Differential transforms Gi(k) for g(t) = y(t) ln[y(t)], k = 0,1, 2, 3, 4

k Gi(k)

0 Yi(0) ln[Yi(0)]
1 Yi(1) ln[Yi(0)] + Yi(1)

2 Yi(2) ln[Yi(0)] + Yi(2) +
(Yi (1))

2

2Yi (0)

3 Yi(3) ln[Yi(0)] + Yi(3) +
Yi (1)Yi (2)
Yi (0)

– (Yi (1))
3

6(Yi (0))
2

4 Yi(4) ln[Yi(0)] + Yi(4) +
2Yi (1)Yi (3)+(Yi (2))

2

2Yi (0)
– (Yi (0))

2Yi (2)
2(Yi (0))

2 + (Yi (1))
4

12(Yi (0))
3

In order to obtain a recursive relation for the nonlinear term exp[y(t)], we adopted
the method in [] using the Adomian polynomials. Let us assume g(t) = exp[y(t)] =∑∞

k=Gi(k)(t – ti)k , then the Adomian polynomial gives the differential transforms Gi(k)
in Table . Numerical results by the standard MsGDTM, the P-MsGDTM and the FABM
for α = . are shown in Table . It is shown that the numerical approximations by the
P-MsGDTM agree well with the results by the FABM for all t. Here, the time step h = .
is used to obtain the approximation in the P-MsGDTM, whereas the FABM employs the
time step h = .. For α = ., ., . and ., the numerical comparisons are shown in
Figure . In the standard MsGDTM the numerical results are dramatically increasing as
the fractional order is getting smaller.
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Table 6 Comparison of numerical results by the standard MsGDTM, the E-MsGDTM and the
FABM for α = 0.9 in Example 4

t MsGDTM (h = 0.01) P-MsGDTM (h = 0.01) FABM solution (h = 0.001)

0.1 0.88925 0.81180 0.81250
0.2 1.19751 1.04318 1.04599
0.3 1.39697 1.21115 1.21592
0.4 1.51304 1.32935 1.33529
0.5 1.57693 1.41164 1.41800
0.6 1.61111 1.46902 1.47529
0.7 1.62911 1.50939 1.51529
0.8 1.63853 1.53817 1.54357
0.9 1.64343 1.55901 1.56389
1.0 1.64597 1.57436 1.57873

Figure 4 Numerical comparisons for the fractional order α = 0.5, 0.6, 0.7 and 0.8: MsGDTM (h = 0.01)
and P-MsGDTM (h = 0.01) in Example 4.

Example  Consider the following fractional differential equation:

Dαy(t) = y(t) – y(t) ln
[
y(t)

]
,

where  < α ≤ , subject to the initial conditions y() = ..
For the nonlinear term ln[y(t)], we obtained the differential transforms by using theAdo-

mian polynomials in []. Assuming g(t) = y(t) ln[y(t)] =
∑∞

k=Gi(k)(t– ti)k , the differential
transforms Gi(k) are listed in Table . For the fractional order for α = ., the numerical
results by the standard MsGDTM (h = .), the P-MsGDTM (h = .) and the FABM

http://www.advancesindifferenceequations.com/content/2013/1/371
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(h = .) are shown in Table . For α = ., ., . and ., the approximate solutions
are depicted in Figure . Even if the numerical results by the P-MsGDTMwith small frac-
tional order have some difference with the results by the FABM, it will be overcome with
a small time step. In fact, if we consider the numerical error for α = . at t = , the error
is about . for h = . but . for h = ..

6 Conclusion
In this paper, we proposed a new modified multistage generalized differential transform
method for solving fractional differential equations.Wehave pointed out that the standard
MsGDTM has difficulty to handle the effect of memory in solving fractional differential
equations. However, the proposed MsGDTM (P-MsGDTM) can deal with the memory
effectively. Several illustrative examples showed that the P-MsGDTM obtained accurate
numerical approximations, but the standard MsGDTM failed to get robust approxima-
tions for all examples. It is concluded that the proposed MsGDTM is very simple and
effective for solving fractional problems. Here, all numerical results were performed by
using Mathematica ..
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