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Abstract

In this paper, we consider the problem of average consensus for wireless sensor
networks (WSNs). By applying the Lyapunov function and the M-matrix approach,
several sufficient conditions to ensure the average consensus in pth moment for
WSNs with Markovian switching topology are derived. Also we study the stochastic
average consensus in the large for WSNs with Markovian switching topology, whose
transition jump rates matrix is not precisely known. We finally show the numerical
simulations to illustrate the effectiveness of the results derived in this paper.
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1 Introduction

With the increasing development of microelectronics, wireless communication and com-
puting, wireless sensor networks (WSNs) have been more widely used in such areas as
robotics, surveillance, environment monitoring, information collection, and so on.

From a network-theoretic perspective, a WSN can be looked upon as a multi-agent sys-
tem (MAS) with each node representing a sensor and each edge performing information
exchange between sensors. In some cases, the agreement is a common value which may
be the average of the initial states of the system, and which is often called average con-
sensus and has wide application background in the areas such as formation control [1],
distributed filtering [2] and distributed computation [3]. It means to achieve the accor-
dance of the states of MAS. In [4], the authors considered the average consensus control
for the directed and undirected networks with fixed and switching topologies. In [5], the
authors extended the results of [4] to the discrete-time models and weakened the condi-
tion of instantaneous strong connectivity. In [6], the authors considered the distributed
averaging consensus of the networks with fixed and undirected topologies.

In the real communication surroundings, the topology of the WSN will change among
some modes along with the time. Due to the limited energy, the sensor nodes often switch
the states between sleep and awake to save energy. So we make use of Markov switching
topology to describe this situation. Zhang [7] designed a distributed consensus protocol
to analyze the multi-agent systems in uncertain communication environments including
the communication noises and Markov topology switches. The asymptotic unbiased mean
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square average consensus and asymptotic unbiased almost sure average consensus were
obtained. Also they considered the effect of agent dependent gain functions on the con-
sensus of multi-agent systems. Zhou et al. [8] studied the problem of the mode and delay-
dependent adaptive exponential synchronization in pth moment for stochastic delayed
neural networks with Markovian switching. By applying a novel nonnegative function
and the M-matrix approach, several sufficient conditions to ensure the mode and delay
dependent adaptive exponential synchronization in pth moment for stochastic delayed
neural networks were derived. Zhou et al. [9] considered the problem of target synchro-
nization for the WSNs with multiple time-varying delays, Markov switching topology and
the stochastic disturbance. The communication topology graphs they studied in this paper
were undirected.

In real networked control systems, the packet dropouts and channel delays usually arise
in the communication among the sensor nodes. The situations can be modeled by the
Markov chain with the assumption of completely known or incompletely known transi-
tion probabilities. Therefore, from control perspectives, it is important and necessary to
discuss the systems with partly unknown transition probabilities. Zhang and Boukas [10]
studied the stability and stabilization problems of a class of continuous-time and discrete-
time Markovian jump linear systems with partly unknown transition probabilities. Zhang
and Lam [11] considered the Markov jump linear system with incomplete transition de-
scriptions and got the necessary and sufficient criteria in both continuous-time domain
and discrete-time cases. Zhu et al. [12] discussed the asymptotic stability of nonlinear
stochastic differential equations with Markovian switching. The transition jump rates ma-
trix I" is not precisely known for the equations.

Moreover, to study the average consensus for the WSNs with Markovian switching
topology and stochastic noises, we take advantage of the pth moment exponential sta-
bility theory [13] which is widely applied to the system stability analysis [14—16]. Specially,
the case p = 2 is the mean square exponential stability which is frequently used in different
research works such as [17-19]. In [19], the authors showed that a necessary and sufficient
condition for asymptotically unbiased mean square average consensus is that the consen-
sus gains satisfy the step rule similar to that of classical stochastic approximation.

Next, we introduce our main contributions. To the best of our knowledge, the method
combining the Lyapunov function and the M-matrix is rarely used in the researching area
of the average consensus in pth moment for WSNs with Markovian switching topology
and stochastic noises. Also, the stochastic average consensus in the large for WSNs with
Markovian switching topology, whose transition jump rates matrix is not precisely known,
is rarely discussed. The present paper considers the consensus in pth moment for WSNs
with Markovian switching topology and stochastic noises in communication. Making use
of the pth moment exponential stability theory, we propose a sufficient condition of the
pth moment exponential consensus for the WSNs. Different from [9], the communication
topology graphs discussed are directed. We also consider the stochastic average consensus
in the large for the WSN, whose transition jump rates matrix I' is not precisely known.

The remainder of the paper is organized as follows. In Section 2, some concepts in graph
theory are described, and the problem to be investigated is formulated. In Section 3, the
main results are presented. In Section 4, two numerical examples show the reliability of

the main results. In Section 5, some conclusions are given.
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The following notations will be used throughout this paper : |x| represents the Euclidean
norm of a vector x in R”, |A]| := \/‘m, i.e., the trace norm of a matrix A. ‘T’ repre-
sents the transpose of a matrix or a vector, / is an # x n dimensional identity matrix, 1, is
an n-dimensional column vector with all ones, E stands for the mathematical expectation
operator. If A is a matrix, Apin(A4) and Apnax(A) denote the smallest and largest eigenvalues
of A, respectively.

2 Problem formulation and preliminaries

2.1 Concepts in graph theory

Let G = {V,&, A} be a weighted digraph, where V = {1,2,...,n} is the set of nodes, node
i represents the ith sensor node, € is the set of edges, and an edge in § is denoted by an
ordered pair (j,i). (j,i) € £ if and only if the jth sensor node can send information to the
ith sensor node directly. The neighborhood of the ith sensor node is denoted by N; = {j €
VI(j,i) € £}

A = [a;] € R”" is called the weighted adjacency matrix of G. For any i,j € V, a; >
0,and a; > 0 & j € N;. deg,, (i) = >, a; is called the in-degree of i; deg,,,, (i) = 7, a;
is called the out-degree of i; £ = D — A is called the Laplacian matrix of G, where D =
diag(deg,,(1),...,deg;,(n)).

2.2 Average consensus for WSNs
In this paper, we study the average consensus control for a WSN with dynamics

xi(t) = wi(t), @)

where x;(t) € R is the state of the ith sensor, and #;(¢) € R is the control input. The initial
state x;(0) is deterministic.
The ith sensor can receive information from its neighbors

Y;i(t) = x;(t) + 0ji (%:(0), ) w;i (), (2)

where y;;(t) denotes the measurement of the jth sensor’s state x;(t) by the ith sensors,
{w;i(H)|i,j =1,2,...,n} are the communication noises, 0j;(x;(t), t) is the noise intensity func-
tion.

Denote X(¢) = (x1(),%2(2), ..., %,(t))T, (G, X) is called a dynamic network.

For the dynamic network (G, X), we use the distributed protocol

uilt) = Y ay(t) (y(e) - x8)). (3)

JEN;
Substituting protocol (3) into system (1) leads to
dX(¢) = -L{t)X(t) dt + G(X(2),t) AW (2), (4)

where L(t) is the Laplacian matrix of G, G(X(¢),t) is the noise intensity matrix, W (¢) =
(Wi(8),..., W,()T is an n-dimensional Brownian motion.

In WSNss, each sensor node communicates with other sensor nodes through the unreli-
able networks. If the communication channel between sensors i and j is (j, i) € Ef, Sf is the
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set of the communication channel which probably lost the signal, then the time-varying
topologies under link failure or creation can be described by Markov switching topology.
Let {r(t),50} be a right-continuous Markovian chain on the probability space taking val-

ues in a finite state set S = {1,2,..., N} with generator I' = (y;)nx xn given by

VA +0(A) ifi #j,

Pl M) =r@ =i} =1 " o) ifie

(5)

where A > 0 and y;; > 0 is the transition rate from i to j if i #j while

Yii = — Z Vij

Jj#i
and r(0) = ry.
We denote the directed communication graph by § = {G(1),G(2),...,G(N)}, where
G(k) = {V, g, Agw} is the weighted digraph. Denote the topology graph as G, at mo-

ment ¢ (¢ > 0), so r(¢) = k if and only if G, = G(k).
Under Markovian switching topology, we have

dX(t) = -L(r(£))X(¢) dt + G(X (), 7(2)) dW (). (6)
Next, we consider the average consensus control protocol for system (6) as follows:
ds(e) = —L(r(t))8(t) dt + (I - )G(8(2), r(2)) AW (¢), (7)

where 8(¢) = X(¢) - JX(2), ] = 11,17
If we define

fG,60)=-L(r(®))8(),  g(8,6i) = -)G(8(2),r(t)), (8)
then (7) becomes
das(t) =f(8,¢t,i)dt + g(8,t,i) dW (t). 9)

Definition 1 Dynamic system (6) is said to be average consensus in pth moment if error
system (7) satisfies that limsup,_, ., E|6(¢)|” = 0. If p = 2, we called it reach mean-square

average consensus.

Definition 2 Dynamic system (6) is said to reach stochastic average consensus in the large

if error system (7) is stochastic stable and, moreover,
P{ Jim 8(¢it0,80,) = 0} = 1.
t—00
To get the main results, we need the following assumptions.

(Al) G isa balanced digraph;
(A2) The union of {G(i)|i € S} contains a spanning tree.
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(A3) There exists a positive constant H such that the noise intensity matrix g(-, -, -)

satisfies
trace(g’ (8,¢,1)g(8,, 1)) §H|8(t)|2.

To this end, we introduce some concepts and lemmas which will be used in the proofs
of our main results.
Consider an n-dimensional stochastic differential equation with Markovian switching

dx(t) = f (x(t), e, t) dt + §(x(0), 72, t) AW (£) (10)

on t € [0,00) with the initial data x(¢y) = %o € L‘ZO (2;R") and r(ty) = ro.
For V e C*}(R" x S x R,;R,), define an operator £ from R" x S x R, to R by

LV (x(t),i,t) = Vo (x(2), i, £) + Vi (w(2), i, £)F (x(8), 4, )

+ % trace(g" (x(2), i, £) Vau (%(0)i, )@ (%(2), 1, £))

+ XN: yiV (x(2),), 1),
=)
where
w@mmﬂzgggﬂﬁ,
Vas(0,irt) = (aV(a;(Q,i, 2] BV(a;(:j,i, H avp;;r:, i t)),
Ve (x(0), 1) = (%)

Lemma 1 [13] Let V € C>(R" x R, x S,R,) and 1, Ty be bounded stopping times such
that 0 < 1y < 1y a.s. If V(x(£),t,7(t)) and LV (x(t),t,r(t)) etc., are bounded on t € [11, 1]
with probability 1, then

EV(TQ, r(rz),x(tz)) = EV(rl, r(rl),x(rl))

+ E/TZ £V(s, r(s),x(s)) ds. (11)

1

Lemma 2 [20] Let N, (t) be the number of switches on the interval (ty, t], then we have

_ (gt)k
PU@U):k)geﬁA%%y Vk €N,
<.

where q = max{y; : i,j € S}, g = max{|y;| : i € S}.

Definition 3 [21] A square matrix M = (m1;),x, is called a nonsingular M-matrix if M
can be expressed in the form of M = s, — G with some G > 0 (i.e., each element of G is
nonnegative) and s > p(G), where p(G) is the spectral radius of G.
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Lemma 3 [13] IfM = (m;),xn € R™" with my; < 0 (i #j), then the following statements are
equivalent:

(1) M is a nonsingular M-matrix;

(2) Every real eigenvalue of M is positive;

(3) M is positive stable. That is, M~ exists and M~ > 0 (i.e., M > 0 and at least one

element of M7! is positive).
Lemma 4 [13] (Young inequality) Leta,b € R and B € [0,1]. Then
jal?6|%P < Bla] + (1 - B)Ibl.

Lemma 5 [13] (Gronwall inequality) Let T > 0 and u(-) be a Borel measurable bounder

nonnegative function on [0, T1. If
t
u(t) < al(t) +f Bu(s)ds, YO<t<T
0
for the non-decreasing function o(t) and the constant 8, then

u(t) <a(t)exp(Bt), VO<t<T.

3 Main results

In this section, we give criteria of average consensus for system (6).
3.1 Average consensus in pth moment for the WSNs
Theorem 1 Assume that there is a function V(t,i,8) € C*Y(R, x S x R";R,) and positive

constants p, ci, ¢y, » and n such that

Cl|8|p = V(t1 l18) = CZ|8|p’ (12)

LV(t,i,8) <=M +1 (13)
forallt>0.ieSandd e R". Then (7) is exponential stable in pth moment.

Proof For the function V(¢,i,8), applying Lemma 1 and using the above conditions, we
obtain that

a8 <EV(0,r,£(0)) + ]E/t LV (s,7(s),8(s)) ds
0
< EV(O,ro,S(O)) + ]E/t(—k|8|p + 17) ds. (14)
0

So,

EV(0,ry,£(0 Lt _\E|§P
giop < EVQIEO) | 1 AP e
4] 0 (4]

t
<c(t) +/ vE|8|P ds, (15)
0
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where

EV(0,r9,£(0)) + nt
c(t) = . — 00
1

It can be seen that ¢(¢) > 0 and v < 0. By using Gronwall’s inequality, we have
E[81P < c(t) exp(vt).
Therefore
. 1 p
lim sup - 10g(E|8(t,§)| ) <v<O0.
t—00 t

Thus (7) is exponential stable in pth moment. This completes the proof. |
Now we give a criterion of average consensus in pth moment for system (6).

Theorem 2 Assume that for each i € S, there is a pair of real numbers o > 0 and B; such
that

p-1
2

5TF(8,,0) + ——|g(8,8,0)|" < + Bil8 P
forall (§,t) € R" X R, where p > 2.
Assume also that
M := —diag(pBy,...,pBn) - T
is a nonsingular M-matrix, in this case,
(G- qn)T = M1 >0,
where—f =(1,...,1)T. Then system (6) reaches average consensus in pth moment.
Proof We can see that
8TF(5,t,0) + ’”T_l 2.8,
=—8TLs + ’%1 -G
< (’”T‘l u-)[*H - Amm(Li)) 8
<a+Bils

where o € R* and B; = I%II(I —DI?H = Amin(L)).
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Define the function V: R, x S x R" — R, by
V(8,¢t0) = q;|8F. (16)
Clearly, V obeys Theorem 1 with ¢; = min;cs g; and ¢; = max;cs q;, and 1|87 < V(§,¢,i) <

|81,

We compute the operator LV as follows:

1
LV, 4,0) = pgilS1P-28TF(8,t,1) + qu,wav’-2 86,60

N
1 - N
+ =2l [57g5 1) + ;yng
pa

N
:pqi|6|f’-2< s |g|2) £ vyailsl

j=1
<pailsl” (Bils)” + ) Zyl,q,|8|

N
< (pﬂiqi £y mq,) 1817 + apqi|81
j=1

= —|81P + apg;|8 P72 17)

By Young’s inequality,
1 (-2)/p
apqils)’ = apgi2 " (5 |8|P>

1 (p-2
= [(apq,-)*’”z@-m]z"’(va’)

2 -2
= (apgi 202" 4 p-2) 817 (18)
p 2p
Substituting this into (17) gives
) p+l ., 2 PI20(p-2)/2
LV(t,i,8) < ———|81P + —(apq;)P'*2 . (19)
p V4
Let
1
Loprl
p

2 2
n= maX[—(apqi)”’ﬁ("‘””} = ~(apey) 2P D"
ieS p p
We can see that A, 1 are constants, so by Theorem 1,

lim sup % 10g(IE|8(t, i,§)|p) <v<O.
[—00

Page 8 of 13
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It means that

t—00
limsup]E’cS(t, i,é)’p <exp(vt) — 0.

t—00

So system (6) reaches the average consensus in pth moment. This completes the proof. [J

Remark 1 In Theorem 2, we can easily check the condition obtained by using the new
method if the dynamic system is given and the positive constant 1 is well chosen. To the
best of our knowledge, the method combining the Lyapunov function and the M-matrix
in this paper is rarely used in the researching area of the average consensus in pth moment
for WSNs with Markovian switching topology and stochastic noises.

Corollary 1 If the functions f, g satisfy

8Tf < k(a + Bil8I?),

-1
Bl < - 0(e + o),
where 0 < k <1, k € R, then we get

p-1

8TF(s, 8,i
S8, t,0) + 5

86, 60" <o+ BilSI%

Following Theorem 2, system (6) reaches consensus in pth moment.

3.2 The stochastic average consensus in the large for the WSNs under I' is not
precisely known

In the real communication networks, the part of the elements in the desired transition
probabilities matrix are difficult to obtain. Therefore, it is important and necessary, from
control perspectives, to further study the WSNs with partly unknown transition proba-
bilities.

Consequently, in this part, we consider stochastic average consensus in the large for the
system, even though the transition jump rates matrix I = (y;)n . is not precisely known.

Theorem 3 Assume that there exist functions V € C*(R" x S; R,), positive constants a1, oty
and for each i € S, there exist a real number A > 0 and symmetric positive-definite matrices
P; such that

(i)

als@* < V6,0 <an|s@)]’, Vies; (20)
(i)

28TPf(8,i) + trace(g” (8,0)Pig(8,4)) < —AI81% (21)
(iif)

V(i) < 2VE,)), Vijes; (22)

(241
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(iv)

a7
1< ® < ﬂ, (23)
(051 q

then the system reaches stochastic average consensus in the large.

Proof Define V(8,i) = 87P;6 for all i € S. Let a; = min{Amin(P;) : i € S}, otz = max{Amax (P;) :
i € S}. Obviously,

a|8@)) < V(5,0 < an|80)|.

Also we can see that

LV(8,1) = 28T Pif (8, i) + trace(g” (8, i)P;g(8, )
= 28" P,L;8 + trace(g” (8,1)P;g (5, 1))
< ~2hmax (P)Amin(Li) 1817 + HAmax (P) 18]

= (~22min(L0) + H) A (P2) 8]

Let A; = (=2Amin(L;) + H)Amax(P;) and A = min{}; : i € S}, we have LV(8,i) < =1,V (8,i) <
-AV(3,i).
On the other hand,

Vs, z)<— V(8,j), VijeS.
o

Obviously, 1 < u = 22 = max {)\"mx 1i,je S} < 14
Consequently, accordmg to Theorem 31in [12] it is obtained that error system (7) is

stochastic stable and
IP{ lim 8(¢; to, 80, i) = o} -1
t—0o0

It means that system (6) reaches stochastic average consensus in the large. This com-

pletes the proof. d

Remark 2 In contrast with the case that the transition probabilities of the underlying
Markov chain are assumed to be completely known, the circumstance that transition jump
rates matrix I" is not precisely known for the equation (7) is more general in the real control

systems.

Remark 3 There are several disadvantages associated with the result derived in Theo-
rem 3. (1) Hypothesis (22), it may reduce the set of systems to which the results in this
section can be used. (2) The constructive method for choosing the best Lyapunov func-

tions is currently unknown.

Page 10 0of 13


http://www.advancesindifferenceequations.com/content/2013/1/346

Zhou et al. Advances in Difference Equations 2013, 2013:346 Page 11 0f 13
http://www.advancesindifferenceequations.com/content/2013/1/346

1 1 1

2 .3 2. .3 2 3

Figure 1 The topologies of the WSN in states 1, 2, 3.

4 Numerical examples

In this section, we give two examples to examine the average consensus of system (6).
Consider a WSN composed of three sensors in which each dynamic state of the sensor is

&; = u;, where i = 1,2, 3 (see the topologies in Figure 1), the initial state is X(0) = (3,-2,4)7,

the switching topology of the three sensors is determined by the Markov chain r(¢) whose

state space is S = {1, 2, 3}. The related topology graph is G(i) = {V(i), £(i), A(i)}, the adjacent

matrices are:

01 0

AD=11 o of, (24)
0 0 0
0 0 0 0 05 0

A2)=lo o 1], AB)=|1 o o]. (25)
01 0 0 05 0

The related Laplacian matrices are:

1 -1 0

LO=|-1 1 of, (26)
0O 0 O
0 0 O 05 -05 O

L2)=]10 1 -1, L3)=1]-1 1 0 1. (27)
0 -1 1 0 -05 05

Example 1 Suppose that the Markovian transition matrix is

2 1 1
r=|1 -2 1]. (28)
1 1 =2

Weletp=5,a=218% 8 =1, k= %, |g| = 0.15]$], it can be checked that assumptions
(Al), (A2), and the conditions of Corollary 1 are satisfied and the matrix M is a nonsingular
M-matrix. So the WSN reaches average consensus by Corollary 1.

We can draw the dynamic curve of the states of the sensors by Matlab as Figure 2. It

shows us that the three sensor nodes reach the average consensus in 5th moment.
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Figure 2 The trajectories of the state vectors 4
x1(t), x2(t), x3(t). 1

=

-2

o
N
EN
(2]
©
-
o

t/second

Figure 3 The trajectories of the state vectors 4
x1(8), x2(t), x3(t).

=

=

x X X
LA

=

-1

-2

0 2 4 6 8 10
t/second

Example 2 Suppose that the Markovian transition matrix with partly unknown jump

rates is
-a b 0
r=11 -2 1], (29)
0 1 -1

where a,b > 0 denotes the unknown transition jump rates subject to a < 2, b <1, respec-
tively. We can see that g =2, g =1.

Letting |g| = 0.25|8| and according to Theorem 3, we can draw the dynamic curve of the
states of the sensors by Matlab as Figure 3. It shows us that the three sensor nodes reach

stochastic average consensus in the large.

5 Conclusions

In this paper, we have dealt with the problem of average consensus in pth moment of the
WSNs. By using the Lyapunov function and the M-matrix approach, we have obtained
several sufficient conditions to ensure the average consensus in pth moment for WSNs
with Markovian switching topology. Also, a sufficient condition for the stochastic average
consensus in the large for the WSNs with partly known transition jump rates matrix I" is
derived. There are many other topics such as the time-delay cases and the adaptive control
of the WSN’s consensus in pth moment, etc. worth investigating.
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