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Abstract
In this paper, a class of neutral neural networks with delays is investigated. The linear
stability of the model is studied. It is found that a Hopf bifurcation also occurs when
some delays pass through a sequence of critical values. The direction of the Hopf
bifurcations and the stability of bifurcating periodic solutions are determined by
using the normal form method and center manifold theory. The existence of a
permanent oscillation is established using Chafee’s criterion. Numerical simulations
are performed to support the analytical results.
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1 Introduction
Since s, the theories and applications of neural networkswith delays have been greatly
developed. It is well known that many important mathematical models from physics, bi-
ology, etc. can be written in neurons network models. In , Li and Yuan considered a
Hopfield-type network of three identical neurons coupled in any possible way in []:
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Due to the finite speed of the switching and transmission of signals, neutral behavior does
exist in the neural network with delays and should be incorporated. For this reason, we
improve the original model in which the neutral behavior was added and obtain the fol-
lowing forms []:
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ẋ(t – τn)

)
+ af

(
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where aij, bij (i �= j, i, j = , , ) have the values  or , depending whether the cells from
j to i are connected or not; a,b,a,b ∈ R denote the strength in self-connection and
neighboring-connection, respectively; τs, τn ≥  are the corresponding time delays. Fur-
thermore, f , g , f, g are assumed to be adequately smooth and to satisfy the following
conditions:

(H) f () = g() = f() = g() = ,

(H) f ′() = g ′() = f ′
() = g ′

() = .
(.)

Then we derive the stability of this system and conditions of existence of the bifurca-
tion with a = a = a = a = , a = a = ; b = b = b = b = , b = b = ,
τs = τn = τ . The remainder of this paper is organized as follows. In Section  we introduce
the stability of the equilibrium point and the conditions of existence of a local Hopf bifur-
cation. We are devoted to establishing the direction and stability of the Hopf bifurcation
in Section . In Section  we discuss the existence of a permanent oscillation. Finally, we
carry out some numerical simulation to support the analysis result in Section .

2 Stability and Hopf bifurcation analysis
In this section, we let a = a = a = a = , a = a = ; b = b = b = b = , b =
b = , then we have
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Under the given hypotheses (H) and (H), it is easy to check that x = (, , )T is an equi-
libriumpoint of system (.). By using a similarmethod to that in [], we have the following
results on stability to system (.).

Theorem  Let |a + b| <  and |a – b| < .
() If (a,b) ∈D, then the zero solution of system (.) is absolutely stable.
() If (a,b) ∈D, then the zero solution of system (.) is conditionally stable, i.e.,

τ ∈ [, τ), the zero solution of system (.) is asymptotically stable; τ > τ, the zero
solution of system (.) is unstable,
(a) if a < –, system (.) undergoes a Hopf bifurcation at the origin when τ = τj,

j = , , , . . . ,
(b) if a + b < –, system (.) undergoes a Hopf bifurcation at the origin when τ = τj ,

j = , , , . . . ,
(c) if a – b < –, system (.) undergoes a Hopf bifurcation at the origin when τ = τj,

j = , , , . . .
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Figure 1 The stability region of system (2.1). D1 is the
absolute stability region, D2 is the conditional stability region.

with
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where D and D are shown in Figure .

Proof From hypotheses (H) and (H), the characteristic equation associated with the lin-
earization of system (.) is

�(λ)�(λ)�(λ) = ,

where

�(λ) = λ +  – (a + aλ)e–λτ ,

�(λ) = λ +  –
(
a + b + (a + b)λ

)
e–λτ ,

�(λ) = λ +  –
(
a – b + (a – b)λ

)
e–λτ .

Separately analyzing the roots of �i(λ) =  (i = , , ), by using the method in [], we
have the following results.
If – ≤ a < , then all roots of �(λ) =  have negative real parts for all τ ≥ . If a < –,

then �(λ) =  has a pair of purely imaginary roots when τ = τj.
If – ≤ a + b < , then all roots of �(λ) =  have negative real parts for all τ ≥ . If

a + b < –, then �(λ) =  has a pair of purely imaginary roots when τ = τj.
If – ≤ a – b < , then all roots of �(λ) =  have negative real parts for all τ ≥ . If

a – b < –, then �(λ) =  has a pair of purely imaginary roots when τ = τj.
Additionally, all roots of �i(λ) =  (i = , , ) have negative real parts when τ =  and

Re dλ
dτ

|τ=τij >  (i = , , ) is satisfied.
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Summarizing the conclusions above, the proof is completed. �

3 Properties of Hopf bifurcation
In the previous section, we have obtained the sufficient conditions for system (.) to un-
dergo a Hopf bifurcation at the origin with τ as a bifurcation parameter. In this section, we
shall investigate the direction of the Hopf bifurcation and stability of bifurcating periodic
solutions by taking f(u) = g(u) = u. Rewrite Eq. (.) as the following system:
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Let Y (t) = X(τ t), then Eq. (.) becomes

d
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(
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(
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)
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The characteristic equation associated with the linearization of system (.) around the
origin is given by

(γE –Aτ )eγ –Cγ – (B + B)τ = . (.)

Comparing with the previous characteristic equation, we find γ = λτ . For convenience,
we denote γ = (τj + ν)λ, where τj = τsj (s = , , ; j = , , , . . .) and ν ∈ R. According to
Theorem , we know that system (.) undergoes a Hopf bifurcation at the origin when
ν = .
For ϕ ∈ C([–, ],R), let D(φ) = φ() – Cφ(–), L(ν,ϕ) = A(τj + ν)φ() + (B + B)(τj +

ν)φ(–) and

F(ν,φ) = (τj + ν)
(
f ′′′()


B +
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B

)
φ(–) + · · · . (.)

By the Riesz representation theorem, there exist functions η(θ ) and μ(θ ) such that

D(τ ,φ) = φ() –
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In fact, we can choose
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{
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, θ ∈ (–, ]

and η(θ ) =

⎧⎪⎨
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–(B + B)(τj + ν), θ = –,
, θ ∈ (–, ),
A(τj + ν), θ = .
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Define
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dθ

, θ ∈ [–, ),
φ′(θ ) –Cφ′(θ ) + Lφ, θ = 
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{
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F(ν,φ), θ = .

Then Eq. (.) can be written as the abstract ODE, i.e.,

Ẏt = A(τ )Yt + R(τ )Yt . (.)

The adjoint operator A∗ is defined by A∗ = – dψ
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respectively, where
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Noting that yt(θ ) =W (t, θ ) + z(t)q(θ ) + z̄(t)q̄(θ ), we have
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where q = (q,q,q)T . Therefore, from (.), we have
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with yt (–) = (y (–), y(–), y(–))T . Substituting the expression of F(, yt) into Eq. (.)
and comparing its coefficients with that of Eq. (.) gives that
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It is well known that the coefficient c() of third degree term of Poincaré normal form of
Eq. (.) is given by []

c() =
i

ωτj

(
gg – ‖g‖ – 


‖g‖

)
+
g

.

Consequently, we have the following theorem on the bifurcating periodic solution.

Theorem  For system (.), assume  < a <
√

 , a < – 

a
, then

() if f ′′′() > , the direction of the Hopf bifurcation at τ = τj is supercritical and the
bifurcating periodic solutions are asymptotically stable;

() if f ′′′() < , the direction of the Hopf bifurcation at τ = τj is subcritical and the
bifurcating periodic solutions are unstable.

Proof When τ = τj, by calculation, we easily obtain the following results:

c() = –
af ′′′()τj




‖e–iωτj (a – aτj) – ‖
[
e–iωτj (a – aτj) – 

]
e–iωτj

and

Re c() =
af ′′′()τj




‖e–iωτj (a – aτj) – ‖
[
cosωτj – (a – aτj) cosωτj

]
.
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If  < a <
√

 , a < – 

a
and f ′′′() >  (< ), then Re c() <  (> ). Therefore, from α′(τj) >

, we have

μ = –
Re{c()}

α′(τj)
>  (< ), β = Re

{
c()

}
<  (> ).

This completes the proof of Theorem . �

Similarly, we can prove Theorem  and Theorem , we omit the proof here.

Theorem  For system (.), assume  < a + b <
√

 , a + b < – 

a+b
, then

() if af ′′′() + bg ′′′() > , the direction of the Hopf bifurcation at τ = τj is subcritical
and the bifurcating periodic solutions are unstable;

() if af ′′′() + bg ′′′() < , the direction of the Hopf bifurcation at τ = τj is supercritical
and the bifurcating periodic solutions are asymptotically stable.

Theorem  For system (.), assume  < a – b <
√

 , a – b < – 

a–b
, then

() if af ′′′() – bg ′′′() > , the direction of the Hopf bifurcation at τ = τj is subcritical
and the bifurcating periodic solutions are unstable;

() if af ′′′() – bg ′′′() < , the direction of the Hopf bifurcation at τ = τj is supercritical
and the bifurcating periodic solutions are asymptotically stable.

4 Permanent oscillation
Based on Chafee’s criterion, if system (.) has a unique equilibrium point which is unsta-
ble, and the solutions of system (.) are globally bounded, this system generates a limit
cycle, namely a permanent oscillation [].
We consider system (.) and assume that f , g , f, g are nonlinear bounded functions

and satisfy Lipschitz condition,

|f (x) – f (y)|
|x – y| ≤ L,

|g(x) – g(y)|
|x – y| ≤ L.

We have the following lemmas.

Lemma  If |α|L + |β|L <  holds, system (.) has a unique equilibrium point.

Proof Suppose that X∗ is the equilibrium point of the system, then we have

AX∗ + Bf
(
X∗) + Bg

(
X∗) = .

We define a mapping H : R → R

H(X) = AX + Bf (X) + Bg(X)

and assume H(u) =H(v), then

�(u – v) =

⎛
⎜⎝
– + ac db db

 – + ac db
 db – + ac

⎞
⎟⎠ (u – v) = ,
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where |ci| ≤ L, |dj| ≤ L (i = , , ; j = , ). Under the given condition, � is an invertible
matrix. Then u = v, namely H(X) is injective on R. Noting that f and g are bounded con-
tinuous functions, it is easily to obtain that ‖H(u)‖ → ∞, when ‖u‖ → ∞. So H(X) is a
homeomorphism on R and system (.) has a unique equilibrium point. �

Lemma  The solutions of system (.) are globally bounded.

Proof Since f , g , f and g are bounded continuous functions, there isM >  such that

d|xi(t)|
dt

≤ –
∣∣xi(t)∣∣ +M,

with i = , , . This proves the lemma. �

Lemma  The equilibrium point (, , ) of system (.) is unstable when one of the follow-
ing conditions are satisfied:
() α > , α > ατ , and τ + ( – α

α
τ ) < αe

–(– α
α

τ ),

() α + β > , α + β > (α + β)τ , and τ + ( – α+β

α+β
τ ) < (α + β)e

–(– α+β
α+β

τ ),

() α – β > , α – β > (α – β)τ , and τ + ( – α–β

α–β
τ ) < (α – β)e

–(– α–β
α–β

τ ).

Proof Based on analysis in [], we know the roots of the following equation:

λ +  – (α + αλ)e–λτ =  (.)

are the characteristic roots of the linearized system of (.). When condition () holds, Eq.
(.) has at least a positive real root, and the equilibrium point (, , ) of system (.) is
unstable.
Using the same method, we can obtain conditions () and (). The proof of the lemma

is completed. �

Up to now, we have prepared sufficiently to state the following results.

Theorem  System (.) generates a permanent oscillation, when |α|L + |β|L <  holds
and one of the following conditions are satisfied:
() α > , α > ατ , and τ + ( – α

α
τ ) < αe

–(– α
α

τ ),

() α + β > , α + β > (α + β)τ , and τ + ( – α+β

α+β
τ ) < (α + β)e

–(– α+β
α+β

τ ),

() α – β > , α – β > (α – β)τ , and τ + ( – α–β

α–β
τ ) < (α – β)e

–(– α–β
α–β

τ ).

5 Numerical simulation
In the section, we carry out some numerical simulations for system (.).
Assume that α = ., β = ., α = . and β = .. From Theorem , the zero solution

of system (.) is absolutely stable. The simulation results as shown in Figure .
Assume that α = –., β = –., α = ., and β = .. From Theorem , the zero so-

lution of system (.) is conditionally stable, i.e., τ ∈ [, τ = .), the zero solution of
system (.) is asymptotically stable; τ > τ = ., the zero solution of system (.) is

http://www.advancesindifferenceequations.com/content/2013/1/338
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Figure 2 For system (2.1), when τ = 50, the zero solution is asymptotically stable.

Figure 3 For system (2.1), when τ = 0.47 < τ20 = 0.48, the zero solution is asymptotically stable.

unstable, and system (.) undergoes a Hopf bifurcation at the origin when τ = τ. Fur-
thermore, the direction of the Hopf bifurcation at τ = τj is subcritical and the bifurcating
periodic solutions are unstable. The simulation results as shown in Figures  and .
Consider system (.) with α = ., β = ., α =  and β = , then we can choose τ = ,

satisfying Theorem . System (.) generates a permanent oscillation (see Figure ).

6 Conclusion
For a neutral model including three cells with time delay, we have given the general
condition for the stability and shown the delay-independent and delay-dependent lo-
cal stability regions. We have also obtained the condition to determine the direction of
Hopf bifurcations, the stability of bifurcating periodic solutions and a permanent oscilla-
tion.
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Figure 4 For system (2.1), the bifurcating periodic solution is unstable when τ = 0.54 > τ20 = 0.48.

Figure 5 System (2.1) generates a permanent oscillation.
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As we know, the extension of local periodic solutions for large time delay would appear
when some conditions are satisfied. Further study of the patterns is undergoing.
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