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Abstract
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1 Introduction and results
In this paper, we shall assume that the readers are familiar with the fundamental results
and standard notations of the Nevanlinna value distribution theory in the complex plane
C and in the unit disc � = {z : |z| < } (see [–]). Before we state our main results, we
need to recall some definitions and notations.

Definition . ([, , ]) For ameromorphic function f (z) in�, the order of f (z) is defined
by

σ (f ) = lim
r→–

log+T(r, f )
log 

–r
,

where T(r, f ) is the characteristic function of f (z). And for an analytic function f (z) in �,
we define σM(f ) by

σM(f ) = lim
r→–

log+ log+M(r, f )
log 

–r
,

whereM(r, f ) =max|z|=r |f (z)| is the maximum modulus function of f (z).

Remark . ([]) If f (z) is an analytic function in �, then

σ (f ) ≤ σM(f )≤ σ (f ) + .
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Definition . ([, ]) Let f (z) be a meromorphic function in �, the hyper-order of f (z)
is defined by

σ(f ) = lim
r→–

log+ log+T(r, f )
log 

–r
= lim

r→–
log+ T(r, f )
log 

–r
.

If f (z) is an analytic function in �, then the hyper-order about maximummodulus of f (z)
is also defined by

σM,(f ) = lim
r→–

log+ M(r, f )
log 

–r
.

Definition . Let f (z) be a meromorphic function in �, the hyper-lower-order of f (z) is
defined by

μ(f ) = lim
r→–

log+ T(r, f )
log 

–r
.

If f (z) is an analytic function in �, we define μM,(f ) by

μM,(f ) = lim
r→–

log+ M(r, f )
log 

–r
.

Remark . ([]) If f (z) is an analytic function in �, then

(i) σ(f ) = σM,(f ), (ii) μ(f ) = μM,(f ).

Definition . The hyper convergence exponent and the hyper-lower convergence expo-
nent of fixed points of a meromorphic function f in � are defined by

λ(f – z) = lim
r→–

log+ N(r, 
f –z )

log 
–r

, λ(f – z) = lim
r→–

log+ N(r, 
f –z )

log 
–r

.

And we also define λ(f – z) and λ(f – z), respectively, by

λ(f – z) = lim
r→–

log+ N(r, 
f –z )

log 
–r

and λ(f – z) = lim
r→–

log+ N(r, 
f –z )

log 
–r

.

Many authors investigate the linear differential equation

f ′′ +A(z)eazf ′ + B(z)ebzf = , (.)

where A(z),B(z) �≡  are entire functions (e.g., see [–]). In [], Chen proved that if
ab �=  and a �= b, then every solution f (z) �≡  of (.) is of infinite order; furthermore, if
ab �= , a �= b, A(z) ≡ , B(z) is a polynomial, then every solution f (z) �≡  of (.) satisfies
σ(f ) = . In , Hamouda investigated the equation

f ′′ +A(z)e
a

(z–z)μ f ′ + B(z)e
b

(z–z)μ f = , (.)

where A(z) and B(z) are analytic functions in �, and he obtained the following results.
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Theorem . ([]) Let A(z) and B(z) �≡  be analytic functions in the unit disc. Suppose
thatμ >  is a real constant, a, b and z are complex numbers such that ab �= , arga �= argb,
|z| = . If A(z) and B(z) are analytic on z, then every solution f (z) �≡  of (.) is of infinite
order.

Theorem . ([]) Let A(z) and B(z) �≡  be analytic functions in the unit disc. Suppose
that μ >  is a real constant, a, b and z are complex numbers such that ab �= , a = cb
( < c < ), |z| = . If A(z) and B(z) are analytic on z, then every solution f (z) �≡  of (.)
is of infinite order.

Remark . Throughout this paper, we choose the principal branch of logarithm of the
function e

λ
(z–z)μ if μ is not an integer (λ ∈C \ ).

In this paper, we focus on studying the hyper-order and fixed points of the solutions of
(.) and obtain the following results.

Theorem . Let A(z) and B(z) �≡  be analytic functions in the unit disc, and let μ > 
be a real constant, a, b and z be complex numbers such that ab �= , arga �= argb, |z| = .
If A(z) and B(z) satisfy one of the following conditions:
() max{σM(A),σM(B)} ≤ μ, A(z) and B(z) are analytic on z;
() σM(A) < μ, σM(B)≤ μ and B(z) is analytic on z;

then every solution f (z) �≡  of (.) satisfies
(i) μM,(f ) = μ(f ) = σ(f ) = σM,(f ) = μ;
(ii) λ(f – z) = λ(f – z) = λ(f – z) = λ(f – z) = μ.

Theorem . Under the assumptions of Theorem ., with the exception that ab �= ,
a = cb ( < c < ), |z| = , every solution f (z) �≡  of (.) satisfies

(i) μM,(f ) = μ(f ) = σ(f ) = σM,(f ) = μ;
(ii) λ(f – z) = λ(f – z) = λ(f – z) = λ(f – z) = μ.

Corollary . Let A(z),B(z) �≡ , C(z) and D(z) be analytic functions in the unit disc, and
let a, b and z be complex numbers such that ab �= , arga �= argb or a = cb ( < c < ),
|z| = . If one of the following conditions holds,
() max{σM(A),σM(B),σM(C),σM(D)} ≤ μ and A(z), B(z), C(z), D(z) are analytic on z;
() max{σM(A),σM(C),σM(D)} < μ, σM(B)≤ μ and B(z) is analytic on z;

then every solution f (z) �≡  of

f ′′ +
(
A(z)e

a
(z–z)μ +C(z)

)
f ′ +

(
B(z)e

b
(z–z)μ +D(z)

)
f =  (.)

satisfies
(i) μM,(f ) = μ(f ) = σ(f ) = σM,(f ) = μ;
(ii) λ(f – z) = λ(f – z) = λ(f – z) = λ(f – z) = μ.

Theorem . Let A(z) and B(z) �≡  be analytic functions in the unit disc. Suppose that
μ >  and ν are real constants, a, b, z and z are complex numbers such that b �= , z �= z
and |z| = |z| = . If A(z) and B(z) satisfy one of the following conditions:
() A(z) and B(z) are analytic on z;
() σM(A) < μ and B(z) is analytic on z;
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then every solution f (z) �≡  of

f ′′ +A(z)e
a

(z–z)ν f ′ + B(z)e
b

(z–z)μ f =  (.)

satisfies μM,(f ) ≥ μ(f ) ≥ μ.

Theorem . Let A(z) and B(z) �≡  be analytic functions in the unit disc. Suppose that
μ, ν (μ > , μ ≥ ν) are real constants, a, b, z and z are complex numbers such that b �= ,
z �= z and |z| = |z| = . If A(z) and B(z) satisfy one of the following conditions:
() max{σM(A),σM(B)} ≤ μ, A(z) and B(z) are analytic on z;
() σM(A) < μ, σM(B)≤ μ and B(z) is analytic on z;

then every solution f (z) �≡  of (.) satisfies
(i) μ(f ) = μM,(f ) = σ(f ) = σM,(f ) = μ;
(ii) λ(f – z) = λ(f – z) = λ(f – z) = λ(f – z) = μ.

2 Lemmas
Lemma . ([]) Let k and j be integers satisfying k > j ≥ , and let ε > . If f (z) is mero-
morphic in � such that f (j) does not vanish identically, then

∣∣∣∣ f
(k)(z)
f (j)(z)

∣∣∣∣ ≤
((


 – |z|

)+ε

·max

{
log


 – |z| ,T

(
s
(|z|), f )

})k–j (|z| /∈ E
)
,

where E ⊂ [, ) is a set with
∫
E


–r dr <∞ and s(|z|) =  – d( – |z|).

Lemma . ([]) Let A(z) be an analytic function on a point z ∈ C, set g(z) = A(z)e
a

(z–z)μ

(μ >  is a real constant), a = α + iβ �= , z – z = Reiϕ , δa(ϕ) = α cos(μϕ) + β sin(μϕ) and
H = {ϕ ∈ [, π ) : δa(ϕ) = } (obviously, H is of linear measure zero). Then, for any given
ε >  and for any ϕ ∈ [, π ) \H , there exists R >  such that for  < R < R, we have

(i) if δa(ϕ) > , then

exp

{
( – ε)δa(ϕ)


Rμ

}
≤ ∣∣g(z)∣∣ ≤ exp

{
( + ε)δa(ϕ)


Rμ

}
;

(ii) if δa(ϕ) < , then

exp

{
( + ε)δa(ϕ)


Rμ

}
≤ ∣∣g(z)∣∣ ≤ exp

{
( – ε)δa(ϕ)


Rμ

}
.

Remark . ([]) Set δa(ϕ) = γ cos(μϕ +ϕ), where γ =
√

α + β, μ > , ϕ ∈ [, π ). It is
easy to know that δa(ϕ) changes its sign on each interval I ⊂ [, π ) satisfying μ ·mI > π ,
wheremI denotes the linear measure of the interval I .

Lemma . ([]) Let g : (, ) −→ R and h : (, ) −→ R be monotone increasing functions
such that g(r) ≤ h(r) holds outside of an exceptional set E ⊂ [, ), for which

∫
E


–r dr < ∞.

Then there exists a constant d ∈ (, ) such that if s(r) =  – d( – r), then g(r) ≤ h(s(r)) for
all r ∈ [, ).
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Lemma . ([]) If A(z),A(z), . . . ,Ak–(z) are analytic functions of finite order in the unit
disc, then every solution f �≡  of

f (k) +Ak–f (k–) + · · · +Af ′ +Af =  (.)

satisfies

σ(f ) = σM,(f ) ≤max
{
σM(Aj) : j = , , . . . ,k – 

}
.

Remark . Lemma . is a special case of Theorem . in [].

Lemma . ([]) Let f be a meromorphic function in the unit disc, and let k ∈N. Then

m
(
r,
f (k)

f

)
= S(r, f ),

where S(r, f ) = O(log+T(r, f )) + O(log( 
–r )), possibly outside a set E ⊂ [, ) with∫

E


–r dr < ∞.

Lemma. ([]) Suppose that A,A, . . . ,Ak–,F �≡  aremeromorphic functions in�, and
let f (z) be a meromorphic solution of the equation

f (k) +Ak–f (k–) + · · · +Af = F(z), (.)

such that max{σi(F),σi(Aj) : j = , , . . . ,k – } < σi(f ), where i = , , then

λi(f ) = λi(f ) = σi(f ).

Lemma . Suppose that A,A, . . . ,Ak–,F �≡  are meromorphic functions in �, and let
f (z) be ameromorphic solution of equation (.) such thatmax{σi(F),σi(Aj) : j = , , . . . ,k–
} < μi(f ), where i = , , then

λi(f ) = λi(f ) = μi(f ).

Proof Suppose that f (z) �≡  is a solution of (.), by (.), we get


f
=


F

(
f (k)

f
+Ak–

f (k–)

f
+ · · · +A

)
, (.)

it is easy to see that if f has a zero at z of order α (α > k), and A, . . . ,Ak– are analytic at
z, then F must have a zero at z of order α – k, hence

n
(
r,

f

)
≤ kn

(
r,

f

)
+ n

(
r,

F

)

and

N
(
r,

f

)
≤ kN

(
r,

f

)
+N

(
r,

F

)
. (.)
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By Lemma . and (.), we have

m
(
r,

f

)
≤m

(
r,

F

)
+

k–∑
j=

m(r,Aj) +O
{
log+T(r, f ) + log

(


 – r

)}
(r /∈ E), (.)

where
∫
E


–r dr <∞. By (.)-(.), we get

T
(
r,

f

)
≤ kN

(
r,

f

)
+ T(r,F) +

k–∑
j=

T(r,Aj)

+O
{
log+T(r, f ) + log

(


 – r

)}
(r /∈ E). (.)

Since max{σi(F),σi(Aj) : j = , , . . . ,k – } < μi(f ), then we have

max

{
T(r,F)
T(r, f )

,
T(r,Aj)
T(r, f )

}
−→ 

(
r → –, j = , . . . ,k – 

)
. (.)

By (.)-(.) and by Lemma ., for all |z| = r ∈ [, ), we have

(
 – o()

)
T(r, f ) ≤ kN

(
s(r),


f

)
+O

{
log+T

(
s(r), f

)
+ log

(


 – s(r)

)}
, (.)

where s(r) =  – d( – r), d ∈ (, ). By (.), we have

λi(f ) = λi(f ) = μi(f ) (i = , ). �

3 Proofs of theorems
Proof of Theorem . (i) Suppose that f (z) �≡  is a solution of (.), we obtain

∣∣B(z)e b
(z–z)μ

∣∣ ≤
∣∣∣∣ f

′′(z)
f (z)

∣∣∣∣ + ∣∣A(z)e a
(z–z)μ

∣∣∣∣∣∣ f
′(z)
f (z)

∣∣∣∣. (.)

From Lemma ., for any given ε > , there exists a set E ⊂ [, ) with
∫
E


–r dr < ∞ such

that for all z ∈ � satisfying |z| = r /∈ E, we have

∣∣∣∣ f
(k)(z)
f (z)

∣∣∣∣ ≤
(


 – r

)M[
T

(
s(r), f

)]k (k = , ), (.)

where s(r) =  – d( – r), d ∈ (, ), M >  is a constant, not necessarily the same at each
occurrence. Set I = {θ : z–z = Reiθ , z ∈ �} ⊂ [, π ), we havemI → π as R → . Sinceμ >
, there exists R (R is sufficiently small and not necessarily the same at each occurrence)
such that for  < R < R, we have μ · mI > π . By Remark . and arga �= argb, for all  <
R < R, there exists some ϕ ∈ I such that δb(ϕ) >  and δa(ϕ) < . From Lemma ., for
any given ε ( < ε < ) and for all z ∈ {z : z – z = Reiϕ , z ∈ �}, there exists R such that for
 < R < R, we have

∣∣B(z)e b
(z–z)μ

∣∣ ≥ exp

{
( – ε)δb(ϕ)


Rμ

}
. (.)

http://www.advancesindifferenceequations.com/content/2013/1/342
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By condition () that A(z) is analytic on z and by Lemma ., for all z ∈ E = {z : z – z =
Reiϕ ,  < R < R, z ∈ �}, we have

∣∣A(z)e a
(z–z)μ

∣∣ ≤ exp

{
( – ε)δa(ϕ)


Rμ

}
<M. (.)

By the metric relations in the triangle �ozz, we have

|z| =  + R – R cosϕ∗
(

ϕ∗ =∠ozz ∈
[
,

π



))
. (.)

By (.), for all z ∈ {z : z – z = Reiθ ,  < R < R, θ ∈ I}, there exists certain ε ( < ε < )
such that


 – |z| ≥ 

R
=


 – |z|

 cosϕ∗ – R
 + |z| >

ε

 – |z| . (.)

Equation (.) implies R →  ⇐⇒ r → –. By condition (), σM(A) < μ and δa(ϕ) < , for
all z ∈ �, |z| = r → – and  < R < R, we have

∣∣A(z)e a
(z–z)μ

∣∣ = ∣∣A(z)∣∣ exp
{

δa(ϕ)
Rμ

}
≤M exp

{


( – r)μ

}
, (.)

where μ satisfies σM(A) < μ < μ. By (.)-(.), (.) and (.), for all z ∈ E and |z| = r /∈
E → –, we have

exp

{
( – ε)δb(ϕ)

ε
μ

( – r)μ

}
≤M

(


 – r

)M

exp

{


( – r)μ

}
· [T(

s(r), f
)], (.)

where s(r) =  – d( – r), d ∈ (, ). By (.) and Lemma ., we have

μ ≤ μ(f ) = μM,(f ). (.)

On the other hand, by Lemma ., we have

σ(f ) = σM,(f ) ≤ μ. (.)

By (.) and (.), we have

μM,(f ) = μ(f ) = σ(f ) = σM,(f ) = μ.

(ii) Set g(z) = f (z)– z, z ∈ �, where f (z) �≡  is a solution of (.). It is obvious that λ(g) =
λ(f – z), λ(g) = λ(f – z), σ(g) = σ(f – z) = σ(f ) = μ. Then equation (.) becomes

g ′′ +A(z)e
a

(z–z)μ g ′ + B(z)e
b

(z–z)μ g = –
(
A(z)e

a
(z–z)μ + zB(z)e

b
(z–z)μ

)
. (.)

By (.), (.) and (.), it is easy to see A(z)e
a

(z–z)μ + zB(z)e
b

(z–z)μ �≡  by modulus estima-
tion. By Lemma . and (.), we have

λ(g) = λ(g) = σ(g) = σ(f ) = μ.

http://www.advancesindifferenceequations.com/content/2013/1/342
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Also, by Lemma . and (.), we deduce λ(g) = λ(g) = μ(g) = μ. Therefore, we obtain

λ(f – z) = λ(f – z) = λ(f – z) = λ(f – z) = μ. �

Proof of Theorem . (i) Similar to the proof of Theorem ., we can obtain (.)-(.).
Since a = cb ( < c < ) and δb(ϕ) > , we have δa(ϕ) = cδb(ϕ) > . From conditions ()-()
and by (.), Lemma ., for any given ε >  and for all z ∈ E = {z : z – z = Reiϕ ,  < R <
R, z ∈ �}, we have

∣∣A(z)e a
(z–z)μ

∣∣ ≤ exp

{
( + ε)δa(ϕ)


Rμ

}
. (.)

By (.)-(.) and (.), for any given ε ( < ε < –c
+c ) and for all z ∈ E = {z : z–z = Reiϕ ,  <

R < R, z ∈ �}, we have

exp

{[(
 – c – ( + c)ε

)]
δb(ϕ)


Ru

}
≤M

(


 – r

)M

· [T(
s(r), f

)] (r /∈ E),

where s(r) =  – d( – r), d ∈ (, ) and
∫
E


–r dr <∞. By (.) and Lemma ., we obtain

exp

{[(
–c–(+c)ε

)]
δb(ϕ)

ε
μ

( – r)μ

}
≤

(


 – s(r)

)M

· [T(
s(r), f

)] (
r → –

)
, (.)

where s(r) =  – d( – r), d ∈ (, ). By (.) and Lemma ., we have

μ ≤ μM,(f ) = μ(f ).

On the other hand, by Lemma ., we have σ(f ) = σM,(f ) ≤ μ. Therefore, we obtain

μM,(f ) = μ(f ) = σ(f ) = σM,(f ) = μ.

(ii) By the similar proof in case (ii) of Theorem ., we have that

λ(f – z) = λ(f – z) = λ(f – z) = λ(f – z) = μ

holds for every solution f (z) �≡  of (.). �

Proof of Theorem . Suppose that f �≡  is a solution of (.), from (.), we obtain

∣∣B(z)e b
(z–z)μ

∣∣ ≤
∣∣∣∣ f

′′(z)
f (z)

∣∣∣∣ +
∣∣A(z)e a

(z–z)ν
∣∣
∣∣∣∣ f

′(z)
f (z)

∣∣∣∣. (.)

Since A(z) is analytic on z or σM(A) < μ < μ, for z near enough z and z ∈ �, we have

∣∣A(z)∣∣ <M, or
∣∣A(z)∣∣ < exp

{


( – r)μ

}
. (.)

Since z �= z, for all z near enough z and z ∈ �, we have

|z – z| ≥ |z – z| – |z – z| ≥ |z – z|


,
∣∣e a

(z–z)ν
∣∣ ≤ e

ν |a|
|z–z|ν ≤M. (.)

http://www.advancesindifferenceequations.com/content/2013/1/342
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Using (.)-(.), (.) and (.)-(.), for all z ∈ E and |z| = r /∈ E → –, we obtain

exp

{
( – ε)δb(ϕ)

ε
μ


( – r)μ

}
≤M

(


 – r

)M

exp

{


( – r)μ

}
· [T(

s(r), f
)]. (.)

By (.) and Lemma ., we have

μ ≤ μ(f ) = μM,(f ). �

Proof of Theorem . (i) From Theorem . we have that every solution f (z) �≡  of (.)
satisfies

μ ≤ μ(f ) = μM,(f ).

On the other hand, by Lemma ., we have that every solution f (z) �≡  of (.) satisfies

σ(f ) = σM,(f ) ≤ μ.

Therefore every solution f (z) �≡  of (.) satisfies

μM,(f ) = μ(f ) = σ(f ) = σM,(f ) = μ.

(ii) Set g(z) = f (z) – z, z ∈ �, equation (.) becomes

g ′′ +A(z)e
a

(z–z)ν g ′ + B(z)e
b

(z–z)μ g = –
(
A(z)e

a
(z–z)ν + zB(z)e

b
(z–z)μ

)
.

It is easy to seeA(z)e
a

(z–z)μ +zB(z)e
b

(z–z)μ �≡  by (.), (.) and (.). By the similar proof
in case (ii) of Theorem ., we have that every solution f (z) �≡  of (.) satisfies

λ(f – z) = λ(f – z) = λ(f – z) = λ(f – z) = μ. �
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