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Abstract
This paper presents a vaccination strategy for fighting against the propagation of
epidemic diseases. The disease propagation is described by a SIRS (susceptible plus
infected plus recovered populations) epidemic model. The model takes into account
that the recovered individuals lose the disease immunity after a finite time period.
A control technique based on a model linearization approach is used to design the
vaccination strategy in order to eradicate the infection from the population.
Moreover, the controlled system is guaranteed to be positive and stable under such a
vaccination control strategy. A simulation example illustrates the theoretical results
relative to the stability and positivity of the controlled system while guaranteeing the
eradication of the epidemics.
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Keywords: SIRS epidemic models; vaccination; nonlinear control; stability; positivity

1 Introduction
The study of propagation of epidemic diseases within a host population has been broadly
dealt with for the last decades [–]. In this context, several epidemic models have been
proposed for analyzing the behavior of different infectious diseases. Among them, the
so-called SIRS epidemic model has been used to describe the propagation of epidemic
diseases as, for instance, influenza, tetanus, diphtheria, hepatitis A and so on. Such dis-
eases are characterized, among other features, by the fact that the immunization induced
by vaccination is only temporary, i.e., such an immunization is not permanent. This fea-
ture motivates the use of a SIRS model to explain the disease propagation within the host
population [, ]. In such a compartmental model, the host population is divided into
three categories, each one relative to an epidemic status. Namely, there is a susceptible (S)
population composed of either individuals who have not been previously exposed to the
pathogen or recovered (R) individuals who have lost the immunity after having success-
fully cleared the infection. Finally, there is an infected (I) population composed of individ-
uals who are currently colonized by the pathogen. Moreover, there are three transitions
between such population categories. The first one is the transition from the susceptible
population to the infected one. Such a transition occurs when there is a contact between
a susceptible individual and an infected one. In such situations there is a probability of
disease transmission from the infected individual to the susceptible one who becomes in-
fected after a latent period. This latent period is not taken into account in a SIRS model.
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However, the model can be extended to include such a time period giving place to a SEIRS
model []. The transition from the infected category to the recovered one occurs when an
infected individual has fought off the infection. Such a transition occurs after an infection
period. Finally, the transition from the recovered category to the susceptible one occurs
when a recovered individual loses the temporary immunity [].
One of the purposes of analyzing epidemicmodels concerns the design of control strate-

gies in order to eradicate the persistence of the infection in the host population. In this
context, constant, regular and/or impulsive vaccination strategies have been proposed in
several research papers [–]. Concretely, a regular vaccination strategy based on a feed-
back control law for exact input-output linearization of a SEIR epidemicmodel is designed
in []. Moreover, such a control strategy is combined with an observer in []. The observer
is designed to estimate on-line the susceptible and the infected (or exposed) populations
since such measures are not available in a real situation where only the infectious popula-
tion is measurable. The estimates provided by the observer are used to synthesize the con-
trol law instead of the true susceptible and infected populations. Such strategies achieve
the eradication of the disease from the host population while guaranteeing the positivity
and stability of the controlled system. Other potential situation is that the parameters of
the epidemic model are not fully known, which may be circumvented by using adaptive
control strategies [].
Linearization and impulsive control techniques have been satisfactorily used for stabi-

lizing highly nonlinear processes in applications of diverse nature. On the one hand, an
active magnetic bearing system composed of a spindle rotating at different speeds is sta-
bilized by means of a control strategy based on a linearization of the process in []. On
the other hand, a fuzzy impulsive strategy is designed to achieve the stabilization in chaos
control in []. Also, sliding mode control techniques have been applied in models of dis-
eases propagation []. This use is motivated by the satisfactory results obtained in the
application of such techniques in other kind of systems [].
The proposed SEIR model in [, ] assumes that the whole host population is main-

tained constant for all time, i.e., such a model is valid when the mortality by causes rela-
tive to the disease is negligible, and the birth and naturally mortality rates are similar so
that the whole host population may be considered time-invariant. In the same line, the
current paper proposes a vaccination strategy based on a linearization control technique
of the mapping from the vaccination control to the infected population in order to eradi-
cate an epidemic disease propagation of which can be described by a SIRS epidemic model.
The control law based on an input-output linearization technique is useful in order to de-
sign a vaccination strategy since the epidemic models in general, and then the SIRSmodel
considered in this paper, are nonlinear systems. Concretely, they include a bilinear term
which describes the potential disease transmission when contacts between susceptible
and infected individuals happen. Themain difference of the current research with respect
to [, ] is that the mortality from causes relative to the infection is appreciable. Also, the
birth and mortality from nature causes may be different so that the whole host population
may be time-varying. A normalized SIRS epidemic model is used to circumvent the com-
plexity from the fact that the whole population is time-varying. Such a normalized model
is obtained from the original SIRS one via a suitable variables change. Moreover, such a
normalized model is used to synthesize the vaccination control law which ensures the erad-
ication of the infection from the host population and the positivity of the normalized SIRS
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model as well as the original SIRS epidemic model. The mathematical proofs of the epi-
demics eradication and the positivity of both models constitute the main contribution of
this paper. Also, a simulation example based on a rabbit hemorrhagic disease illustrates
the theoretical results. Such a disease has been chosen in such a numerical study because
of its high mortality [].
Finally, the described control strategy may be extended to more complex epidemical

models which consider more population categories than the presented SIRS model. In
this sense, vaccinated, quarantine, susceptible population with different risk of catching
infection, asymptomatic or symptomatic infected populations have been considered in
other compartmental models for describing the propagation of infectious diseases within
a host population [–].

Notation R+ � (,∞)∩R is the set of strictly positive real numbers and R+ �R+ ∪ {}.
R– � (–∞, )∩R is the set of strictly negative real numbers and R– �R– ∪{}.R

+ is the
first open real quadrant and R


+ is the first closed real quadrant. R

– is the third open real
quadrant and R


– is the third closed real quadrant.

2 SIRS epidemic model
Let S(t), I(t) and R(t) be, respectively, the susceptible, infected and recovered or removed-
by-immunity populations at time t. Consider a time-invariant SIRS epidemic model given
by

Ṡ(t) = –μS(t) +ωR(t) – β
S(t)I(t)
N(t)

+ νN(t)
[
 –V (t)

]
, ()

İ(t) = –(μ + γ )I(t) + β
S(t)I(t)
N(t)

, ()

Ṙ(t) = –(μ +ω)R(t) + γ ( – ρ)I(t) + νN(t)V (t) ()

subject to the initial conditions S()≥ , I() ≥  and R()≥  under a vaccination func-
tion V :R+ →R+. In the above SIRS model, N(t)≥  is the total population at any time
instant t ∈R+,μ >  is the death rate from natural causes unrelated to the infection, ν > 
is the birth rate, ω >  is the rate of losing immunity, β >  is the transmission constant
(with the total number of infections per unity of time at time t being βS(t)I(t)/N(t)), γ > 
is the recovery rate (or γ – the average duration of the infective period) and ρ ∈ [, ) is
the probability of death from infection causes. The total population dynamics is obtained
by summing up ()-() yielding

Ṅ(t) = Ṡ(t) + İ(t) + Ṙ(t) = (ν –μ)N(t) – ργ I(t) ()

so that the total population is time-varying. A normalized SIRS model is used to analyze
and design a vaccination control strategy.

2.1 Normalized SIRS model
The SIRS model ()-() is normalized with respect to the whole population by using the
following variables change:

s(t) =
S(t)
N(t)

; ι(t) =
I(t)
N(t)

; r(t) =
R(t)
N(t)

. ()
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By introducing this variables change in ()-(), one obtains the normalized SIRS model
given by

ṡ(t) = –νs(t) +ωr(t) + (ργ – β)s(t)ι(t) + ν
[
 –V (t)

]
, ()

ι̇(t) = –(ν + γ )ι(t) + βs(t)ι(t) + ργ ι(t), ()

ṙ(t) = –(ν +ω)r(t) + γ ( – ρ)ι(t) + ργ ι(t)r(t) + νV (t). ()

By summing up ()-(), it follows that ṡ(t) + ι̇(t) + ṙ(t) =  so that s(t) + ι(t) + r(t) =  for
all time irrespective of the vaccination function.

3 Vaccination strategy
The main control objective is that the infected population asymptotically tends to zero as
t → ∞, so the infection is eradicated from the population, while guaranteeing the posi-
tivity of the controlled system. A vaccination control law based on a static-state feedback
linearization strategy is developed for achieving such a control objective. This technique
requires a nonlinear coordinate transformation, based on the Lie derivatives theory, in the
system representation [].
The dynamics equations ()-() of the normalized SIRS model can be equivalently writ-

ten as the following nonlinear control affine system:

ẋ(t) = f
(
x(t)

)
+ g

(
x(t)

)
u(t); y(t) = h

(
x(t)

)
, ()

where y(t) = ι(t) ∈ R+, u(t) = V (t) ∈ R+ and x(t) = [ι(t) s(t)]T ∈ R

+ are, respectively,

considered as the output signal, the input signal and the state vector of the system ∀t ∈R+,
and r(t) =  – s(t) – ι(t) has been used with

f
(
x(t)

)
=

[
–(ν + γ )ι(t) + βs(t)ι(t) + ργ ι(t)

–(ν +ω)s(t) –ωι(t) + (ργ – β)s(t)ι(t) + ν +ω

]
∈R

;

g
(
x(t)

)
=

[
 –ν

]T ∈R

–; h

(
x(t)

)
= ι(t) ∈R+.

()

The first step to apply a coordinate transformation based on the Lie derivation is to
determine the relative degree of the system. For such a purpose, the following definitions
are taken into account: (i) Lkf h(x(t))�

∂(Lk–f h(x(t)))
∂x f(x(t)) is the kth-order Lie derivative of

h(x(t)) along f(x(t)) with Lf h(x(t))� h(x(t)) and (ii) the relative degree r of the system is
the number of times that the output must be differentiated to obtain the input explicitly,
i.e., the number r so that LgLkf h(x(t)) =  for k < r –  and LgLr–f h(x(t)) 	= .
From (), Lgh(x(t)) = , while LgLfh(x(t)) = –νβι(t), so the relative degree of the system

is  in D � {x = [ι s]T ∈ R

+ | ι 	= }, i.e., ∀x ∈ R


+ except in the singular surface ι =  of

the state space where the relative degree is not well defined. Since the relative degree of
the system is exactly equal to the dimension of the state space for any x ∈D, the nonlinear
coordinate change

ῑ(t) = Lf h
(
x(t)

)
= ι(t); s̄(t) = Lfh

(
x(t)

)
= –(ν + γ )ι(t) + βs(t)ι(t) + ργ ι(t) ()
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allows to represent themodel in the so-called normal form in a neighborhood of any x ∈D.
Namely,

˙̄x(t) = f̄
(
x̄(t)

)
+ ḡ

(
x̄(t)

)
u(t); y(t) = h

(
x̄(t)

)
, ()

where x̄(t) = [ῑ(t) s̄(t)]T and

f̄
(
x̄(t)

)
=

[
s̄(t) φ(x̄(t))

]T ; ḡ
(
x̄(t)

)
=

[
 –νβῑ(t)

]T ; h
(
x̄(t)

)
= ῑ(t) = ι(t);

φ
(
x̄(t)

)
= (β – ν – γ )(ν +ω)ῑ(t) – (ν +ω)s̄(t)

+
(
ργ (ν +ω + γ ) – β(ν +ω + γ )

)
ῑ(t)

+ (ργ – β)s̄(t)ῑ(t) +
s̄(t)
ῑ(t)

– ργ (ργ – β)ῑ(t).

()

The following result being relative to the input-output linearization of the system is es-
tablished.

Theorem  The state feedback control law

u(t) =
–Lf h(x(t)) – λh(x(t)) – λLfh(x(t))

LgLfh(x(t))
, ()

where λ and λ are the controller tuning parameters, induces the linear closed-loop dy-
namics

ÿ(t) + λẏ(t) + λy(t) =  ()

around any point x ∈D.

Proof The state equation for the closed-loop system

[˙̄ι(t)
˙̄s(t)

]
=

[
s̄(t)

φ(x̄(t)) – Lf h(x(t)) – λ ῑ(t) – λs̄(t)

]
()

is obtained by introducing the control law () in () and taking into account the fact that
LgLfh(x(t)) = –νβι(t) = –νβῑ(t) 	=  ∀x ∈ D and the coordinate transformation (). Also,
it follows that Lf h(x(t)) = φ(x̄(t)) by direct calculations. Thus, the state equation of the
closed-loop system in the state space defined by x̄(t) can be written as

˙̄x(t) =Ax̄(t) with A =

[
 

–λ –λ

]
. ()

Furthermore, the output equation of the closed-loop system is y(t) =Cx̄(t) withC = [ ]
since y(t) = ι(t) = ῑ(t). From () and the closed-loop output equation, it follows that

ÿ(t) = ¨̄ι(t) = ˙̄s(t) = –λ ῑ(t) – λs̄(t)

= –λy(t) – λẏ(t) ⇒ ÿ(t) + λẏ(t) + λy(t) = . ()
�
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Remark  The roots of the characteristic polynomial P(s) = s + λs + λ corresponding

to the closed-loop dynamics () are given by p, =
–λ±

√
λ–λ
 . Then the stability of the

closed-loop dynamics is guaranteed if the control parameters are chosen strictly positive
so that such roots have real parts being strictly negative. Moreover, such a choice im-
plies the exponential convergence to zero of the output variable ι(t) = ῑ(t) as time tends
to infinity and, as a consequence, the eradication of the infection from the host popula-
tion. However, the control parameters choice also has to guarantee the positivity of the
susceptible, infected and recovered populations for all time as the nature of the system
requires. This constraint implies that the model variables ι(t) and s(t) have to be such
that ι(t) + s(t) ∈ [, ] ∀t ∈ R+ so that r(t) ∈ [, ] ∀t ∈ R+ in view of the constraint
ι(t) + s(t) + r(t) =  ∀t ∈R+. Such a positivity property implies additional conditions to be
satisfied by the controller parameters λ and λ. This analysis is carried out in Section .
below.

3.1 Control parameters choice
The application of the control law (), obtained from the exact input-output linearization
strategy, makes the closed-loop dynamics of the normalized infected population be given
by (). Such a dynamics depends on the control parameters λ and λ. Such parameters
have to be appropriately chosen in order to guarantee the following suitable properties:
(i) the stability and positivity of the controlled SIRS model, (ii) the eradication of the in-
fection, i.e., the asymptotic convergence of I(t) to zero as time tends to infinity and (iii) the
non-negativity of the vaccination function for all time. The following theorems related to
the choice of the controller tuning parameters in order tomeet such properties are proven.

Theorem  Assume that the initial condition x() = [ι() s()]T ∈ R

+ fulfils ι() ∈ [, ],

s() ∈ [, ] and ι() + s() ∈ [, ]. Moreover, both roots p and p of the characteristic
polynomial P(s) associated with the closed-loop dynamics () are of strictly negative real
part via an appropriate choice of the free-design controller parameters λ and λ. Then the
control law () guarantees the exponential stability of the transformed controlled SIRS
model ()-().Moreover, the normalized SIRS model ()-() has the following properties:
ι(t), s(t)ι(t) and s(t) + r(t) are bounded for all time, ι(t)→ , s(t) + r(t)→  and s(t)ι(t)→ 
exponentially as t → ∞, and ι(t) = o(/s(t)).

Proof The dynamics of the normalized controlled SIRS model () can be equivalently
written with the state equation () and the output equation y(t) =Cx̄(t), where C = [ ],
by taking into account that y(t) = ῑ(t) and ẏ(t) = s̄(t). The initial condition x̄() = [ῑ() s̄()]T

in such a realization is bounded since it is related to x() via the coordinate transforma-
tion () and x() is bounded. Such a controlled model is exponentially stable since the
eigenvalues of the matrix A are the roots p and p of P(s) which are assumed to be in
the open left-half complex plane. Then the state vector x̄(t) exponentially converges to
zero as t → ∞ while being bounded for all time. It implies that ι(t) is bounded for all time
and converges exponentially to zero as t → ∞ from the boundedness and exponential
convergence to zero of x̄(t) as t → ∞ since ι(t) = ῑ(t). Furthermore, the boundedness of
s(t) + r(t) for all time and its exponential convergence to unity as t → ∞ are derived from
the boundedness of ι(t), the exponential convergence to zero of ι(t) as t → ∞ and the fact
that ι(t) + s(t) + r(t) =  ∀t ∈ R+. Finally, from the second equation of (), it follows that
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s(t)ι(t) is bounded and it exponentially converges to zero as t → ∞ from the boundedness
and exponential convergence to zero of ι(t) and x̄(t) as t → ∞. The facts that ι(t)→  and
s(t)ι(t)→  as t → ∞ imply directly that ι(t) = o(/s(t)). �

Theorem  Assume that the parameters and the initial condition of a SIRS epidemic
model describing the propagation of an epidemic disease satisfy that

N() > ; β >Max{ν + γ , ργ };  <
ν + γ ( – ρι())

β
< s()≤ ;

 ≤ ι() <Min

{
β – ν – γ

β – ργ
,

(β – ν – γ )(ν +ω)
(β – ργ )(ν + γ +ω) – ργ ν

}
< .

()

If a vaccination strategy based on the control law () with the tuning parameters λ and
λ is chosen such that the poles p and p of the controlled normalized system satisfy

–
(
ν + γ

(
 – ρει()

)) ≤ p <Min{,μ – ν};

p =


ε – 
(
εp + ν + γ – βs() – ργ ι()

)
< p

()

for some real parameter ε ∈ (, εmax) where the upper-bound is given by

εmax =Min

{
ν + γ

ργ ι()
,
βs() + ργ ι()
p + ν + γ

, ε̄(p), ε̄(p)
}

()

with

ε̄(p) =

⎧⎨
⎩

(βs()+ργ ι()–ν–γ )p–g(·)
p–g(·)

if p < g(·),
∞ otherwise;

ε̄(p) =

⎧⎨
⎩

g(·)(βs()+ργ ι()–ν–γ )
g(·)p+(βs()+ργ ι()–ν–γ–p)g(·)ι() if p > – (βs()+ργ ι()–ν–γ )g(·)ι()

g(·)–g(·)ι() ,

∞ otherwise,

()

where

g(β ,ν,γ ,ρ) = β(β – ν – ργ ) + ργ (ν + γ );

g(β ,ν,γ ,ω) = (β – ν – γ )(ν +ω);

g(β ,ν,γ ,ω,ρ) = (β – ργ )(ν + γ +ω) – ργ ν,

then:
(i) the normalized populations are non-negative ∀t ∈R+, i.e.,  ≤ ι(t)≤ ,  ≤ s(t)≤ 

and  ≤ r(t) ≤  ∀t ∈R+,
(ii) the populations I(t), S(t), R(t) and N(t) are non-negative ∀t ∈R+,
(iii) the epidemics is eradicated from the population, i.e., I(t) tends asymptotically to

zero as t → ∞, and
(iv) the vaccination control function is non-negative ∀t ∈R+, i.e., u(t) = V (t) ≥ 

∀t ∈R+.
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Proof (i) The dynamics of the normalized controlled SIRS model () can be equivalently
written with the state equation () and the output equation y(t) =Cx̄(t), where C = [ ],
by taking into account that y(t) = ῑ(t) and ẏ(t) = s̄(t). From such a realization and taking
into account the first equation in () it follows that

ι(t) = ῑ(t) = y(t) = cept + cept ()

∀t ∈R+ for some constants c and c being dependent on the initial conditions y() = ῑ()
and ẏ() = s̄(), and where p and p denote the eigenvalues of A, i.e., the roots of the
characteristic polynomial P(s) = s + λs + λ, which may be fixed to desired values by
appropriately adjusting the control parameters λ and λ. The values ῑ() and s̄() are
related to the initial conditions of the normalized SIRS model in its original realization,
i.e., in the state space defined by x(t) = [ι(t) s(t)]T via (). In this way, the constants c and
c can be obtained by solving the following set of linear equations:

y() = ῑ() = c + c = ι();

ẏ() = s̄() = cp + cp = –(ν + γ )ι() + βs()ι() + ργ ι(),
()

where () and () have been used. One obtains directly from () and by taking into
account the assignment of p in () that

c =
βs()ι() + ργ ι() – (p + ν + γ )ι()

p – p
= ει();

c = ι() – c = ( – ε)ι().
()

Then it follows from () and () that

ι(t) = ει()
(
ept – ept

)
+ ι()ept ≥  ∀t ∈R+ ()

since ept – ept ≥  ∀t ∈ R+ from the fact that p < p <  subject to the constraints ()-
(). From (), (), () and the facts that s̄(t) = ẏ(t) and  ≤ ι(t)≤ ει()ept , which implies
that  ≤ ι(t) ≤ ει()ept ≤ ει()ept since p < , it follows that

βs(t)ι(t) = s̄(t) + (ν + γ )ι(t) – ργ ι(t)

≥ ει()
(
p + ν + γ – ργ ει()

)
ept + ( – ε)ι()(p + ν + γ )ept ≥  ()

∀t ∈R+, since p + ν + γ – ργ ει()≥  from (), ε >  and

p + ν + γ =
ε(p + ν + γ ) – βs() – ργ ι()

ε – 
<  ()

by taking into account () and the fact that ε < βs()+ργ ι()
p+ν+γ

from (). The fact that ι(t)≥ 
∀t ∈R+ and () implies that s(t)≥  ∀t ∈R+ since β > . From the fact that ι(t) + s(t) +
r(t) =  ∀t ∈R+ and (), it follows that

r(t) =  – ι(t) – s(t) =
(β – ν – γ )ι(t) – (β – ργ )ι(t) – s̄(t)

βι(t)
()
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∀t ∈R+, and then

βι(t)r(t) = (β – ν – γ )ι()
(
εept + ( – ε)ept

)
– (β – ργ )ι()

(
εept + ( – ε)ept

)
– ι()

(
pεept + p( – ε)ept

)
()

∀t ∈ R+ by taking into account (), () and that s̄(t) = d
dt (ι(t)). By introducing the ex-

pression () for p in (), one obtains that

βι(t)r(t) = f(t) – f(t) – f(t) ()

∀t ∈R+, where

f(t) = ε(β – ν – γ – p)ι()ept ;

f(t) =
(
(ε – )β + βs() + ργ ι() – ε(ν + γ + p)

)
ι()ept ; ()

f(t) = (β – ργ )ι()
(
εept + ( – ε)ept

).
Note that fi(t)≥  ∀t ∈R+, for i ∈ {, , }, from ()-(), and that all of them aremono-

tone decreasing functions which exponentially decrease to zero as time tends to infinity
since p < p < . Moreover, both f(t) and f(t) decrease faster than f(t) so that the initial
constraint f() – f() – f() = βι()r()≥  implies that f(t) – f(t) – f(t) = βι(t)r(t)≥ 
∀t ∈ R+. Then r(t) ≥  ∀t ∈ R+ is deduced from the fact that ι(t) ≥  ∀t ∈ R+, as it was
previously proven.
Finally, the facts that ι(t) ≥ , s(t) ≥ , r(t) ≥  and ι(t) + s(t) + r(t) =  ∀t ∈ R+ directly

imply that  ≤ ι(t)≤ ,  ≤ s(t)≤  and ≤ r(t)≤  ∀t ∈R+.
(ii) From () it follows that

Ṅ(t)
N(t)

= ν –μ – ργ ι(t) ⇒ d
[
ln

(
N(t)

)]
=

(
ν –μ – ργ ι(t)

)
dt

⇒ N(t) =N()e(ν–μ)t–ργ
∫ t
 ι(τ )dτ , ()

so the total population N(t)≥  ∀t ∈R+ since N() > . Then  ≤ I(t)≤N(t),  ≤ S(t)≤
N(t) and  ≤ R(t) ≤ N(t) ∀t ∈ R+ from () by taking into account that  ≤ ι(t) ≤ ,  ≤
s(t)≤  and ≤ r(t) ≤  ∀t ∈R+.
(iii) From (), () and () it follows that

I(t) = N(t)ι(t)

= N()ι()
(
εept + ( – ε)ept

)
e(ν–μ)t–ργ ι()( ε

p
(ept–)+ –ε

p
(ept–)) ∀t ∈R+, ()

and then

lim
t→∞

{
I(t)

}
=N()ι()eργ ι() ε(p–p)+p

pp lim
t→∞

{(
εept + ( – ε)ept

)
e(ν–μ)t}. ()

As a consequence, the infected population tends exponentially to zero as time tends to
infinity, and then the infection is eradicated from the host population since p < p <  and
p < μ – ν from ().
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(iv) The control law () can be equivalently written as

u(t) =
φ(x̄(t)) + λ ῑ(t) + λs̄(t)

βνῑ(t)
()

in the state space defined by x̄(t) = [ῑ(t) s̄(t)]T . One can obtain by direct calculations and
taking into account () that

u(t) =


βνῑ(t)
{
(β – ν – γ )(ν +ω)ῑ(t) – (ν +ω)s̄(t)ῑ(t)

–
[
(β – ργ )(ν + γ +ω) – ργ ν

]
ῑ(t) – (β – ργ )s̄(t)ῑ(t)

+ s̄(t) + ργ (β – ργ )ῑ(t) + λ ῑ
(t) + λs̄(t)ῑ(t)

}
. ()

The normalized infected population ῑ(t) presents a unique maximum value at the time
instant t∗ when ˙̄ι(t∗) = s̄(t∗) =  as it can be deduced from (). Furthermore, from () and
(), the fact that ˙̄ι() = s̄() = ι()[βs()+ργ ι()–ν –γ ] >  is implied. As a consequence,
one knows that s̄(t) >  ∀t ∈ [, t∗) and s̄(t) ≤  ∀t ∈ [t∗,∞). In the following, the proof
of the non-negativity of u(t) is split into two parts. On the one hand, when s̄(t) > , i.e.,
∀t ∈ [, t∗), one can deduce that

u(t) ≥ 
βνῑ(t)

{
λ ῑ

(t) + λs̄(t)ῑ(t) + s̄(t) –
[
β(β – ν – ργ ) + ργ (ν + γ )

]
ῑ(t)

+ (β – ργ ) ῑ(t)
}

()

by taking into account that –s̄(t) ≥ (β – ργ )ῑ(t) – (β – ν – γ )ῑ(t) from () and the facts
that r(t) ≥ , ι(t) = ῑ(t) ≥  ∀t ∈ R+ and β > ργ from (). From (), if g(β ,ν,γ ,ρ) =
β(β – ν – ργ ) + ργ (ν + γ ) ≤ , then u(t) >  ∀t ∈ [, t∗). Otherwise, it follows that

u(t) >


βνῑ(t)
{[
pp – g(·)

]
ῑ(t) + λs̄(t)ῑ(t) + s̄(t) + (β – ργ ) ῑ(t)

}

=


βνῑ(t)

{
[p – g(·)]ε – p[βs() + ργ ι() – ν – γ ] + g(·)

ε – 
ῑ(t)

+ λs̄(t)ῑ(t) + s̄(t) + (β – ργ ) ῑ(t)
}
, ()

where λ = pp and () have been used. From (), if p ≥ g(·), then u(t) >  ∀t ∈ [, t∗)
since p < , ε >  and βs() + ργ ι() – ν – γ >  from (). Otherwise, from () it follows
that

u(t) >


βνῑ(t)
{
λs̄(t)ῑ(t) + s̄(t) + (β – ργ ) ῑ(t)

}
>  ∀t ∈ [, t∗) ()

by using the upper-bound ε̄(p) defined in (). In summary, u(t) >  ∀t ∈ [, t∗) irrespec-
tive of the value of g(·) and p whenever p and ε satisfy () and ().
On the other hand, when s̄(t)≤ , i.e., ∀t ∈ [t∗,∞), from () one obtains that

u(t) ≥ 
βνῑ(t)

{
(β – ν – γ )(ν +ω)ῑ(t) –

[
(β – ργ )(ν + γ +ω) – ργ ν

]
ῑ(t)

+ s̄(t) + λ ῑ
(t) + λs̄(t)ῑ(t)

}
, ()
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where β > ργ from () has been used. By direct calculations, it follows that

s̄(t) + λ ῑ
(t) + λs̄(t)ῑ(t) = ε(ε – )(p – p)ι()e(p+p)t ≥  ∀t ∈ [t∗,∞), ()

where λ = pp, λ = –(p + p), ε > , () and ˙̄ι(t) = s̄(t) have been used. Then from ()

u(t) ≥ 
βν

{
(β – ν – γ )(ν +ω) –

[
(β – ργ )(ν + γ +ω) – ργ ν

]
ῑ(t)

}

=


βν

[
g(·) – g(·)ῑ(t)

] ∀t ∈ [t∗,∞), ()

where () has been used. If g(·) ≤ , then u(t)≥ (β–ν–γ )(ν+ω)
βν

>  ∀t ∈ [t∗,∞) from () by
using the fact that β > ν +γ from (). Otherwise, i.e., if g(·) > , then h(t) = g(·)– g(·)ῑ(t)
reaches its minimum value at the time instant t∗ when ῑ(t) = ι(t) reaches its maximum
value. Such a minimum value is given by

h
(
t∗

)
= g(·) – g(·)ι()

[
εept

∗ + ( – ε)ept∗
]
= g(·) – g(·)ι()ε

(
 –

p
p

)
ept

∗ , ()

where the fact that ept∗ = εp
(ε–)p

ept∗ since ˙̄ι(t∗) = s̄(t∗) =  has been used. From introduc-
ing the relation between p and p of () in (), one obtains

h
(
t∗

) ≥ g(·) – g(·)ι()ε βs() + ργ ι() – ν – γ – p
βs() + ργ ι() – ν – γ – εp

=
[βs() + ργ ι() – ν – γ ]g(·)
βs() + ργ ι() – ν – γ – εp

–
ε(g(·)ι()[βs() + ργ ι() – ν – γ ] + p[g(·) – g(·)ι()])

βs() + ργ ι() – ν – γ – εp
. ()

If p ≤ g(·)ι()[ν+γ–βs()–ργ ι()]
g(·)–g(·)ι() , then h(t) ≥ h(t∗) ≥ βs()+ργ ι()–ν–γ

βs()+ργ ι()–ν–γ–εp
g(·) >  ∀t ∈ [t∗,∞)

for any ε > , where the facts that p < , βs() + ργ ι() – ν – γ >  and g(·) – g(·)ι() > 
from ()-() have been used. Otherwise, i.e., if g(·)ι()[ν+γ–βs()–ργ ι()]

g(·)–g(·)ι() < p < , then
h(t) ≥ h(t∗) >  ∀t ∈ [t∗,∞) from using the upper-bound ε̄(p) defined in () for ε. In
summary, u(t) >  ∀t ∈ [t∗,∞) irrespective of the value of g(·) whenever p and ε satisfy
the constraints in () and (). This fact completes the proof that u(t) >  ∀t ∈ R+ irre-
spective of the values for g(·) and g(·) if p and ε satisfy the constraints in () and ().

�

Remark  The constraints in () relative to the initial conditions and the parameters of
the SIRS model are fulfilled for the majority of the epidemic diseases. On the one hand,
the disease transmission constant β is usually much higher than both the birth rate ν and
the recovery rate γ so that the constraint about β in () can be considered. On the other
hand, at the beginning of the infection propagation, the number of infected individuals
is usually small enough and the almost population is susceptible so that the conditions in
() relative to ι() and s() are satisfied.

Remark  The process to select the desired poles p and p, via a suitable choice of ε, is
the following. First, once one knows or has estimated the values for the parameters ν , β ,
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ω, ρ and γ corresponding to the propagation of a specific epidemics, a value for p such
that –(ν + γ ) < p <  is chosen. Then the upper-bounds in ()-() for the parameter ε

can be computed in order to choose a value for ε satisfying ε ∈ (, εmax).

4 Simulation results
An example based on the rabbit hemorrhagic disease in theUnited Kingdom is considered
to illustrate the theoretical results presented in the paper. An initial population of N() =
, rabbits is used. Such an epidemics can be described by the SIRS model ()-() with
the parameter values:μ = . per day (p.d.), ν = . p.d., β = . p.d.,ω = . p.d.,
ρ = . and γ = . p.d. Such values are commonly used in the literature [, ].
The main characteristic of such an infection is its high mortality, note the value of the
probability of dying from the infection (ρ = .) close to . The initial conditions for
the individual populations are given by S() = , I() =  and R() = .
Two sets of simulation results are presented to compare the time evolution of the pop-

ulations within the SIRS mathematical model in two different situations, namely: (i) when
no vaccination control actions are applied and (ii) if a vaccination based on the described
feedback input-output linearization control technique is applied.

4.1 Epidemics evolution without vaccination
The time evolution of the system populations in the free-vaccination case, i.e., if V (t) = 
∀t ∈R+ is displayed in Figure .
The population of rabbits disappears because of the high mortality of the infection as

it can be seen in such a figure. As a consequence, a vaccination strategy has to be applied
if the eradication of the epidemics is required while guaranteeing the persistence of the
rabbits.

4.2 Epidemics evolution with a feedback control law
First, note that the considered initial condition and the parameters of the SIRS model for
the propagation of the rabbit hemorrhagic disease satisfy the constraints in (). Then

Figure 1 Time evolution of the total and partial (susceptible, infected and recovered) populations
without vaccination.
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Figure 2 Evolution of the infected population with vaccination.

the control law given by (), or equivalently written as in (), can be applied in order
to eradicate the epidemics while guaranteeing the non-negativity of the populations and
the vaccination control function. The free-design controller parameters λ = pp and
λ = –(p + p), where p and p are the desired roots for the characteristic polynomial
P(s) associated with the closed-loop dynamics, are prefixed in the following way. The
desired dominant root p satisfying the constraint –(ν + γ ) < p <  is chosen, namely,
p = –ν = –.. Then, the upper-bound in () for the value of ε is calculated, namely,
εmax = .. The theoretical results developed in Section  prove that a choice of ε ∈
(, .) is sufficient to guarantee the non-negativity of the populations and the vaccina-
tion control function in the controlled SIRS model as well as the eradication of the infec-
tious disease. For such a purpose, the value ε = . is chosen. Such a choice for p and
ε determines the value for the root p by the relation in (), namely, p = –.. Also,
the values λ = pp = . and λ = –(p + p) = . for the control law are derived
from such a procedure. The time evolution of the respective populations is displayed in
Figures  and  while the vaccination control function is shown in Figure .
The vaccination control action achieves the control objectives as it is seen in Figures ,

 and . In this sense, the infection is eradicated from the population since the infected
population exponentially converges to zero as Figure  shows. Also, all of the partial popu-
lations, the whole population and the vaccination control function are non-negative for all
time. Such properties are coherent with the results proved in Theorem . A consequence
of the vaccination control action is that the total population of the rabbits monotonically
grows through time in a fast way, like it occurs in the absence of disease, as it can be seen
in Figure . These simulation results point out the improvement of the use of a vaccina-
tion strategy in order to guarantee a suitable growth of the rabbit population against a
high-mortality infectious disease.

Remark  The conditions in Theorem  are sufficient but non necessary to ensure the
positivity of the controlled model. Concretely, the upper-bounds ε̄(p) and ε̄(p) are suf-
ficient to guarantee the non-negativity of the vaccination function V (t) for all time. How-
ever, such upper-bounds can be relaxed in the current example by taking into account the
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Figure 3 Evolution of the susceptible, recovered and total populations with vaccination.

results obtained from an exhaustive simulation work. In such a work, the non-negativity
of the vaccination control function is maintained for all time although the value of the
free-design parameter ε is not smaller than εmax = .. In this context, the following
section analyzes the influence of the parameter ε in the controlled system dynamics.

4.3 Influence of the control free-design parameter ε in the time evolution of the
epidemics

Again, the rabbit hemorrhagic disease is considered for this study and the same dominant
pole is chosen for the controlled systemdynamics, namely, p = –ν = –.. Four different
values for the parameter ε are considered, namely, ε = . (which corresponds to the
non-dominant pole of the closed-loop dynamics located in p = –.), ε = . (p =
–.), ε =  (p = –.) and ε =  (p = –.) for analyzing the influence of
such a parameter, and then the influence of the pole p via the relation in (), in the
controlled system dynamics. Figure  displays the time evolution of the infected and total
populations for the four different values of ε. The infected population increases until it
reaches a maximum value, and then it exponentially decreases to zero as time tends to
infinity. Moreover, such a maximum value is smaller and is reached earlier as smaller the
parameter ε is. In this sense, a value for ε >  and closed to unity is convenient for a fast
eradication of the infection from the host population. On the other hand, the influence
of ε in the time evolution of the total population is less appreciable. The total population
exponentially increases in a fast way in all cases.
Figure  displays the time evolution of the vaccination control function for the differ-

ent values of ε. One can see that the vaccination control function takes a large value at
the initial time instant, and then it decreases until reaching a quasi-stationary regime
where its value is maintained below a small threshold for any of the considered values
of ε. The magnitude of the vaccination control function at such an initial time instant is
larger as smaller the parameter ε is. Moreover, the vaccination control function shows
an oscillatory behavior in the quasi-stationary regime if a value of ε closed to unity (con-
cretely if ε = ε) is used while it does not oscillate if ε ≥ .. As a consequence, a value
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Figure 4 Evolution of the vaccination control function in three different time ranges.

for ε large enough so that the maximum of the vaccination control function does not
exceed a prescribed threshold can be interesting in order to minimize the cost of the
treatment of the infection by means of vaccines application. However, a large value of
ε implies a non-appropriate time evolution of the infected population as it has been
previously discussed in relation to Figure . As a consequence, a tradeoff between the
treatment cost and the evolution of the epidemics has to be taken into account when
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Figure 5 Evolution of the infected and total populations with different values of the parameter ε
used to generate the vaccination function.

choosing the value of the parameter ε used to generate the vaccination control func-
tion.

5 Concluding remarks
A vaccination control strategy based on feedback input-output linearization techniques
has been proposed to fight against the propagation of epidemic diseases within a host
population. A SIRS epidemic model with known parameters is used to describe the prop-
agation of the disease. The total population is time-varying and the model considers the
mortality for causes related to the disease. The stability and the positivity properties of
the closed-loop system have been proved in the case that true data of the susceptible and
infected populations are available. Also, the eradication of the epidemic disease from the
host population is guaranteed with such a control strategy. These theoretical results are
complemented with some simulation results to illustrate the effectiveness of the proposed
approach. Future research into the subject is going to deal with the combination of this
control technique with the design of an observer to estimate the susceptible and infected
populations when their true data are not available as it usually occurs in a real situation.
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Figure 6 Evolution of the vaccination function with different values of the parameter ε used to
generate the vaccination function.
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