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Abstract
A stochastic mutualism model is proposed and investigated in this paper. We show
that there is a unique solution to the model for any positive initial value. Moreover, we
show that the solution is stochastically bounded, uniformly continuous and globally
attractive. Under some conditions, we conclude that the stochastic model is
stochastically permanent and persistent in mean. Finally, we introduce some figures
to illustrate our main results.
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1 Introduction
Population systems have long been an important theme in mathematical biology due to
their universal existence and importance. As far as mutualism system is concerned, lots
of proofs have been found in many types of communities. Mutualism occurs when one
species provides some benefit in exchange for some benefit. One of the simplest models
is the classical Lotka-Volterra two-species mutualism model, which reads

⎧⎨
⎩

dN(t)
dt =N(t)[a – bN(t) + cN(t)],

dN(t)
dt =N(t)[a – bN(t) + cN(t)].

()

There are many excellent results on the two-species mutualismmodel (). It is well known
that in nature, with the restriction of resources, it is impossible for one species to survive
if its density is too high. Thus the above model is not so good in describing the mutualism
of two species (see []). Gopalsamy [] proposed the mutualism model as follows:

⎧⎨
⎩

dN(t)
dt = r(t)N(t)[K(t)+α(t)N(t)

+N(t)
–N(t)],

dN(t)
dt = r(t)N(t)[K(t)+α(t)N(t)

+N(t)
–N(t)],

()

whereN(t) and N(t) denote population densities of each species at time t, ri denotes the
intrinsic growth rate of speciesNi and αi > Ki, i = , . The carrying capacity of speciesNi is
Ki in the absence of other species, while with the help of the other species, the carrying ca-
pacity becomes (Ki(t)+αi(t)N–i(t))/(+N–i(t)), i = , . It is assumed that the coefficients
of the system are all continuous and bounded. Li and Xu [] obtained sufficient conditions
for the existence of positive periodic solutions. Chen and You [] gave the sufficient con-
ditions for the permanence of the model. Chen et al. [] considered the permanence of a
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delayed discrete mutualism model with feedback controls. Here we transform the system
() into the following form:

⎧⎨
⎩

dx(t)
dt = x(t)[ a(t)+a(t)y(t)+y(t) – c(t)x(t)],

dy(t)
dt = y(t)[ b(t)+b(t)x(t)+x(t) – c(t)y(t)].

()

As amatter of fact, population systems are often subject to environmental noise, i.e., due
to environmental fluctuations, parameters involved in populationmodels are not absolute
constants, and they may fluctuate around some average values. Based on these factors,
more and more people began to be concerned about stochastic population systems (see
[–]). Especially, Mao et al. [] obtained the interesting and surprising conclusion: even
a sufficiently small noise can suppress explosions in population dynamics. Jiang et al. []
considered the global stability and stochastic permanence of a stochastic logistic model. Ji
et al. [] discussed the persistence in mean of a predator-prey model with stochastic per-
turbation.Now, taking into account the effect of randomly fluctuating environment, we in-
corporate white noise in each equation of the system (). Therefore, the non-autonomous
stochastic system can be described by the Itô equation

⎧⎨
⎩
dx(t) = x(t)[ a(t)+a(t)y(t)+y(t) – c(t)x(t)]dt + σ(t)x(t)dB(t),

dy(t) = y(t)[ b(t)+b(t)x(t)+x(t) – c(t)y(t)]dt + σ(t)y(t)dB(t),
()

where ai(t), bi(t), ci(t), σi(t), i = ,  are all positive, continuous and bounded functions
on [,+∞), and B(t), B(t) are independent Brownian motions, σ and σ represent the
intensities of the white noises.
For convenience, if f (t) is a continuous bounded function on [,+∞), we define

f̂ = inf
t∈[,+∞)

f (t), f̌ = sup
t∈[,+∞)

f (t).

For any sequence {fi(t)} (i = , ) define

f̂ = inf
t∈[,+∞)

fi(t), f̌ = sup
t∈[,+∞)

fi(t).

To the best of our knowledge, a very little amount of work has been done on the stochas-
tic system (). Therefore, we aim to consider dynamical properties of the stochastic model
() in this paper.
Since stochastic differential equation () describes population dynamics, it is necessary

for the solution of the system to be positive and not to explode to infinity in a finite time. In
this paper, we firstly show that the stochastic system () has a unique global (no explosion
in a finite time) solution for any positive initial value in Section .. To a population sys-
tem, the stochastic boundedness is one of most important topics. Section . tells us that
the stochastic model () is stochastically ultimately bounded. Furthermore, we will show
that the solution of () is uniformly continuous and globally attractive in Section . and
Section . respectively. Moreover, we obtain that the stochastic system is stochastically
permanent (cf. [, ]) in Section . Section  shows that the stochastic system is persistent
in mean (cf. [, ]). And under some conditions, we discuss the stochastic extinction of
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the system () in Section . We work out some figures to illustrate the various theorems
obtained before in Section . Finally, we close the paper with conclusions in Section . The
important contributions of this paper are therefore clear.

2 Basic properties of the solution
2.1 Positive and global solution
Throughout this paper, let (�,F , {Ft}t≥,P) be a complete probability spacewith a filtration
{Ft}t≥ satisfying the usual conditions. We denote by R

+ the positive cone in R, X(t) =
(x(t), y(t)) and |X(t)| = (x(t) + y(t))  . And we use K to denote a positive constant whose
exact value may be different in different appearances.

Theorem  For any given initial value X = (x, y) ∈ R
+, there is a unique solution X(t) =

(x(t), y(t)) to stochastic differential equation () on t ≥  and the solution will remain in R
+

with probability , that is, X(t) = (x(t), y(t)) ∈ R
+ for all t ≥  almost surely.

Proof The proof is similar to [, ]. Since the coefficients of equation () are locally Lips-
chitz continuous, for any given initial value X ∈ R

+, there is a unique local solution X(t)
on t ∈ [, τe), where τe is the explosion time. To show this solution is global, we need to
show that τe = +∞ a.s. Let m >  be sufficiently large for x(t) and y(t) lying within the
interval [ 

m
,m]. For each integer m≥ m, define the stopping time

τm = inf

{
t ∈ [, τe) : x(t) or y(t) /∈

(

m
,m

)}
,

where, throughout this paper, we set inf∅ = ∞. Obviously, τm is increasing asm → ∞. Let
τ∞ = limm→∞ τm, whence τ∞ ≤ τe a.s. If we can show that τ∞ = ∞ a.s., then τe = ∞ a.s. If
not, there is ε ∈ (, ) andT >  such that P{τ∞ ≤ T} > ε. Hence there is an integerm ≥ m

such that P{τm ≤ T} ≥ ε for all m ≥ m. Define a function V : R
+ → R+ by V (x) = (x –  –

lnx) + (y –  – ln y). The non-negativity of this function can be seen from u –  – lnu ≥ 
on u > . If X(t) ∈ R

+, we obtain that

LV = (x – )
[
a(t) + a(t)y(t)

 + y(t)
– c(t)x(t)

]

+ (y – )
[
b(t) + b(t)x(t)

 + x(t)
– c(t)y(t)

]
+

σ 
 + σ 




≤ (ǎi + či)x(t) – ĉi(t)x(t) + (b̌i + či)y(t) – ĉi(t)y(t) +


(
σ 
 + σ 


) ≤ K .

Therefore

EV
(
X(τm ∧ T)

)
= V (X) + E

∫ τm∧T


LV

(
X(t)

)
dt ≤ V (X) +KT . ()

On the other hand, we have

V
(
X(τm)

) ≥ [m –  – lnm]∧
[
lnm –  +


m

]
.
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It follows from () that

V (X) +KT ≥ ε

(
[m –  – lnm]∧

[
lnm –  +


m

])
.

Lettingm → ∞ leads to the contradiction ∞ > V (X) +KT = ∞. Hence, we have τ∞ = ∞
a.s. The proof is complete. �

2.2 Stochastic boundedness
Stochastic boundedness is one ofmost important topics because boundedness of a system
guarantees its validity in a population system. We first present the definition of stochasti-
cally ultimate boundedness.

Definition  (see []) The solution X(t) = (x(t), y(t)) of equation () is said to be stochasti-
cally ultimately bounded if for any ε ∈ (, ), there is a positive constant δ = δ(ε) such that
for any initial value X ∈ R

+, the solution X(t) to () has the property that

lim sup
t→∞

P
{|X(t)| > δ

}
< ε.

Theorem  The solution of the system () is stochastically ultimately bounded for any
initial value X = (x, y) ∈ R

+.

Proof By Theorem , the solution X(t) will remain in R
+ for all t ≥  with probability .

Define the function V = etxp for p > . By the Itô formula, we obtain

LV = etxp(t)
[
 + p

(
a(t) + a(t)y(t)

 + y(t)
– c(t)x(t)

)
+
p(p – )


σ 


]

≤ et
[(

 + pǎ +
p(p – )


σ̌ 

)
xp(t) – pĉxp+(t)

]

≤ 
(ĉ)p

[ + pǎ + p(p–)
 σ̌ 

p + 

]p+

et := K(p)et .

Hence we have

d
(
etxp

)
= LV dt + petxpσ dB(t)≤ K(p)et dt + petxpσ(t)dB(t).

Thus etExp – Exp ≤ K(p)et . So, we have lim supt→∞ Exp ≤ K(p) < +∞.
On the other hand, define the function V = etyp for p > . We have

LV = etyp(t)
[
 + p

(
b(t) + b(t)x(t)

 + x(t)
– c(t)y(t)

)
+
p(p – )


σ 


]

≤ et
[(

 + pb̌ +
p(p – )


σ̌ 

)
yp(t) – pĉyp+(t)

]

≤ 
(ĉ)p

[ + pb̌ + p(p–)
 σ̌ 

p + 

]p+

et := K(p)et .
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This implies d(etyp(t)) = K(p)et dt+petypσ(t)dB(t). Then lim supt→∞ Eyp ≤ K(p) < +∞.
For X(t) = (x(t), y(t)) ∈ R

+, note that |X(t)|p ≤ 
p
 (xp + yp), therefore

lim sup
t→∞

E
∣∣X(t)∣∣p ≤ K < +∞.

Applying the Chebyshev inequality yields the required assertion. �

2.3 Uniform continuity
In this section, we show the positive solution X(t) = (x(t), y(t)) is uniformly Hölder contin-
uous.Main tools are to use appropriate Lyapunov functions and fundamental inequalities.
Main methods are motivated by [, ].

Lemma  ([, ]) Suppose that a stochastic process X(t) on t ≥  satisfies the condition
E|X(t) – X(s)|α ≤ c|t – s|+β ,  ≤ s, t < +∞, for some positive constants α, β and c. Then
there exists a continuous modification X̃(t) of X(t), which has the property that for every
γ ∈ (, β

α
), there is a positive random variable h(w) such that

P
{
ω : sup

<|t–s|<h(ω),≤s,t<+∞
|X̃(t,ω) – X̃(s,ω)|

|t – s|γ ≤ 
 – –γ

}
= .

In other words, almost every sample path of X̃(t) is locally but uniformlyHölder-continuous
with exponent γ .

Theorem  For any initial value (x, y) ∈ R
+, almost every sample path of X(t) =

(x(t), y(t)) to () is uniformly continuous on t ≥ .

Proof Let us consider the stochastic equation as follows:

x(t) = x +
∫ t


f
(
s,x(s), y(s)

)
ds +

∫ t


g

(
s,x(s), y(s)

)
dB(t),

where

f
(
s,x(s), y(s)

)
= x(s)

[
a(s) + a(s)y(s)

 + y(s)
– c(s)x(s)

]
,

g
(
s,x(s), y(s)

)
= σ(s)x(s).

It follows from Theorem  that

E
∣∣f(s,x(s), y(s))∣∣p = E

(
xp(s)

∣∣∣∣a(s) + a(s)y(s)
 + y(s)

– c(s)x(s)
∣∣∣∣
p)

≤ 

Exp(s) +



E
(
a(s) + a(s)y(s)

 + y(s)
– c(s)x(s)

)p

≤ 

Exp(s) + p–ǎp + p–čExp(s)≤ K(p)

and

E
∣∣g(s,x(s), y(s))∣∣p = E

(
σ
p
 (s)x

p
 (s)

) ≤ σ̌ pExp(s)≤ σ̌ pK(p).
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By the moment inequality (cf. [, ]) then for  ≤ t < t < ∞ and p > ,

E
∣∣∣∣
∫ t

t
g(s)dB(s)

∣∣∣∣
p

≤
[
p(p – )



] p

(t – t)

p–


∫ t

t
E
∣∣g(s)∣∣p ds,

where dropping (s,x(s), y(s)) from g(s,x(s), y(s)).
Let  ≤ t < t < ∞, t – t ≤ , /p + /q = , we can compute

E
∣∣x(t) – x(t)

∣∣p

≤ p–E
(∫ t

t
|f|ds

)p

+ p–E
∣∣∣∣
∫ t

t
g dB(s)

∣∣∣∣
p

≤ p–
(∫ t

t
q ds

) p
q
E
(∫ t

t
|f|p ds

)

+ p–
[
p(p – )



] p

(t – t)

p–


∫ t

t
E|g|p ds

≤ p–(t – t)
p


{
(t – t)

p
 +

[
p(p – )



] p

}
K

≤ K(t – t)
p
 ,

where dropping (s,x(s), y(s)) from f(s,x(s), y(s)) and g(s,x(s), y(s)). Consequently, it follows
from Lemma  that almost every sample path of x(t) is locally but uniformly Hölder con-
tinuous with an exponent γ ∈ (, p–p ), and therefore almost every sample path of x(t) is
uniformly continuous on t ≥ .
Similarly, by virtue of Lemma , almost every sample path of y(t) is uniformly continuous

on t ≥ . In a word, almost every sample path of (x(t), y(t)) to () is uniformly continuous
on t ≥ . �

2.4 Global attractivity
Here we show that the solution of () is globally attractive.

Lemma  (Barbalat []) Let f (t) be a non-negative function defined on [, +∞) such that
f (t) is integrable on [, +∞) and is uniformly continuous on [, +∞). Then limt→∞ f (t) = .

Definition  Let X(t) = (x(t), y(t)) and X(t) = (x(t), y(t)) be two arbitrary solutions of
the system () with initial values (x(), y()) ∈ R

+ and (x(), y()) ∈ R
+ respectively. If

lim
t→∞

[∣∣x(t) – x(t)
∣∣ + ∣∣y(t) – y(t)

∣∣] =  a.s.

then we say the system is globally attractive.

Theorem Let c(t)– |(b(t)–b(t))| > , c(t)– |(a(t)–a(t))| >  on [, +∞) hold.Then,
for any initial value X = (x, y) ∈ R

+, the solution X(t) = (x(t), y(t)) is globally attractive.

http://www.advancesindifferenceequations.com/content/2013/1/37


Qiu et al. Advances in Difference Equations 2013, 2013:37 Page 7 of 17
http://www.advancesindifferenceequations.com/content/2013/1/37

Proof The proof is motivated by the arguments of []. Define the Lyapunov function
V (t) = |x(t) – x(t)| + |y(t) – y(t)|. By virtue of the Itô formula, we obtain

d+V (t) = sgn
(
x(t) – x(t)

)
d
[
lnx(t) – lnx(t)

]
+ sgn

(
y(t) – y(t)

)
d
[
ln y(t) – ln y(t)

]
= sgn

[
x(t) – x(t)

]

×
{
a(t) + a(t)y(t)

 + y(t)
–
a(t) + a(t)y(t)

 + y(t)
– c(t)

[
x(t) – x(t)

]}
dt

+ sgn
[
y(t) – y(t)

]

×
{
b(t) + b(t)x(t)

 + x(t)
–
b(t) + b(t)x(t)

 + x(t)
– c(t)

[
y(t) – y(t)

]}
dt

=
|(a(t) – a(t))(y(t) – y(t))|

( + y(t))( + y(t))
+

|(b(t) – b(t))(x(t) – x(t))|
( + x(t))( + x(t))

– c
∣∣x(t) – x(t)

∣∣ – c
∣∣y(t) – y(t)

∣∣
≤ –

(
c(t) –

∣∣(b(t) – b(t)
)∣∣)∣∣x(t) – x(t)

∣∣
–

(
c(t) –

∣∣(a(t) – a(t)
)∣∣)∣∣y(t) – y(t)

∣∣.
Integrating the above inequality from  to t, there exists a positive constant K such that

V (t) +K
∫ t



(∣∣x(s) – x(s)
∣∣ + ∣∣y(s) – y(s)

∣∣)ds ≤ V () < +∞.

Therefore, it follows from Theorem  and Lemma  that

lim
t→∞

[∣∣x(t) – x(t)
∣∣ + ∣∣y(t) – y(t)

∣∣] =  a.s.

So, we complete the proof. �

3 Stochastic permanence
The property of permanence is more desirable since it means the long time survival in a
population dynamics. Now, the definition of stochastic permanence will be given below
[, ].

Definition  The solution X(t) = (x(t), y(t)) of equation () is said to be stochastically
permanent if for any ε ∈ (, ), there exists a pair of positive constants δ = δ(ε) and χ = χ (ε)
such that for any initial value X = (x, y) ∈ R

+, the solution X(t) to () has the properties
that

lim inf
t→∞ P

{∣∣X(t)∣∣ ≥ δ
} ≥  – ε, lim inf

t→∞ P
{∣∣X(t)∣∣ ≤ χ

} ≥  – ε.

Let us now impose a hypothesis.

Assumption  min{â, b̂} > σ̌

 .

http://www.advancesindifferenceequations.com/content/2013/1/37
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Theorem  Under Assumption , for any initial value X = (x, y) ∈ R
+, the solution

X(t) = (x(t), y(t)) satisfies that

lim sup
t→∞

E
(


|X(t)|θ

)
≤ K , ()

where θ is an arbitrary positive constant satisfying

min{â, b̂} > θ + 


σ̌ , ()

and k is an arbitrary positive constant satisfying

θ min{â, b̂} – θ (θ + )


σ̌  – k > . ()

Proof Define V (X) = (x + y) for (x, y) ∈ R
+, then

dV (X) =
[
x(t)

(
a(t) + a(t)y(t)

 + y(t)
– c(t)x(t)

)
+ y(t)

(
b(t) + b(t)x(t)

 + x(t)
– c(t)y(t)

)]
dt

+
(
σxdB(t) + σydB(t)

)
.

And also define U(X(t)) = 
V (X(t)) on t ≥ . Applying the Itô formula, we get

dU = –U
[(

x
(
a(t) + a(t)y

 + y
– c(t)x

)
+ y

(
b(t) + b(t)x

 + x
– c(t)y

))
dt

+
(
σ(t)xdB(t) + σ(t)ydB(t)

)]
+U[(σ(t)x

) + (
σ(t)y

)]dt
= LU dt –U[σ(t)xdB(t) + σ(t)ydB(t)

]
,

where

LU = –U
[
x
(
a(t) + a(t)y

 + y
– c(t)x

)
+ y

(
b(t) + b(t)x

 + x
– c(t)y

)]

+U[(σ(t)x
) + (

σ(t)y
)]

dropping X(t) from U(X(t)), V (X(t)) and t from x(t), y(t). Under Assumption , choose a
positive constant θ such that it obeys (). By the Itô formula again, we have

L( +U)θ = θ ( +U)θ–LU +
θ (θ – )


U( +U)θ–

[(
σ(t)x

) + (
σ(t)y

)].
Now, choose k >  sufficiently small such that it satisfies (). Thus by the Itô formula,

L
[
ekt( +U)θ

]
= kekt( +U)θ + ektL( +U)θ = ekt( +U)θ–

(
k( +U) + F

)
.

The following analysis mainly focuses on the upper boundedness of the function

( +U)θ–
(
k( +U) + F

)
.

http://www.advancesindifferenceequations.com/content/2013/1/37
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We compute

F = –θU
[
x
(
a(t) + a(t)y

 + y
– c(t)x

)
+ y

(
b(t) + b(t)x

 + x
– c(t)y

)]

– θU
[
x
(
a(t) + a(t)y

 + y
– c(t)x

)
+ y

(
b(t) + b(t)x

 + x
– c(t)y

)]

+ θU[(σ(t)x
) + (

σ(t)y
)] + θ (θ + )


U[(σ(t)x

) + (
σ(t)y

)]

dropping t from x(t), y(t). Simplifying the inequalities above, we obtain

L
[
ekt( +U)θ

]
= ekt( +U)θ–

[
k( +U) + F

]

≤ ekt( +U)θ–
[
K +KU –

(
θ min{â, b̂} – θ (θ + )


σ̌  – k

)
U

]
.

Then () implies that there exists a positive constant K such that

Lekt( +U)θ ≤ Kekt .

This implies

E
[
ekt

(
 +U(t)

)θ ] ≤ (
 +U()

)θ +
K
k
ekt =

(
 +U()

)θ +Kekt .

Thus, lim supt→∞ EUθ (t) ≤ lim supt→∞ E(+U(t))θ ≤ K . Note that (x+y)θ ≤ θ (x +y) θ
 =

θ |X|θ for X = (x, y) ∈ R
+. Consequently,

lim sup
t→∞

E
(


|X(t)|θ

)
≤ θ lim sup

t→∞
EUθ (t)≤ K . �

Theorem  Let Assumption  hold. Then the system () is stochastically permanent.

The proof is an application of the well-known Chebyshev inequality and Theorems 
and . Here it is omitted.

4 Persistence in mean
In view of ecology, a good situation occurs when all species co-exist. In this section, we
will consider another stochastic persistence, that is, stochastic persistence in mean. Now,
we present the definition of persistence in mean.

Definition  (see [, ]) The system () is said to be persistent in mean if

lim
t→∞


t

∫ t


x(s)ds > , lim

t→∞

t

∫ t


y(s)ds >  a.s.

Firstly, we introduce a fundamental lemma which will be used.

Lemma  Consider the one-dimensional stochastic equation

dx(t) = x(t)
[
a(t) – b(t)x(t)

]
dt + σ (t)x(t)dB(t), ()

http://www.advancesindifferenceequations.com/content/2013/1/37
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where a(t), b(t), σ (t) are positive, continuous and bounded functions, B(t) is a standard
Brownian motion.Under the condition â > σ̌

 , for any initial value x > , the solution x(t)
to () has the property

lim
t→∞

lnx(t)
t

=  a.s.

Proof We firstly show lim supt→∞
lnx(t)

t ≤  a.s. To define the Lyapunov function V (t,x) =
et lnx, using the Itô formula, we obtain

d
(
et lnx(t)

)
= et

[
lnx(t) + a(t) – b(t)x(t) –

σ (t)


]
dt + etσ (t)dB(t).

Thus

et lnx(t) – lnx =
∫ t


es

[
lnx(s) + a(s) – b(s)x(s) –

σ (s)


]
ds +M(t),

whereM(t) =
∫ t
 e

sσ (s)dB(s), whose quadratic variation is

〈
M(t),M(t)

〉
=

∫ t


esσ (s)ds.

By virtue of the exponential martingale inequality, for any positive constants T , δ, β , we
have

P
{

sup
≤t≤T

[
M(t) –

δ


〈
M(t),M(t)

〉]
> β

}
≤ e–δβ .

Choose T = kγ , δ = nεe–kδ and β = θekδ lnk
εn , where k ∈ Z+,  < ε < , θ >  and γ >  above.

Hence

P
{

sup
≤t≤T

[
M(t) –

nεe–kδ


〈
M(t),M(t)

〉]
>

θekδ lnk
εn

}
≤ k–θ .

Obviously, we know
∑∞

k= k–θ < ∞. Applying the Borel-Cantalli lemma, we obtain that
there exists some �i ⊂ � with P(�i) =  such that for any ω ∈ �i, an integer ki = ki(ω)
such that for any k > ki, we get

M(t) ≤ nεe–kδ


〈
M(t),M(t)

〉
+

θekδ lnk
εn

for all  ≤ t ≤ kγ . Then

et lnx(t) – lnx ≤
∫ t


es

[
lnx(s) + ar(s) – b(s)x(s) –

σ (s)


+
nεes–kδ


σ (s)

]
ds+

θekδ lnk
ε

.

Note that t ∈ [,kγ ], s ∈ [, t], we have

lnx(s) + a(s) – b(s)x(s) –
σ (s)


+
nεes–kδ


σ (s) ≤ K .

http://www.advancesindifferenceequations.com/content/2013/1/37


Qiu et al. Advances in Difference Equations 2013, 2013:37 Page 11 of 17
http://www.advancesindifferenceequations.com/content/2013/1/37

For all t ∈ [,kγ ] with k > k(ω), we derive

et lnx(t) – lnx ≤
∫ t


Kes ds +

θekδ lnk
ε

= K
(
et – 

)
+

θekδ lnk
ε

.

Thus, for (k – )γ ≤ t ≤ kγ , we get lnx(t)≤ e–t lnx +K( – e–t) + θeδ lnk
ε

. This implies

lnx(t)
ln t

≤ lnx
et ln t

+
K( – e–t)

ln t
+

θeδ lnk
ε ln((k – )γ )

.

Letting k → ∞, that is, t → ∞, we can imply lim supt→∞
lnx(t)
ln t ≤ θeγ

ε
. By making γ ↓ ,

ε ↑  and θ ↓ , we get lim supt→∞
lnx(t)
ln t ≤ . Consequently,

lim sup
t→∞

lnx(t)
t

= lim sup
t→∞

lnx(t)
ln t

lim sup
t→∞

ln t
t

≤ lim sup
t→∞

ln t
t

= .

Thus it remains to show that lim inft→∞ lnx(t)
t ≥  a.s. The quadratic variation of the

stochastic integral
∫ t
 σ (s)dB(s) is

∫ t
 σ (s)ds ≤ Kt. So, the strong law of large numbers of

local martingales yields that


t

∫ t


σ (s)dB(s)→  a.s. t → ∞.

Hence, for any ε > , there exists some positive T < ∞ such that

∣∣∣∣
∫ t


σ (s)dB(s)

∣∣∣∣ < εt a.s. for any t ≥ T .

For any t > s ≥ T , we have

∣∣∣∣
∫ t

s
σ (s)dB(s)

∣∣∣∣ < ε(s + t) a.s.

Then, for any t > T ,


x(t)

=


x(T)
e[

∫ t
T –(a(s)– σ(s)

 )ds–
∫ t
T σ (s)dB(s)] +

∫ t

T
b(s)e[

∫ t
s –(a(τ )–

σ(τ )
 )dτ–

∫ t
T σ(r(τ ))dB(τ )] ds

≤ 
x(T)

e[
∫ t
T –(a(s)– σ(s)

 )ds+ε(t+T)] +
∫ t

T
b(s)e[

∫ t
s –(a(τ )–

σ(τ )
 )dτ+ε(t+s)] ds.

Therefore

e–ε(t+T)


x(t)
≤ 

x(T)
e[

∫ t
T –(a(s)– σ(s)

 )ds–ε(t+T)]

+
∫ t

T
b(s)e[

∫ t
s –(a(τ )–

σ(τ )
 )dτ–ε(t–s)–εT] ds

≤ K < ∞.

http://www.advancesindifferenceequations.com/content/2013/1/37
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That is, 
x(t) ≤ Keε(t+T) a.s. Then

ln 
x(t)
t ≤ 

t [lnK +ε(t+T)] a.s. Thus lim inft→∞ lnx(t)
t ≥ –ε

a.s. Since ε is arbitrary, we conclude that

lim inf
t→∞

lnx(t)
t

≥  a.s.

So, the proof is complete. �

Remark  Lemma  generalizes the works of [] and [].

To continue our analysis, let us impose the following hypothesis.

Assumption  â – σ̌

 > , b̂ – σ̌

 > .

Theorem  tells us there is a unique global solution (which is positive for any initial value
X = (x, y) ∈ R

+) to the stochastic system (). So, we conclude the following results by
the comparison theorem. We can get

dx(t)≤ x(t)
[
ǎ – c(t)x(t)

]
dt + σ(t)x(t)dB(t)

and

dx(t)≥ x(t)
[
â – c(t)x(t)

]
dt + σ(t)x(t)dB(t).

Denote that X is the solution to the following stochastic equation:

dX(t) = X(t)
[
ǎ – c(t)X(t)

]
dt + σ(t)X(t)dB(t) ()

with X() = x. And X is the solution to the equation

dX(t) = X(t)
(
â – c(t)X(t)

)
dt + σ(t)X(t)dB(t) ()

with X() = x. It is obvious that X(t) ≤ x(t) ≤ X(t), t ∈ [, +∞) a.s. Moreover, we can
have

dy(t) ≤ y(t)
(
b̌ – c(t)y(t)

)
dt + σ(t)y(t)dB(t)

and

dy(t) ≥ y(t)
(
b̂ – c(t)y(t)

)
dt + σ(t)y(t)dB(t).

We denote Y(t) is the solution of the stochastic differential equation

dY(t) = Y(t)
[
b̂ – c(t)Y(t)

]
dt + σY(t)dB(t) ()

with Y() = y. And the stochastic equation

dY(t) = Y(t)
[
(b̌ – c(t)Y(t)

]
dt + σY(t)dB(t) ()

http://www.advancesindifferenceequations.com/content/2013/1/37
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has the solution Y(t) for initial value Y() = y. Consequently, Y(t) ≤ y(t) ≤ Y(t), t ∈
[, +∞) a.s. To sum up, we have

X(t)≤ x(t)≤ X(t), Y(t) ≤ y(t) ≤ Y(t), t ∈ [, +∞) a.s. ()

Lemma  Under Assumption , for any initial value x > , the solution x(t) to () satisfies

lim
t→∞

lnx(t)
t

=  a.s.

Lemma , (), () and () can straightforward imply the assertion.

Lemma  Under Assumption , for any initial value y > , the solution y(t) to () satisfies

lim
t→∞

ln y(t)
t

=  a.s.

Lemma , (), () and () prove the result.

Theorem  Let Assumption  hold. Then, for any initial value (x, y) ∈ R
+, the system ()

is persistent in mean. That is, the system () has the properties

lim inf
t→∞

∫ t
 y(s)ds

t
≥ g – σ




h
> , lim inf

t→∞

∫ t
 x(s)ds

t
≥ â – σ̌


č

>  a.s.

Proof Denote V (x) = lnx, by the Itô formula, we obtain

d
(
lnx(t)

)
=

[
a(t) + a(t)y(t)

 + y(t)
– c(t)x(t) –

σ 
 (t)


]
dt + σ(t)dB(t).

Then

lnx(t) = lnx +
∫ t



(
a(s) + a(s)y(s)

 + y(s)
–

σ 
 (s)


)
ds

–
∫ t


c(s)x(s)ds +

∫ t


σ(s)dB(s),

which yields

č
∫ t


x(s)ds≥ – lnx(t) + lnx +

(
â –

σ̌ 



)
t +

∫ t


σ(s)dB(s).

By virtue of the strong law of large numbers and Lemma , we get

lim inf
t→∞

∫ t
 x(s)ds

t
≥ â – σ̌


č

>  a.s.

On the other hand, denote V (y) = ln y, by the Itô formula, we obtain

d
(
ln y(t)

)
=

[
b(t) + b(t)x(t)

 + x(t)
– c(t)y(t) –

σ 
 (t)


]
dt + σ(t)dB(t).
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Thus

ln y(t) = ln y +
∫ t



(
b(s) + b(s)x(s)

 + x(s)
–

σ 
 (s)


)
ds

–
∫ t


c(s)y(s)ds +

∫ t


σ(s)dB(s).

So, we have

č
∫ t


y(s)ds ≥ – ln y(t) + ln y +

(
b̂ –

σ̌ 



)
t +

∫ t


σ(s)dB(s).

Dividing t on both sides yields

č
∫ t
 y(s)ds

t
≥ –

ln y(t)
t

+
ln y
t

+
(
b̂ –

σ̌ 



)
+

∫ t
 σ(s)dB(s)

t
.

Letting t → ∞, by virtue of the strong law of large numbers and Lemma , we have

lim inf
t→∞

∫ t
 y(s)ds

t
≥ b̂ – σ̌


č

>  a.s.

The proof is complete. �

5 Extinction
In Sections  and , we showed that under certain conditions, the system was stochasti-
cally permanent and persistent in mean respectively. In view of ecology, a bad thing hap-
pens when a species disappears. Here, we will show that if the noise is sufficiently large,
the solution to the associated stochastic model will become extinct with probability one.

Theorem Assume ǎ– σ̂

 <  and b̌– σ̂

 <  hold.Then, for any initial value (x, y) ∈ R
+,

the solution (x(t), y(t)) to () will be extinct exponentially with probability one, that is,

lim sup
t→∞

lnx(t)
t

≤ ǎ –
σ̂ 


< , lim sup

t→∞
ln y(t)

t
≤ b̌ –

σ̂ 


<  a.s.

Proof Define Lyapunov functions lnx and ln y respectively. Then, by the Itô formula, we
have

d
(
lnx(t)

)
=

[
a(t) + a(t)y(t)

 + y(t)
– c(t)x(t) –

σ 
 (t)


]
dt + σ(t)dB(t)

and

d
(
ln y(t)

)
=

[
b(t) + b(t)x(t)

 + x(t)
– c(t)y(t) –

σ 
 (t)


]
dt + σ(t)dB(t).

Hence

lnx(t)≤ lnx +
(
ǎ –

σ̂ 



)
t +

∫ t


σ(s)dB(s)
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and

ln y(t) ≤ ln y +
(
b̌ –

σ̂ 



)
t +

∫ t


σ(s)dB(s).

Dividing t on the both sides, letting t → ∞ and applying the strong law of large numbers
for local martingales, we have

lim sup
t→∞

lnx(t)
t

≤ ǎ –
σ̂ 


< , lim sup

t→∞
ln y(t)

t
≤ b̌ –

σ̂ 


<  a.s.

So, we complete the proof. �

6 Numerical simulations
In this section we use the Milstein method mentioned in Higham [] to substantiate the
analytical findings.
For the model (), we consider the discretization equation:

xk+ = xk + xk
[
a(kt) + a(kt)yk

yk + 
– c(kt)xk

]
t + σ(kt)xk

√
tξk

+
σ 
 (kt)


xk
(
ξ 
k – 

)
t,

yk+ = yk + yk
[
b(kt) + b(kt)xk

xk + 
– c(kt)yk

]
t + σ(kt)yk

√
tηk

+
σ 
 (kt)


yk
(
η
k – 

)
t,

where ξk and ηk are Gaussian random variables that follow N(, ).
In Figure a,b, we choose a = b = ., a = b = ., c = c = .. In Figure a,b, we

choose σ(t)/ = σ 
 (t)/ = .. By virtue of Theorem , the system will be stochastically

permanent. It follows from Theorem  that the system will be persistent in mean. What
we mentioned above can be seen from Figure a,b. The difference between conditions
of Figure a,b,c is that the values of σ and σ are different. In Figure a,b, we choose
σ 
 / = σ 

 / = .. In Figure c, we choose σ 
 / = σ 

 / = . In view of Theorem , both
species x and y will go to extinction. Figure c confirms this.
By comparing Figure a,b with Figure c, we can observe that small environmental noise

can retain the stochastic system permanent; however, sufficiently large environmental
noise makes the stochastic system extinct.

7 Conclusions
In this paper, we consider the stochastic mutualism system (). We show that there is a
unique positive solution to the model for any positive initial value. Moreover, we show
that the positive solutions are uniformly continuous, globally attractive. Especially, we
conclude the following: under Assumption , the stochastic model () is stochastically
permanent; under Assumption , the stochastic model () is persistent in mean. It is in-
teresting and surprising to obtain the results. It is easy to see thatAssumptions  and  have
almost the same meaning. To a great extent, when the intensity of environmental noise is
not too big, some nice properties such as non-explosion, boundedness, permanence are
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Figure 1 Solution X(t) = (x(t),y(t)) of system (4)
for x(0) = 0.5, y(0) = 0.5. The horizontal axis
represents the time t. (a) is with σ 2

1 /2 = σ 2
2 /2 = 0.01

and step size t = 0.01; (b) is with σ 2
1 /2 = σ 2

2 /2
= 0.01 and step size t = 0.002; (c) is with
σ 2
1 /2 = σ 2

2 /2 = 1 and step size t = 0.002.

desired. However, Theorem  reveals that a large white noise will force the population to
become extinct.
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