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Abstract
In this paper, we study the solutions of the second-order generalized difference
equation having the form of

�2
�u(k) + f (k,u(k)) = 0, k ∈ [a,∞),a > 0,� ∈ (0,∞), ()

where ��u(k) = u(k + �) – u(k). Then we provide applications on �2(�) and c0(�).
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1 Introduction and preliminaries
The basic theory of difference equations is based on the difference operator � defined as
�u(k) = u(k + ) – u(k), k ∈ N = {, , , , . . .}, which allows the recursive computation of
solutions. Later, the following definition was suggested for �� by [–] and []:

��u(k) = u(k + �) – u(k), k ∈R,� ∈ R – {}; ()

however, no significant progress took place on this line. Recently, equation () was recon-
sidered and its inverse was defined by �–

� , and many interesting results in applications
such as in number theory as well as in fluid dynamics were obtained; see, for example, [].
By extending the study for sequences of complex numbers and � to be real, some new qual-
itative properties like rotatory, expanding, shrinking, spiral and weblike were studied for
the solutions of difference equations involving ��. The � and c solutions of the second-
order difference equation of () when � =  were discussed in [] and further generalized
in []. In this paper, we discuss some applications of �� in the finite and infinite series of
number theory.
In this section, we present some of the preliminary definitions and results which will be

useful for future discussion. The following definitionswere held in [] and [], respectively.

Definition . Let u(k), k ∈ [,∞), be a real- or complex-valued function and � ∈ (,∞).
Then the generalized difference operator �� is defined as

��u(k) = u(k + �) – u(k). ()
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Then the inverse of �� denoted by �–
� is defined as follows: If

��v(k) = u(k), then v(k) = �–
� u(k) + cj, ()

where cj is a constant for all k ∈ N�(j), j = k – [ k
�
]�. If limk→∞ u(k) = , then we can take

cj = . Further, the generalized polynomial factorial for � >  is defined as

k(n)� = k(k – �)(k – �) · · · (k – (n – )�
)
. ()

The following lemmas were proved in [] and [], respectively.

Lemma . (Product formula) Let u(k) and v(k), k ∈ [,∞), be any two real-valued func-
tions. Then

��

{
u(k)v(k)

}
= u(k + �)��v(k) + v(k)��u(k)

= v(k + �)��u(k) + u(k)��v(k). ()

Lemma . Let � > , n ∈N(), k ∈ (�,∞) and k(n)� �= . Then

�–
�


k(n)�

=
–

(n – )�(k – �)(n–)�

+ cj. ()

Definition . A function u(k), k ∈ [a,∞), is said to be in the �(�)-space if

∞∑
γ=

∣∣u(a + j + γ �)
∣∣ < ∞ for all j ∈ [,�). ()

If limr→∞ |u(a + j + r�)| =  for all j ∈ [,�), then u(k) is said to be in the c(�)-space.

In what follows, we have the summation formula for finite and infinite series.

Lemma . If a real-valued function u(k) is defined for all k ∈ [,∞), then

�–
� u(k) =

[ k
�
]∑

r=

u(k – r�) + cj, ()

where cj is a constant for all k ∈N�(j), j = k–[ k
�
]�. Since [,∞) =

⋃
≤j<� N�(j), each complex

number cj ( ≤ j < �) is called an initial value of k ∈ N�(j). Usually, each initial value cj is
taken from any one of the values u(j), u(j+ �), u(j+ �), etc. Further, if limk→∞ u(k) =  and
� > , then

�–
� u(k) = –

∞∑
r=

u(k + r�). ()

Proof Assume z(k) =
∑∞

r= u(k + r�). Then

��z(k) =
∞∑
r=

u(k + � + r�) –
∞∑
r=

u(k + r�) = –u(k).

Now, the proof follows from limk→∞ u(k) =  and Definition .. �
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The next lemma is an expansion of Lemma . and its proof is straightforward.

Lemma . If limk→∞ u(k) =  and � > , then

�–
� u(k) =

∞∑
r=

∞∑
r=

u(k + r� + r�). ()

Theorem . Let n ∈N(), k ∈ (,∞) such that k(n)� �= . Then

∞∑
r=


(k + r�)(n)�

=


(n – )�(k – �)(n–)�

. ()

Proof The proof follows from Lemma . and Lemma . by taking u(k) = 
k(n)
�

and cj = .

�

Corollary . Let k ∈ (�,∞) and � ∈ (,∞). Then

∞∑
r=


(k + r�)(k + r� – �)

=


�(k – �)
. ()

Proof Since �–
�


k(k–�) =

–
�(k–�) , the proof follows from Theorem . by taking n = . �

2 Applications of�� in number theory
In this section, we present some formulae and examples to find the values of finite and in-
finite series in number theory as an application of��. The following theorem and example
were given in []. In fact, the example is to illustrate Theorem ..

Theorem . Let k ∈ [�,∞) and � ∈ (,∞). Then

[ k
�
]+s∑

r=

(k – r� + �) – �

�r(k – r� + �)()� (k – r� + �)(�
k–r�+�

�
�)

�

=
cj

�� k
�
� –



(k + �)k(�
k
�
�)

�

, ()

where s = – for k ∈ N�(�), s =  for k /∈ N�(�) and each cj is a constant for all k ∈ N�(j),
j = k – [ k

�
]�. In particular cj is obtained from () by substituting k = � + j.

Example . By taking � = ., k =  and j = . in (), we get cj = 
 and hence ()

becomes

[ k
�
]∑

r=

(k – .r + (.)) – (.)

.r(k – .r + (.))().(k – .r + .)(�
k–.r+.

. �)
.

=


(.)� k
. � –



(k + (.))k(�
k
. �)

.

, k = , ., ., . . . .

Theorem . Let k ∈ [�,∞) and � ∈ (,∞). Then

∞∑
r=

k + r� + �


k+r�

� ((k + r�) + �)()�

=


()
k
�
–(k – �)

. ()
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Proof By Definition ., we find

�–
�

(
(k + �)


k
� (k + �)()� k

)
=

–

()
k
�
–(k – �)

and () follows by Lemma . and cj =  as k → ∞. �

The following is the illustration for Theorem ..

Example . Taking � = . in (), we arrive at

k + .

 k
. (k + .)().

+
k + .

 k+.
. (k + .)().

+
(k + .)

 k+.
. (k + )().

+ · · · = 

() k
. –(k – .)

and one can take any value k ∈ [�,∞).

Theorem . For k ∈ [�,∞) and � ∈ (,∞), then

∞∑
r=

(k + r�) – �

�r((k + r�) – �)()� (k + r� + �)(�
k+r�+�

�
�)

�

=


((k – �) – �)k(�
k
�
�)

�

. ()

Proof By Definition ., we find

�–
�

(k – �)�� k
�
�

(k – �)()� (k + �)(�
k+�
�

�)
�

=
–�� k

�
�

((k – �) – �)k(�
k
�
�)

�

and () follows by () and cj =  as k → ∞. �

The following theorem generates the formula to find the sum of first partial sums of an
infinite series.

Theorem . For the positive integer n ∈N(), k ∈ [�,∞) and � ∈ (,∞),

∞∑
r=

∞∑
r=


(k + r� + r�)(n)�

=


(n – )(n – )�(k – �)(n–)�

. ()

Proof Using Definition . and operating �–
� on (), we find

�–
�


k(n)�

=


(n – )(n – )�(k – �)(n–)�

and hence () follows by Lemma . as cj =  when k → ∞. �

The following example illustrates Theorem ..

Example . Substituting � = ., n =  in (), we obtain


(k)().

+


(k + .)().

+


(k + )().

+ · · · = 
(.)(k – )().

.
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In particular, when k = , the above series becomes


× .× × .

+


.× × .× 
+


× .× × .

+ · · · = 
× .

.

Similarly, one can take any value for k ∈ [�,∞) and � ∈ (,∞).

The following example shows that 
k(n)
�

∈ c(�) and �(�) when k(n)� �= .

Example . Let n ∈ N(), � ∈ (,∞), j ∈ [,�) and a ≥ n�. Replacing k by a + j, in (),
we get

∞∑
r=


(a + j + r�)(n)�

=


(n – )�(a + j – �)(n–)�

. ()

Since

∣∣∣∣ 
(a + j + r�)(n)�

∣∣∣∣


<


(a + j + r�)(n)�

,

thus from () it follows that

∞∑
r=

∣∣∣∣ 
(a + j + r�)(n)�

∣∣∣∣


<
∞∑
r=


(a + j + r�)(n)�

=


(n – )�(a + j – �)(n–)�

< ∞.

The function 
k(n)
�

∈ �(�) follows from Definition . by taking

u(a + j + r�) =


(a + j + r�)(n)�

.

Since limr→∞ 
(a+j+r�)(n)

�

=  for all j ∈ [,�), Definition . yields 
k(n)
�

∈ c(�).

3 Concluding remarks
In the present work, we provide an application on �(�) and c(�) and solutions of the
second-order some generalized difference equation.
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