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Abstract
In this paper, we study the existence of solutions for non-linear fractional differential
equations of order 2 < α ≤ 3 involving the p-Laplacian operator with various
boundary value conditions including an anti-periodic case. By using the Banach
contraction mapping principle, we prove that, under certain conditions, the
suggested non-linear fractional boundary value problem involving the p-Laplacian
operator has a unique solution for both cases of 0 < p < 1 and p ≥ 2. Finally, we
illustrate our results with some examples.

Keywords: p-Laplacian operators; fractional derivative; fractional integral; Caputo
fractional derivative; boundary value problem; Caputo fractional boundary value
problem; anti-periodic boundary value problem

1 Introduction
Recently, boundary value problems for fractional differential equations have gained pop-
ularity among researchers since they have many applications in biophysics, blood flow
phenomena, aerodynamics, polymer rheology, viscoelasticity, thermodynamics, electro-
dynamics of complex medium, capacitor theory, electrical circuits, electro-analytical
chemistry, control theory (see [–] and []). Various results on boundary value prob-
lems for fractional differential equations have appeared in the literature (see [–] and
[]). Also, solvability of fractional differential equations with anti-periodic boundary
value problems have been considered by different authors ([, ] and []). On the other
hand, in studying turbulent flow in a porous medium, Leibenson introduced the concept
of p-Laplacian operator [] and it was used for fractional boundary value problems in
[] and []. In this paper, we consider boundary value problems for fractional differen-
tial equations of order  < α ≤  involving the p-Laplacian operator with various boundary
conditions including an anti-periodic case.
Now, we present basic definitions and results that will be needed in the rest of the paper.

More detailed information about the theory of fractional calculus and fractional differen-
tial equations can be found in [, , ] and [].
It is well known that the beta function B(t, s) has the following integral representation:

B(t, s) =
∫ 


τ t–( – τ )s– dτ , t, s > .
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Moreover, B(t, s) can be expressed in terms of �(t), the gamma function, as follows:

B(t, s) =
�(t)�(s)
�(t + s)

. ()

Definition  Letα be a positive real number. Then the fractional integral of x : (,∞)→R

is defined by

Iα+x(t) =


�(α)

∫ t



x(s)
(t – s)–α

ds.

Definition  Let α be a positive real number. Then the Caputo fractional derivative of
x : (,∞)→R is defined by

Cα
+x(t) =


�(n – α)

∫ t



x(n)(s)
(t – s)α+–n

ds,

where

n =

{
[α] +  if α /∈N,
α if α ∈N

()

and [α] denotes the greatest integer less than or equal to α.

Recall that Cn([a,b],R) is the space of all real-valued functions x(t) which have contin-
uous derivatives up to order n –  on [a,b].
In the following lemmas, we give some auxiliary results which will be used in the sequel.

Lemma  [] Let α >  and y(t) ∈ Cn([, ],R). Then

(
Iα+C

α
+x

)
(t) = x(t) –

n–∑
k=

x(k)()
k!

tk ,

where n is given in ().

On the other hand, the operator ϕp(s) = |s|p–s, where p > , is called the p-Laplacian
operator. It is easy to see that ϕ–

p = ϕq, where 
p + 

q = . The following properties of the
p-Laplacian operator will play an important role in the rest of the paper.

Lemma  Let ϕp be a p-Laplacian operator.
(i) If  < p < , xy > , and |x|, |y| ≥m > , then

∣∣ϕp(x) – ϕp(y)
∣∣ ≤ (p – )mp–|x – y|. ()

(ii) If p≥  and |x|, |y| ≤M, then

∣∣ϕp(x) – ϕp(y)
∣∣ ≤ (p – )Mp–|x – y|. ()
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In this paper, we focus on the solvability of the following non-linear fractional differential
equations of order α ∈ (, ] involving the p-Laplacian operatorwith boundary conditions:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(ϕp(Cα

+x(t)))′ = f (t,x(t)),
x() = ax(),
x′() = ax′(),
x′′() = ax′′(),

()

where ai �= , i = , , , t ∈ [, ], f ∈ C([, ]×R,R) and x(t) ∈ C([, ],R).

Remark  For ai = –, i = , , , the boundary value problem given in () becomes anti-
periodic.

Lemma  Assume that α ∈ (, ], a,a,a �= , t ∈ [, ] and h ∈ C([, ]). Then the solu-
tion x(t) of the boundary value problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(ϕp(Cα

+x(t)))′ = h(t),
x() = ax(),
x′() = ax′(),
x′′() = ax′′()

()

can be represented by the following integral equation:

x(t) =


�(α)

∫ t


(t – τ )α–ϕq

(∫ τ


h(s)ds

)
dτ

× A

�(α)

∫ 


( – τ )α–ϕq

(∫ τ


h(s)ds

)
dτ

+
[
AA + tA

�(α – )

]∫ 


( – τ )α–ϕq

(∫ τ


h(s)ds

)
dτ

+
[
AA(A + t) +A(t +A)

�(α – )

]∫ 


( – τ )α–ϕq

(∫ τ


h(s)ds

)
dτ , ()

where A = a
–a

, A = a
–a

and A = a
–a

.

Proof Using () and the fact that ϕp(Cα
+x()) = , we have

ϕp
(
Cα
+x(t)

)
=

∫ t


h(s)ds,

or equivalently,

Cα
+x(t) = ϕq

(∫ t


h(s)ds

)
, ()

where 
p +


q = . Applying the fractional integral operator Iα+ to both sides of (), we get

x(t) – x() – x′()t –
x′′()


t =


�(α)

∫ t


(t – τ )α–ϕq

(∫ τ


h(s)ds

)
dτ ,
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or equivalently,

x(t) =


�(α)

∫ t


(t – τ )α–ϕq

(∫ τ


h(s)ds

)
dτ + x() + x′()t +

x′′()


t, ()

x′(t) =


�(α – )

∫ t


(t – τ )α–ϕq

(∫ τ


h(s)ds

)
dτ + x′() + x′′()t, ()

and

x′′(t) =


�(α – )

∫ t


(t – τ )α–ϕq

(∫ τ


h(s)ds

)
dτ + x′′(). ()

Taking t =  on both sides of (), () and (), we have

x() =


�(α)

∫ 


( – τ )α–ϕq

(∫ τ


h(s)ds

)
dτ + x() + x′() +

x′′()


, ()

x′() =


�(α – )

∫ 


( – τ )α–ϕq

(∫ τ


h(s)ds

)
dτ + x′() + x′′(), ()

x′′() =


�(α – )

∫ 


( – τ )α–ϕq

(∫ τ


h(s)ds

)
dτ + x′′(). ()

Using equations (), (), () and the boundary value conditions

x() = ax(),

x′() = ax′(),

x′′() = ax′′(),

we can get that

x′′() =
A

�(α – )

∫ 


( – τ )α–ϕq

(∫ τ


h(s)ds

)
dτ , ()

x′() =
A

�(α – )

∫ 


( – τ )α–ϕq

(∫ τ


h(s)ds

)
dτ

+
AA

�(α – )

∫ 


( – τ )α–ϕq

(∫ τ


h(s)ds

)
dτ ()

and

x() =
A

�(α)

∫ 


( – τ )α–ϕq

(∫ τ


h(s)ds

)
dτ

+
AA

�(α – )

∫ 


( – τ )α–ϕq

(∫ τ


h(s)ds

)
dτ

+
AAA

�(α – )

∫ 


( – τ )α–ϕq

(∫ τ


h(s)ds

)
dτ

× AA

�(α – )

∫ 


( – τ )α–ϕq

(∫ τ


h(s)ds

)
dτ . ()

Substituting (), () and () into () gives () and this completes the proof. �
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2 Solvability of the fractional boundary value problem
This section is devoted to the solvability of the fractional boundary value problem given
in (). First, we obtain conditions for existence and uniqueness of the solution x(t) of the
fractional boundary value problem given in (). Then, each result obtained here is illus-
trated by examples.
Recall that C[, ], the space of continuous functions on [, ] is a Banach space with the

norm ‖x‖ =maxt∈[,] |x(t)|. Now consider Ti : C[, ]→ C[, ], i = , , with

Tx(t) := ϕq

(∫ t


f
(
s,x(s)

)
ds

)

and

Tx(t) =


�(α)

∫ t


(t – τ )α–x(τ )dτ

+
A

�(α)

∫ 


( – τ )α–x(τ )dτ

+
(
AA + tA

�(α – )

)∫ 


( – τ )α–x(τ )dτ

+
(
AA(A + t) +A(t +A)

�(α – )

)∫ 


( – τ )α–x(τ )dτ .

Then the operatorT : C[, ]→ C[, ], defined byT = T◦T, is continuous and compact.

Theorem  Suppose  < q < , a,a,a �= , and the following conditions hold: ∃λ > ,
 < δ < 

–q and d with

 < d <
[(
λ–q�

(
δ(q – ) + α + 

))
/
(
(q – )�

(
δ(q – ) + 

)(
 + |A|

)[

(
 + |A|

(
δ(q – ) + α + 

))
+ |A|

(
 + |A|

)(
δ(q – ) + α

)(
δ(q – ) + α + 

)])]
()

such that

λδtδ– ≤ f (t,x) for any (t,x) ∈ (, ]×R ()

and

∣∣f (t,x) – f (t, y)
∣∣ ≤ d|x – y| for t ∈ [, ] and x, y ∈R. ()

Then boundary value problem () has a unique solution.

Proof Using inequality (), we get

λtδ ≤
∫ t


f (s,x)ds for any (t,x) ∈ [, ]×R.

http://www.advancesindifferenceequations.com/content/2013/1/358
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By () and (), we have

∣∣Tx(t) – Ty(t)
∣∣

=
∣∣∣∣ϕq

(∫ t


f
(
s,x(s)

)
ds

)
– ϕq

(∫ t


f
(
s, y(s)

)
ds

)∣∣∣∣
≤ (q – )

(
λtδ

)q–∣∣∣∣
∫ t


f
(
s,x(s)

)
ds –

∫ t


f
(
s, y(s)

)
ds

∣∣∣∣
≤ (q – )λq–tδ(q–)

∫ t



∣∣f (s,x(s)) – f
(
s, y(s)

)∣∣ds
≤ d(q – )λq–tδ(q–)

∫ t



∣∣x(s) – y(s)
∣∣ds

≤ d(q – )λq–tδ(q–)+‖x – y‖. ()

Moreover,

∣∣Tx(t) – Ty(t)
∣∣

=
∣∣T

(
T

(
x(t)

))
– T

(
T

(
y(t)

))∣∣
=

∣∣∣∣ 
�(α)

∫ t


(t – τ )α–

(
(Tx)(τ ) – (Ty)(τ )

)
dτ

+
A

�(α)

∫ 


( – τ )α–

(
(Tx)(τ ) – (Ty)(τ )

)
dτ

+
(
A(A + t)
�(α – )

)∫ 


( – τ )α–

(
(Tx)(τ ) – (Ty)(τ )

)
dτ

+
(
AA(A + t) +A(t +A)

�(α – )

)

×
∫ 


( – τ )α–

(
(Tx)(τ ) – (Ty)(τ )

)
dτ

∣∣∣∣. ()

Finally, substituting () in (), we get

∣∣Tx(t) – Ty(t)
∣∣

≤ d(q – )λq–‖x – y‖
[


�(α)

∫ t


(t – τ )α–τ δ(q–)+ dτ

+
∣∣∣∣ A

�(α)

∣∣∣∣
∫ 


( – τ )α–τ δ(q–)+ dτ

+
∣∣∣∣A(A + t)

�(α – )

∣∣∣∣
∫ 


( – τ )α–τ δ(q–)+ dτ

+
∣∣∣∣AA(A + t) +A(t +A)

�(α – )

∣∣∣∣
∫ 


( – τ )α–τ δ(q–)+ dτ

]
. ()

Using the equality

∫ t


(t – τ )α–τ δ(q–)+ dτ = tδ(q–)+α+

∫ 


( – τ )α–τ δ(q–)+ dτ

http://www.advancesindifferenceequations.com/content/2013/1/358
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in () one can write that

∣∣Tx(t) – Ty(t)
∣∣ ≤ d(q – )λq–‖x – y‖

[
tδ(q–)+α+

�(α)

∫ 


( – τ )α–τ δ(q–)+ dτ

+
∣∣∣∣ A

�(α)

∣∣∣∣
∫ 


( – τ )α–τ δ(q–)+ dτ

+
∣∣∣∣ (AA + tA)

�(α – )

∣∣∣∣
∫ 


( – τ )α–τ δ(q–)+ dτ

+
∣∣∣∣AA(A + t) +A(t +A)

�(α – )

∣∣∣∣
∫ 


( – τ )α–τ δ(q–)+ dτ

]

= d(q – )λq–‖x – y‖B(
δ(q – ) + ,α

)
×

[
tδ(q–)+α+

�(α)
+

|A|
�(α)

+
|(AA + tA)|

�(α)
(
δ(q – ) + α + 

)

+
|AA(A + t) +A(t +A)|

�(α)
(
δ(q – ) + α

)(
δ(q – ) + α + 

)]
.

Using (), we get that

∣∣Tx(t) – Ty(t)
∣∣

≤ d(q – )λq–‖x – y‖�(δ(q – ) + )�(α)
�(δ(q – ) + α + )

×
[


�(α)

+
|A|
�(α)

+
(|A||A| + |A|)

�(α)
(
δ(q – ) + α + 

)

+
(|A||A|(|A| + ) + |A|( + |A|))

�(α)
(
δ(q – ) + α

)(
δ(q – ) + α + 

)]

≤ d(q – )λq–‖x – y‖ �(δ(q – ) + )
�(δ(q – ) +  + α)

× [

(
 + |A|

)
+ |A|

(
 + |A|

)(
δ(q – ) + α + 

)
+ |A|

(
 + |A|

)(
 + |A|

)(
δ(q – ) + α

)(
δ(q – ) + α + 

)]
≤ d(q – )λq–‖x – y‖ �(δ(q – ) + )

�(δ(q – ) +  + α)

× (
 + |A|

)[

(
 + |A|

(
δ(q – ) + α + 

))
+ |A|

(
 + |A|

)(
δ(q – ) + α

)(
δ(q – ) + α + 

)]
= K‖x – y‖,

where

K = d(q – )λq– �(δ(q – ) + )
�(δ(q – ) + α + )

(
 + |A|

)[

(
 + |A|

(
δ(q – ) + α + 

))
+ |A|

(
 + |A|

)(
δ(q – ) + α

)(
δ(q – ) + α + 

)]
. ()
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Combining () with () implies that  < K < , therefore T is a contraction. As a con-
sequence of the Banach contraction mapping theorem [] the boundary value problem
given in () has a unique solution. �

Theorem  Suppose  < q < , a,a,a �=  and the following conditions hold for a fixed,
∃λ > ,  < δ < 

–q and d with

 < d <
[(
λ–q�

(
δ(q – ) + α + 

))
/
(
(q – )�

(
δ(q – ) + 

)(
 + |A|

)[

(
 + |A|

(
δ(q – ) + α + 

))
+ |A|

(
 + |A|

)(
δ(q – ) + α

)(
δ(q – ) + α + 

)])]
such that

f (t,x)≤ –λδtδ– for any (t,x) ∈ (, ]×R

and

∣∣f (t,x) – f (t, y)
∣∣ ≤ d|x – y| for t ∈ [, ] and x, y ∈R.

Then boundary value problem () has a unique solution.

Proof The inequality f (t,x) ≤ –λδtδ– implies that λδtδ– ≤ –f (t,x). Therefore replace
f (t,x) by –f (t,x) in the proof of Theorem . �

Theorem  Suppose q > , a,a,a �= , there exists a non-negative function g(x) ∈ L[, ]
with M :=

∫ 
 g(τ )dτ ≥  such that

∣∣f (t,x)∣∣ ≤ g(t) for any (t,x) ∈ [, ]×R ()

and there exists a constant d with

 < d <
�(α + )

(q – )Mq–( + |A|)[( + |A|(α + )) + |A|( + |A|)α(α + )]
()

and

∣∣f (t,x) – f (t, y)
∣∣ ≤ d|x – y| for t ∈ [, ] and x, y ∈R.

Then boundary value problem () has a unique solution.

Proof Using (), we get that

∫ t



∣∣f (τ ,x(τ ))∣∣dτ ≤
∫ 


g(τ )dτ =M ()

for all t ∈ [, ]. By the definition of the operator T, one can write that

∣∣Tx(t) – Ty(t)
∣∣ = ∣∣∣∣ϕq

(∫ t


f
(
s,x(s)

)
ds

)
– ϕq

(∫ t


f
(
s, y(s)

)
ds

)∣∣∣∣. ()

http://www.advancesindifferenceequations.com/content/2013/1/358
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As a consequence of (), () and (), we have

∣∣Tx(t) – Ty(t)
∣∣ ≤ (q – )Mq–

∣∣∣∣
∫ t


f
(
s,x(s)

)
ds –

∫ t


f
(
s, y(s)

)
ds

∣∣∣∣
≤ (q – )Mq–

∫ t



∣∣f (s,x(s)) – f
(
s, y(s)

)∣∣ds
≤ d(q – )Mq–

∫ t



∣∣x(s) – y(s)
∣∣ds

≤ d(q – )Mq–t‖x – y‖.

Moreover,

∣∣Tx(t) – Ty(t)
∣∣ = ∣∣T

(
T

(
x(t)

))
– T

(
T

(
y(t)

))∣∣
=

∣∣∣∣ 
�(α)

∫ t


(t – τ )α–

(
(Tx)(τ ) – (Ty)(τ )

)
dτ

+
A

�(α)

∫ 


( – τ )α–

(
(Tx)(τ ) – (Ty)(τ )

)
dτ

+
A(A + t)
�(α – )

∫ 


( – τ )α–

(
(Tx)(τ ) – (Ty)(τ )

)
dτ

+
∣∣∣∣AA(A + t) +A(t +A)

�(α – )

∣∣∣∣
×

∫ 


( – τ )α–

(
(Tx)(τ ) – (Ty)(τ )

)
dτ

∣∣∣∣,
∣∣Tx(t) – Ty(t)

∣∣ ≤ d(q – )Mq–‖x – y‖
[


�(α)

∫ t


(t – τ )α–τ dτ

+
|A|
�(α)

∫ 


( – τ )α–τ dτ +

∣∣∣∣A(A + )
�(α – )

∣∣∣∣
∫ 


( – τ )α–τ dτ

+
|AA(A + t) +A(t +A)|

�(α – )

∫ 


( – τ )α–τ dτ

]

≤ d(q – )Mq–‖x – y‖
[
tα+

�(α)

∫ 


( – τ )α–τ dτ

+
|A|
�(α)

∫ 


( – τ )α–τ dτ +

|A|(|A| + )
�(α – )

∫ 


( – τ )α–τ dτ

+
|A|(|A| + )( + |A|)

�(α – )

∫ 


( – τ )α–τ dτ

]

≤ d(q – )Mq–B(α, )‖x – y‖
[


�(α)

+
|A|
�(α)

+
|A|(|A| + )(α + )

�(α)

+
|A|(|A| + )( + |A|)α(α + )

�(α)

]

≤ d(q – )Mq–‖x – y‖
�(α + )

[(
 + |A|

)(
 + |A|(α + )

)

+
|A|(|A| + )( + |A|)α(α + )



]

http://www.advancesindifferenceequations.com/content/2013/1/358
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≤ d(q – )Mq–

�(α + )
(
 + |A|

)[( + |A|(α + ))


+
|A|( + |A|)α(α + )



]
‖x – y‖

≤ K‖x – y‖,

where

K =
d(q – )Mq–

�(α + )
(
 + |A|

)[

(
 + |A|(α + )

)
+ |A|

(
 + |A|

)
α(α + )

]
.

By (), we get K < , which implies that T is a contraction, therefore the boundary value
problem given in () has a unique solution. �

In the present part, we illustrate our results by examples.

Example  Consider the following anti-periodic boundary value problem:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(ϕ 

(C



 x(t)))′ = t( + sin(

√
πx
 +ω)), t ∈ (, ),

x() = –x(),
x′() = –x′(),
x′′() = –x′′(),

()

where

p =


, α =



, and a = a = a = –.

Then q = 
 , |A| = |A| = |A| = 

 and take δ = , λ =  and d =
√

π

 . Obviously,

[(
λ–q�

(
δ(q – ) + α + 

))
/
(
(q – )�

(
δ(q – ) + 

)(
 + |A|

)[

(
 + |A|

(
δ(q – ) + α + 

))
+ |A|

(
 + |A|

)(
δ(q – ) + α

)(
δ(q – ) + α + 

)])]
=
�(  )


=


√
π


>

√
π


= d.

On the other hand,

δλtδ– = t ≤ t
(
 + sin

(√
πx


+ω

))
= f (t,x).

Finally,

∣∣f (t,x) – f (t, y)
∣∣ = ∣∣∣∣t

(
 + sin

(√
πx


+ω

))
– t

(
 + sin

(√
πy


+ω

))∣∣∣∣
= t

∣∣∣∣sin
(√

πx


+ω

)
– sin

(√
πy


+ω

)∣∣∣∣
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≤ 
∣∣∣∣
(√

πx


+ω

)
–

(√
πy


+ω

)∣∣∣∣
=

√
π


|x – y|.

Therefore, as a consequence of Theorem , the boundary value problem given in () has
a unique solution.

Example  Consider the following anti-periodic boundary value problem:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(ϕ 

(C



 x(t)))′ = –t( + sin( x


√

π
+ω)), t ∈ (, ),

x() = –x(),
x′() = –x′(),
x′′() = –x′′(),

()

where

p =


, α =




and a = a = a = –.

Then, obviously, q = 
 , |A| = |A| = |A| = 

 . Taking δ = , λ =  and d = √
π
, we have

[(
λ–q�

(
δ(q – ) + α + 

))
/
(
(q – )�

(
δ(q – ) + 

)(
 + |A|

)[

(
 + |A|

(
δ(q – ) + α + 

))
+ |A|

(
 + |A|

)(
δ(q – ) + α

)(
δ(q – ) + α + 

)])]
=

�()
�(  )[( +


 ) + ]

=



√

π
>

√
π

= d.

On the other hand,

f (t,x) = –t
(
 + sin

(
x


√

π
+ω

))
≤ –t = –δλtδ–.

Finally,

∣∣f (t,x) – f (t, y)
∣∣ = ∣∣∣∣–t

(
 + sin

(
x


√

π
+ω

))
+ t

(
 + sin

(
y


√

π
+ω

))∣∣∣∣
≤ t

∣∣∣∣sin
(

x

√

π
+ω

)
– sin

(
y


√

π
+ω

)∣∣∣∣
≤ 

∣∣∣∣
(

x

√

π
+ω

)
–

(
y


√

π
+ω

)∣∣∣∣ = √
π

|x – y|.

Therefore, as a consequence of Theorem , the boundary value problem given in () has
a unique solution.
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Example  Now consider the following boundary value problem:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(ϕ 

(C



 x(t)))′ = sin(

√
πx
 +ω), t ∈ (, ),

x() = – 
x(),

x()′ = 
x

′(),
x()′′ = 

x
′′(),

()

where

p =


, α =



, a = –




and a = a =


.

Then q = 
 , |A| = 

 and |A| = |A| = . Also, taking d =
√

π

 and g(t) = , we have

M = 

and
[

�(α + )
(q – )Mq–( + |A|)[( + |A|(α + )) + |A|( + |A|)α(α + )]

]

=
�(  )

[( + 
 ) + ( 



 )]

=
�(  )


>
√

π


.

On the other hand,

∣∣f (t,x) – f (t, y)
∣∣ ≤

∣∣∣∣sin
(√

πx


+ω

)
– sin

(√
πy


+ω

)∣∣∣∣ ≤
√

π


|x – y|

for t ∈ [, ] and x, y ∈R;

therefore, by Theorem , the boundary value problem given in () has a unique solution.
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