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1 Introduction

Recently, boundary value problems for fractional differential equations have gained pop-
ularity among researchers since they have many applications in biophysics, blood flow
phenomena, aerodynamics, polymer rheology, viscoelasticity, thermodynamics, electro-
dynamics of complex medium, capacitor theory, electrical circuits, electro-analytical
chemistry, control theory (see [1-8] and [9]). Various results on boundary value prob-
lems for fractional differential equations have appeared in the literature (see [10-13] and
[14]). Also, solvability of fractional differential equations with anti-periodic boundary
value problems have been considered by different authors ([15, 16] and [17]). On the other
hand, in studying turbulent flow in a porous medium, Leibenson introduced the concept
of p-Laplacian operator [18] and it was used for fractional boundary value problems in
[19] and [20]. In this paper, we consider boundary value problems for fractional differen-
tial equations of order 2 < @ < 3 involving the p-Laplacian operator with various boundary
conditions including an anti-periodic case.

Now, we present basic definitions and results that will be needed in the rest of the paper.
More detailed information about the theory of fractional calculus and fractional differen-
tial equations can be found in [1, 2, 4] and [21].

It is well known that the beta function B(t, s) has the following integral representation:

1
B(t,s) = / 1 -1y tdr, ts>0.
0
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Moreover, B(t,s) can be expressed in terms of I'(¢), the gamma function, as follows:

~ () (s)

Ble,s) I'(t+5s)

. @)

Definition1 Let o be a positive real number. Then the fractional integral of x : (0,00) — R
is defined by

e L[
B30~ 5 || g

Definition 2 Let o be a positive real number. Then the Caputo fractional derivative of
x:(0,00) = R is defined by

N ~ 1 t x(s)
O P /0 sy &

where

n:{[a]+1 if o ¢ Ny, @

o ifa € Ny
and [«] denotes the greatest integer less than or equal to «.
Recall that C"([a, b], R) is the space of all real-valued functions x(t) which have contin-
uous derivatives up to order n — 1 on [a, b].

In the following lemmas, we give some auxiliary results which will be used in the sequel.

Lemmal [1] Let o > 0 and y(t) € C"([0,1],R). Then

n-1 *) 0
(I Cox) (&) = () = Y ad kf g,
k=0 ’

where n is given in (2).
On the other hand, the operator ¢,(s) = |s|’~%s, where p > 1, is called the p-Laplacian
operator. It is easy to see that go;l = ¢g4, where 117 + % = 1. The following properties of the

p-Laplacian operator will play an important role in the rest of the paper.

Lemma 2 Let ¢, be a p-Laplacian operator.
(i) Ifl1<p<2,xy>0,and |x|,|y| > m >0, then

|‘pp(x) - (pp(Y)| <@p- 1)mp—2|x -yl (3)
(i) Ifp>2and |x|,|y| <M, then

|05 () = 9, (0)| < (= DMP2|x = y. (4)
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In this paper, we focus on the solvability of the following non-linear fractional differential
equations of order « € (2, 3] involving the p-Laplacian operator with boundary conditions:

(0 (Cox(1))) = f(£,x(2)),
x(0) = aox(1),

, ) 5)
X (O) =a1x (l)r
x"(0) = ax" (1),
where a; #1,i=0,1,2, t € [0,1], f € C([0,1] x R,R) and x(¢) € C%([0,1],R).
Remark 1 For a; = -1, i =0,1,2, the boundary value problem given in (5) becomes anti-

periodic.

Lemma 3 Assume that o € (2,3], ag,a1,a; #1, t € [0,1] and h € C([0,1]). Then the solu-
tion x(t) of the boundary value problem

(@p(C3x(1))) = h(2),
x(0) = aox(1),

, , (6)
x'(0) = a1x'(1),
x"(0) = asx" (1)
can be represented by the following integral equation:
1 t L T
=— t—1)*" h(s)ds ) dt
ria e [ o)
AO ! a-1 ‘
X @ 1-1) (pq(/ h(s)ds) dt
A()Al + tAl w2 T
+[ Fa—1) ]/(1—1’) <pq</ (s)ds)dr
241A5(Ag +t) + Ar (£ + Ap)
+ [ T 2) :|/ 1-7)~ (pq (/ h(s) ds) dr, 7)
where Ag = lf—go, A= and Ay =~ az

Proof Using (6) and the fact that ¢,(Cj.x(0)) = 0, we have

0p(Coox(2)) = fo h(s)ds,

or equivalently,

Cax(t) = @, ( /0 h(s) ds), (8)

where }7 + % = 1. Applying the fractional integral operator I§j; to both sides of (8), we get

// 0 T
x(t) —x(0) —x'(0)¢ — ; e F(oc)/ (t-1)*" lwq(/o h(s)ds> dr,
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or equivalently,

Lo r o
#(0) = %/0 (t=1)""¢, </0 h(s) dS) dt +x(0) + 5 (0)t + = ; )t2,

1 t T
X (t) = Fe-D /0 (t- t)“’z(pq (/0 h(s) ds) drt +x'(0) + " (0)¢,

and

1 t T
x"(t) = Ta-2 /0 (t- t)"‘3g0q(/0 h(s) ds) dt +x"(0).

Taking ¢ = 1 on both sides of (9), (10) and (11), we have

! T
x(1) = %/0 1- ‘L’)Of—l(/)q(‘/o h(s) dS) dt + x(0) +x/(0) +
! T
s [0 [ hod) a0 0
! T
1 3(pq <f h(S) dS) dl’ +x//(0)'
0

Using equations (12), (13), (14) and the boundary value conditions

x//(o)
2 ’

x(0) = apx(1),
%'(0) = ax'(1),

%"(0) = axx"(1),

we can get that

x//(o) _ B 2 / 1- 'C)a 3¢q (/T h(S) ds) dr,

#(0) = o 1_1) / (1—1)“-2%,( / h(s)ds)dr
ArA; -3 i
l"(a 2)/‘(1 7) goq(/o h(s)ds)dt
and
x(0) = e )/ 1- </0 h(s)ds)dt

ApA T
+ I’(o? _11) / a- r)"‘_2<pq (/ h(s) ds) dt
, Aodidy
F(a ) / 1- (/ (s)ds) dr
AoAs -3
2F( _2)/ 1-1) g0q</0 h(s)ds)dt.

Substituting (15), (16) and (17) into (9) gives (7) and this completes the proof.

)

(10)

(11)

12)

(13)

(14)

(15)

(16)

17)
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2 Solvability of the fractional boundary value problem
This section is devoted to the solvability of the fractional boundary value problem given
in (5). First, we obtain conditions for existence and uniqueness of the solution x(¢) of the
fractional boundary value problem given in (5). Then, each result obtained here is illus-
trated by examples.

Recall that C[0, 1], the space of continuous functions on [0,1] is a Banach space with the

norm ||x|| = maxepo [#(t)|. Now consider T;: C[0,1] — C[0,1], i = 0,1, with

Tox(t) := @4 (/0 f(s,x(s)) ds)

and
_L ! _ -1
T1x(t) = r1(0{)/0@ ) x(t)dt
1
+ %/ (1-7)*%(r)dr

+ <AOA1+tA1>/ (I—T)a 2x(1’)dr

-1
) (zAlAz(Ao2 ;8 j)z““AO’) /O (1 - ) 2x(x) dr.

Then the operator T : C[0,1] — C[0,1], defined by T = T; 0 Ty, is continuous and compact.

Theorem 1 Suppose 1 < q < 2, ag,a1,ay # 1, and the following conditions hold: A > 0,
O<8<%{anddwith

0<d<[(2A*T(8(g-2) +a +2))

I((g-DT(8(g-2) +2) (1 + |Aol)[2(1 + |A11(8(g - 2) + @ + 1))

+ 1Az (1 +2]A11)(8(g - 2) + @) (8(g - 2) + a +1)])] (18)
such that
s8N <f(t,x) forany (t,x) € (0,1] x R (19)
and
[ft,x)~f(t,y)| <dlx -yl forte[0,1] andx,yeR. (20)

Then boundary value problem (5) has a unique solution.

Proof Using inequality (19), we get

t
< / f(s,x)ds forany (t,x) € [0,1] x R
0
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By (3) and (20), we have

| Tox(£) — Toy(t)

oo [ 163) )~ [ 600 )

/f s,x(s) ds — /f s,y(s) ds

<(g- 1) At

< (g - AT /0 (5,2(6) ~£ (s3(5)) | ds
<d(g-1)r12p) /0 t |x(s) — y(s)| ds
<d(q- DA g -y

Moreover,

| Tx(t) — Ty(t)|
= |Ti(To (x(1))) - To(To (y(®))) |

_ ‘ﬁ /0 (£ = 1) ((Tox)(¥) - (Toy)(x)) dr

A 1
‘o / (1= 1) (Tow)(x) - (To) (1)) d

i (Al(AO—Jrl)t))/ (1= 0)*((Tox)(2) = (Toy)(v)) dT

+ (2A1A2(A0 + If) +A2(t2 + A0)>

2T (a - 2)

1
« / (1= 1) ((Tox)(x) = (Toy)(x)) d
0

Finally, substituting (21) in (22), we get
|Tx(t) - Ty(t)|

1 t
<d(g-1DA"?|x -yl [— / (t — 1) %@ gp
0

01 -1 8q -2)+1
r(a) /( ar

Al(Ao + t) / (1 _ T)a—Zté(q—2)+l dr
F(O{ et 1) 0

2A1A2(A0 + t) + Az(tz + Ao)
(e - 2)

+

Using the equality

t 1
/ (t _ T)a—l_L,S(q—Z)Jrl dr = té(q—2)+a+1/ (1 _ _L,)oz—lfé(q—Z)Jrl dr
0 0

1
/ (1 _ _L,)a—S_L,S(q—Z)Jrl dl’]
0

Page 6 of 13
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in (23) one can write that

8(q-2)+o+1

1
(1 _ t)a—lré(q—2)+l drt
I'a) /0

Dtl(S 2+1
r(a)/(1 O de

(ApA; + tAy) / 1-1)*" -2 5q 2+1d1’
Te—1)

2A1A2(Ag + 1) + Az (£ + A) / (1 - 7)*-378a-2+1 dri|

2T (o — 2)
=d(q- DA |x - ylIB(8(q - 2) + 2,)

| T(6) = Ty(0)| < dlg— A"~y [

+

+

pla-drerd 4 ApA1 +tA
[ | 0| |( 01 + 1)|(5(q—2)+0l+1)

r@ T T@
|2A1A2(A0 +8) + Ay(£2 + Ag)l
2T ()

Using (1), we get that

| Tx(2) - Ty(2)]

I'(8(g-2)+2)l(a)

Flg-2)+a+2)

[ 1 N |[Ao| N (1Aol1A1l + A1)
INa) TI'(a) ')

(2|A1||Az|(|Ao| +1) +]Az|(1 + |Aol))

2I' (@)

I'(8(g-2)+2)

2'(6(g—-2)+2 + )

<d(g-DA|lx -y

(8(q—2)+a+1)

(8(g-2)+a)(8(g-2) +a +1):|

<d(g-DA*|lx -y

X [2(1 + |Ao|) + 2|A1|(1 + |Ao|)(8(q—2) +o+ 1)

+ A2 (L+1A0]) (1 +21A411) (8( - 2) + &) (8(g — 2) + « + 1) ]

I'(5(g-2)+2)
2'(8(g—-2)+2 + )

X (1+ |A0|)[2(1 + |A1|(8(q—2) +a +1))
+ |A2|(1 +2|A1|)(8(q—2) +a)(3(q—2) +o+ 1)]

=Klx -y,

<d(g-DA|lx -y

where

I'(8(g-2)+2)
2(8(g-2)+a + 2)(

K =d(g-1)A1? 1+]Aol)[2(1+1A1l(8(g - 2) + o +1))

+ Az |(1+2]411) (8(g - 2) + @) (8(g - 2) + & + 1) ].

(8(g-2)+a)(5(g-2) +a +1)].

Page 7 of 13
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Combining (24) with (18) implies that 0 < K < 1, therefore T is a contraction. As a con-
sequence of the Banach contraction mapping theorem [22] the boundary value problem
given in (5) has a unique solution. O

Theorem 2 Suppose 1< q <2, ag,a,ay #1 and the following conditions hold for a fixed,
IA>0,0<8< ﬁanddwith

0<d<[(2A°7T(8(g - 2) + o +2))
/((q=DT(8(q—2) +2) (1 + |Aol)[2(1 + |A1](8(g - 2) + & +1))
+|A|(1+ 2|A1|)(8(q— 2) + a)(S(q— 2)+o+ 1)])]

such that

ft,x) < -28t° forany (t,x) € (0,1] x R
and

If(t,x) —f(t,)| <dlx-y| forte[0,1] andx,yecR.
Then boundary value problem (5) has a unique solution.

Proof The inequality f(¢,x) < —A6t°~! implies that A8¢°~' < —f(t,x). Therefore replace
f(t,x) by —f(¢, %) in the proof of Theorem 1. 0

Theorem 3 Suppose q > 2, ay,a1,a # 1, there exists a non-negative function g(x) € L[0,1]
with M := [, g(t)dt > 0 such that

[f(t,x)| <g(t) forany(tx)e(0,1] xR (25)

and there exists a constant d with

0<d< 20(@+2) (26)
(g —1DM2(1+ |[AoD[2(1 + |A1](r + 1)) + [A| (1 + 2|41 e (e + 1)]

and
[f(t,x) —f(t,y)| <dlx-y| fortel0,1] andx,yeR.
Then boundary value problem (5) has a unique solution.

Proof Using (25), we get that

¢ 1
/o[f(t,x(r))|dr§/0 glt)ydt=M (27)

for all ¢ € [0,1]. By the definition of the operator Ty, one can write that

ool [ 1636) ) - [ o) as)

| Tox() — Toy(t)| = . (28)
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As a consequence of (4), (27) and (28), we have

|T0x(t) - Toy(t)| <(g-1)MI™2 / f(s,x(s)) ds — / f(s,y(s)) ds

<(g- 1Mq2/[fsx sy(s)|ds

<d(qg-1)M7? /o ‘x(s) —y(s)’ ds

<d(g-D)MT*t|x - y||.
Moreover,
| Tx(t) - Ty(0)| = | T1(To ((2)) - To(To(»(®)))|

_ ‘ﬁ /0 (£ = 1) (Tow)(¥) - (Toy)()) dr

Ay
T Jo
. A1(Ao +2)

MNa-1) Jo

}ZAIAZ(AO +1) + Ayt + Ag)

(-2

1
1 - ) ((Tox)(r) - (Toy)(x)) dT

1
(1= 1) ((Tox)(x) - (Toy)(x)) dr

1
< / (1= 13 (Tox) (1) ~ (Toy)(x)) d
0

| Tx(2) - Ty(0)| < d(g - 1)MT2||x -y [% /t(t —r)*lrdr

|A0|/(1_ el de

F(a) Mo -1)
[24145(Ag +t) + Ax (2 + Ap)| w3y
20 (o - 2) /(1 v ]
a+ 1
< d(q—l)M”‘ZIIx—yll[lf( 1) 1-1)*'rdr
|A0| -l |A1|(|A0| +1) _a- 2
r()/(l) T e /(l)
|A2|(|Ao| +1)(1+2]4,]) a3,
2 (o — 2) f(l v }
5 1 [Aol  |A1l(JAo] + 1)(a +1)
<d(g-1)M*? B(a,Z)IIx—yII[ (a)+F(a)+ M)
IAzI(IAol+1)(1+2|A1|)a(a+1)]
2I'(«)
_ dlg-1)M"2||x - y|

=T T@+2 [(1+'A°|>(1+|A1|<a+1))

. 1421(140| + 1) + 2|A1 e (e + 1)]

2

Page9of 13
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d(g - 1)M7? 201 + |A1[(x + 1))
= My o[
[A2|(1 + 2|A1er(e +1)
: - =51
<Klx-yl,
where
K= M@ +1Aol)[2(1 + |41 I(@ + 1)) + [Ag] (1 + 214, |)er(e + 1]

2T (a +2)

By (26), we get K < 1, which implies that T is a contraction, therefore the boundary value

problem given in (5) has a unique solution.
In the present part, we illustrate our results by examples.

Example 1 Consider the following anti-periodic boundary value problem:

(0 (CEx(0) =42 +sin(4E +w), te(0,),

x(0) = —x(1),
x'(0) = =x'(1),
x"(0) = —x"(1),
where
’ > and apg=a1=a 1
= -, o= ) = = = —1.
p 3 3 0 1 2

Then g = 2, |Aol = |A1] = |A2| = 1 and take 8 = 4, 4 =1 and d = ¥*. Obviously,

[(2A*71T (8(g - 2) + o +2))
/(@ =DT(8(g-2) +2) (1 + |Aol)[2(1 + A1 (8(g - 2) + & +1))
+ 1421 (1 +2]411)(8(g - 2) + &) (8(g - 2) +« +1)])]

64T(3) 407w 7
= — =
297 99 4

d.

On the other hand,

St =4 <48 <2 + sin(*/lz

X, w>> - f(t,%).

Finally,

lora( ) o)

sin ﬁx+w — sin @+w
16 16

If(t,2) ~ £ (t,9)| =

=44

O

(29)

Page 10 0of 13
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<o (55 ve)- (5 )
glx -

Therefore, as a consequence of Theorem 1, the boundary value problem given in (29) has

a unique solution.

Example 2 Consider the following anti-periodic boundary value problem:

(gD%(CO%x(t)))/ —2t(2 + sm( N w)), te(0,1),

x(0) = —x(1), (30)
x'(0) = —x'(1),
x"(0) = —x"(1),

5
ng, a=— and ag=a;=a,=-1

Then, obviously, g = %, [Ag| = |A1] = |Az] = % Takingd =2,2=1andd = %, we have

[(2A*71T (8(g - 2) + o +2))
/(@ =D (8(q-2) +2) (1 + |Aol)[2(1 + A1 (8(g - 2) + & +1))

+ 1Az (1+2[A11) (8(g - 2) + ) (8(g - 2) + a +1)])]
16T (4) 641

= = —_— = do
or@)2+3)+6] 33/ 7
On the other hand,
x
t,x) = =2t 2 +si < -2t =811,
f(t,x) ( +sm(2ﬁ+a)))_
Finally,

Ift,x) - f(t,p)| = |—2t<2 + s1n(

e} afors( )
o5 oe) (o)
) ()

1
=—lx-yl
N v =yl
Therefore, as a consequence of Theorem 2, the boundary value problem given in (30) has

<2t

a unique solution.

Page 11 0f 13
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Example 3 Now consider the following boundary value problem:

(03 (CHx(O)) =i’ (%2 +0), e (0,D)
x(0) = —2x(1),

x(0)' = 1x'(1),

x(0)" = 1x"(1),

(31)

7 1o 1
N o=, apgp = —— an ar=ddy = —.
3 0775 )

Then g = 2, |Ao| = 1 and |Ay| = |4, = 1. Also, taking d = Y= and g(¢) = 1, we have

M=1
and
[ 2« +2) ]
(g —DMI2(1 + [Ao])[2(1 + |A1]( + 1)) + |A2] (1 + 2]A; e (e + 1)]
B 48T°(2) _AT(3) Jm
TR0+ 9+ (EID)] T 9 20
On the other hand,

[f(t0) - f(&9)| =

sin2<{—n: +a)) —sinz({—noy +a)>‘ < g—§|x—y|

fort € [0,1] and x,y € R;

therefore, by Theorem 3, the boundary value problem given in (31) has a unique solution.
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