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Abstract
Very recently Choi et al. derived some interesting relations between Lauricella’s triple
hypergeometric function F(3)A (x, y, z) and the Srivastava function F(3)[x, y, z] by simply
splitting Lauricella’s triple hypergeometric function F(3)A (x, y, z) into eight parts. Here, in
this paper, we aim at establishing eleven new and interesting transformations
between Lauricella’s triple hypergeometric function F(3)A (x, y, z) and Exton’s function X8
in the form of a single result. Our results presented here are derived with the help of
two general summation formulae for the terminating 2F1(2) series which were very
recently obtained by Kim et al. and also include the relationship between F(3)A (x, y, z)
and X8 due to Exton.
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1 Introduction and preliminaries
In the usual notation, let C denote the set of complex numbers. For

αj ∈ C (j = , . . . ,p) and βj ∈C \Z–


(
Z
–
 := Z

– ∪ {} = {,–,–, . . .}),
the generalized hypergeometric series pFq with p numerator parameters α, . . . ,αp and q
denominator parameters β, . . . ,βq is defined by (see, for example, [, Chapter ]; see also
[, p.]):

pFq

[
α, . . . ,αp;
β, . . . ,βq;

z

]
=

∞∑
n=

∏p
j=(αj)n∏q
j=(βj)n

zn

n!
= pFq(α, . . . ,αp;β, . . . ,βq; z)

(
p,q ∈N :=N∪ {} = {, , , . . .};p� q + ;p� q and |z| < ∞;

p = q +  and |z| < ;p = q + , |z| =  and �(ω) > 
)
, (.)

where

ω :=
q∑
j=

βj –
p∑
j=

αj
(
αj ∈C (j = , . . . ,p);βj ∈C \Z–

 (j = , . . . ,q)
)

(.)
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and (λ)ν is the Pochhammer symbol or the shifted factorial since

()n = n! (n ∈N),

which is defined (for λ,ν ∈C), in terms of the familiar gamma function �, by

(λ)ν :=
�(λ + ν)

�(λ)
=

⎧⎨
⎩ (ν = ;λ ∈ C \ {}),

λ(λ + ) · · · (λ + n – ) (ν = n ∈N;λ ∈C),
(.)

it being understood conventionally that () := .
By using the notations as described in [, p., Equation .()] (with n = ) (see also [,

p., Equation ()], [, Equation (.)] and [, p., Equation .()]), Lauricella’s triple
hypergeometric function F ()

A (x, y, z) is defined by

F ()
A (x, y, z) = F ()

A (a,b,b,b; c, c, c;x, y, z)

:=
∞∑

m,n,p=

(a)m+n+p(b)m(b)n(b)p
(c)m(c)n(c)p

xm

m!
yn

n!
zp

p!(|x| + |y| + |z| < ; cj ∈ C \Z–
 (j = , , )

)
. (.)

Motivated essentially by the works by Lardner [] and Carlson [], by simply splitting
Lauricella’s triple hypergeometric function F ()

A (x, y, z) into eight parts, very recently Choi
et al. [] presented several relationships between F ()

A (x, y, z) and the Srivastava function
F ()[x, y, z] (see also []). The widely-investigated Srivastava’s triple hypergeometric func-
tion F ()[x, y, z], which was introduced over four decades ago by Srivastava [, p.]
(see also [], [, p., Equation .()] and [, p., Equation .()]), provides an inter-
esting unification (and generalization) of Lauricella’s  triple hypergeometric functions
F, . . . ,F (see [], [, pp.-]) and Srivastava’s three functions HA, HB and HC (see
[, pp.-]; see also [–], [, p.] and [, pp.-]).
Exton’s triple hypergeometric functionX (see []; see also [, p., Entry a and p.,

List a]) is defined by

X(a,b,b; c, c, c;x, y, z) :=
∞∑

m,n,p=

(a)m+n+p(b)n(b)p
(c)m(c)n(c)p

xm

m!
yn

n!
zp

p!
(

√|x| + |y| + |z| < ; cj ∈ C \Z–

 (j = , , )
)
. (.)

In fact, in  Exton [] published a very interesting and useful research paper in which
he encountered a number of triple hypergeometric functions of second order whose se-
ries representations involve such products as (a)m+n+p and (a)m+n+p and introduced a
set of  distinct triple hypergeometric functions X to X and also gave their integral
representations of Laplacian type which include the confluent hypergeometric functions
F, F, a Humbert function ψ and a Humbert function φ in their kernels. It is not out
of place to mention here that Exton’s functions X to X have been studied a lot until
today; see, for example, the works [, –] and []. Moreover, Exton [] presented
a large number of very interesting transformation formulas and reducible cases with the
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help of two known results which are called in the literature Kummer’s first and second
transformations or theorems.
Here, in this paper, we aim at establishing eleven new and interesting transformations

between Lauricella’s triple hypergeometric function F ()
A (x, y, z) and Exton’s function X in

the form of a single result. Our results presented here are derived with the help of two
general summation formulae for the terminating F() series which were very recently
obtained by Kim et al. [] and also include the relationship between F ()

A (x, y, z) and X

due to Exton [].

2 Results required
For our purpose, we require the following results recently obtained by Kim et al. []:

F

[
–n,α;
α + j;



]

=Aj
�(α)�( – α)(  )n(α + [ j+ ])n

�(α + 
 j +


 |j|)�( – α – [ j+ ])(α + 

 j)n(α + 
 j +


 )n

(.)

and

F

[
–n – ,α;
α + j;



]

=
Bj

α + j
�(–α)�(α + )(  )n( + α + [ j ])n

�(α + 
 j +


 |j|)�(–α – [ j ])(α + 

 j +

 )n(α + 

 j + )n
, (.)

where n ∈ N, j = , ±, . . . ,±, [x] is the greatest integer less than or equal to x and its
modulus is denoted by |x|, and the coefficients Aj and Bj are given in Table .

3 Main transformation formulae
The results to be established here are as follows:

( + x)–aF ()
A

(
a, c,b,b; c + j, c, c;

x
 + x

,
y

 + x
,

z
 + x

)

=
�(c)�( – c)

�(c + j
 +


 |j|)�( – c – [ j+ ])

×
∞∑

n,p,r=

Cj
(a)r+n+p(b)n(b)p(c + [ j+ ])r
(c)n(c)p(c + j

 )r(c +
j
 +


 )r

xr

r!
yn

n!
zp

p!

–
ax
c + j

�(–c)�( + c)
�(c + j

 +

 |j|)�(–c – [ j ])

×
∞∑

n,p,r=

Dj
(a + )r+n+p(b)n(b)p( + c + [ j ])r
(c)n(c)p(c + j

 +

 )r(c +

j
 + )r

xr

r!
yn

n!
zp

p!

(j = ,±, . . . ,±), (.)

where the coefficients Cj andDj can be obtained by simply changing n and α into r and c,
respectively, in Table  ofAj and Bj.
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Table 1 Contiguous relation coefficients

j Aj Bj

5 –4(1 – α – 2n)2 + 2(1 – α)(1 – α – 2n) + (1 – α)2 +
22(1 – α – 2n) – 13(1 – α) – 20

4(α + 2n)2 – 2(1 – α)(α + 2n) + (1 – α)2 +
34(α + 2n) + (1 – α) + 62

4 2(α + 1 + 2n)(α + 3 + 2n) – α(α + 3) 4(α + 2n + 3)
3 –α – 4n – 2 –3α – 4n – 6
2 –α – 1 – 2n –2
1 –1 1
0 1 0
–1 1 1
–2 1 – α – 2n 2
–3 1 – α – 4n 3 – 3α – 4n
–4 2(1 – 2α – n)(3 – α – 2n) – (1 – α)(4 – α) 4(1 – α – 2n)
–5 4(1 –α – 2n)2 – 2(1 –α)(1 –α – 2n) –

(1 – α)2 + 8(1 – α – 2n) + 7α – 7
4(α + 2n)2 + 2(1 – α)(α + 2n) – (1 – α)2 –
16(α + 2n) + α – 1

Proof For convenience and simplicity, by denoting the left-hand side of (.) by S and using
the series definition of F ()

A (x, y, z) as given in (.), after a little simplification, we have

S =
∞∑

m,n,p=

(a)m+n+p(c)m(b)n(b)p
(c + j)m(c)n(c)p

xm

m!
yn

n!
zp

p!
m( + x)–(a+m+n+p).

Using the binomial theorem (see, for example, [, p.]) for the last factor, we get

S =
∞∑

m,n,p,r=

(a)m+n+p(c)m(b)n(b)p
(c + j)m(c)n(c)p

xm+r

m!r!
yn

n!
zp

p!
m+r(–)r(a +m + n + p)r .

Using the identity (a)m+n+p(a + m + n + p)r = (a)m+n+p+r , after a little simplification, we
obtain

S =
∞∑

m,n,p,r=

(a)m+n+p+r(c)m(b)n(b)p
(c + j)m(c)n(c)p

xm+r

m!r!
yn

n!
zp

p!
m+r(–)r .

Now using the following well-known formal manipulation of double series (see [, p.];
for other manipulations, see also [, Eq. (.)]):

∞∑
r=

∞∑
m=

A(m, r) =
∞∑
r=

r∑
m=

A(m, r –m),

after a little simplification, we have

S =
∞∑

n,p,r=

r∑
m=

(a)n+p+r(c)m(b)n(b)p
(c + j)m(c)n(c)p

xr

m!
yn

n!
zp

p!
m+r(–)r–m

(r –m)!
.

Using the following formula:

(r –m)! =
(–)mr!
(–r)m

(�m� r; r,m ∈ N),

after a little simplification, we get

S =
∞∑

n,p,r=

(a)n+p+r(b)n(b)p(–)r

(c)n(c)p
xr

r!
yn

n!
zp

p!

r∑
m=

(c)m(–r)m
(c + j)mm!

m.
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Using the definition of pFq in (.) for the inner series, we obtain

S =
∞∑

n,p,r=

(a)n+p+r(b)n(b)p(–)r

(c)n(c)p
xr

r!
yn

n!
zp

p! 
F

[
–r, c;
c + j;



]
.

Separating r into even and odd integers, we have

S =
∞∑

n,p,r=

(a)n+p+r(b)n(b)pr

(c)n(c)p
xr

(r)!
yn

n!
zp

p! 
F

[
–r, c;
c + j;



]

+
∞∑

n,p,r=

(a)n+p+r+(b)n(b)p(–)r+

(c)n(c)p
xr+

(r + )!
yn

n!
zp

p! 
F

[
–r – , c;
c + j;



]
.

Making use of the following identity:

(α)r = r(α)r
(

α



)
r
,

after a little simplification, we get

S =
∞∑

n,p,r=

(a)n+p+r(b)n(b)p
(c)n(c)p(  )r

xr

r!
yn

n!
zp

p! 
F

[
–r, c;
c + j;



]

– xa
∞∑

n,p,r=

(a + )n+p+r(b)n(b)p
(c)n(c)p(  )r

xr

r!
yn

n!
zp

p! 
F

[
–r – , c;
c + j;



]
.

Finally, using the known results (.) and (.), after a little simplification, we easily arrive
at the right-hand side of (.). This completes the proof of (.). �

4 Special cases
In our main formula (.), if we take j = ,± and ±, after a little simplification, and in-
terpret the respective resulting right-hand sides with the definition of Exton’s triple hyper-
geometric series X given in (.), we get the following very interesting relations between
F ()
A (x, y, z) and X:
The case j = .

( + x)–aF ()
A

(
a, c,b,b; c, c, c;

x
 + x

,
y

 + x
,

z
 + x

)

= X

(
a,b,b; c +



, c, c;x, y, z

)
. (.)

The case j = .

( + x)–aF ()
A

(
a, c,b,b; c + , c, c;

x
 + x

,
y

 + x
,

z
 + x

)

= X

(
a,b,b; c +



, c, c;x, y, z

)

–
ax

c + 
X

(
a,b,b; c +



, c, c;x, y, z

)
. (.)

http://www.advancesindifferenceequations.com/content/2013/1/34


Choi and Rathie Advances in Difference Equations 2013, 2013:34 Page 6 of 7
http://www.advancesindifferenceequations.com/content/2013/1/34

The case j = –.

( + x)–aF ()
A

(
a, c,b,b; c – , c, c;

x
 + x

,
y

 + x
,

z
 + x

)

= X

(
a,b,b; c –



, c, c;x, y, z

)

+
ax

c – 
X

(
a,b,b; c +



, c, c;x, y, z

)
. (.)

The case j = .

( + x)–aF ()
A

(
a, c,b,b; c + , c, c;

x
 + x

,
y

 + x
,

z
 + x

)

= X

(
a,b,b; c +



, c, c;x, y, z

)

+
ax

c + 
X

(
a + ,b,b; c +



, c, c;x, y, z

)

+
a(a + )x

(c + )(c + )
X

(
a + ,b,b; c +



, c, c;x, y, z

)
. (.)

The case j = –.

( + x)–aF ()
A

(
a, c,b,b; c – , c, c;

x
 + x

,
y

 + x
,

z
 + x

)

= X

(
a,b,b; c –



, c, c;x, y, z

)

+
ax

c – 
X

(
a + ,b,b; c –



, c, c;x, y, z

)

+
a(a + )x

(c – )(c – )
X

(
a + ,b,b; c +



, c, c;x, y, z

)
. (.)

Remark Clearly, Equation (.) is Exton’s result (see []) and Equations (.) to (.) are
closely related to it. The other special cases of (.) can also be expressed in terms of X

in a similar manner.
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