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1 Introduction

Impulse differential equations describe processes which experience a sudden change
of state at certain moments; see the monographs of Lakshmikantham et al. [] and
Samoilenko and Perestyuk []. Impulsive differential equations can be used to describe a
lot of natural phenomena such as the dynamics of populations subject to abrupt changes
(harvesting, diseases, etc.), which cannot be described using classical differential equa-
tions. That is why in recent years they have attracted much attention of investigators (cf.,
e.g., [, ]).
The study of dynamic equations on time scales goes back to Stefan Hilger []. Now it is

still a new area of fairly theoretical exploration in mathematics. We refer to the books by
Bohner and Peterson [, ]. There are a lot of works concerning the p-Laplacian problems
on time scales; see, for example, [–]. Few works have been done on the existence of
solutions to boundary value problems (BVP) for p-Laplacian impulsive dynamic equations
on time scales; see [–]. Moreover, there is not much work onm-point boundary value
problems for the p-Laplacian impulsive dynamic equations on time scales except for that
in [] by Li et al.Our aim in this paper is to fill the gap.
Motivated by the above mentioned works, in this paper we consider the existence of

positive solutions of the followingm-point boundary value problems for p-Laplacian im-
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pulsive dynamic equation on time scales:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(φp(u�(t)))∇ + q(t)f (t,u(t),u�(t)) = , t ∈ [, ]T, t �= tk ,k = , , . . . ,n,

�u(tk) = –Ik(u(tk)), k = , , . . . ,n,

�φp(u�(tk)) = –Īk(u(tk),u�(tk)), k = , , . . . ,n,

φp(u�()) =
∑m–

j= αjφp(u�(ξj)), u() =
∑m–

j= βju(ηj),

(.)

where T is a time scale, ,  ∈ T, [, ]T = [, ] ∩ T, tk ∈ (, )T, k = , , . . . ,n, with  <
t < t < · · · < tn < , ξj,ηj ∈ (, )T (j = , , . . . ,m – ) with  < ξ < ξ < · · · < ξm– < ,  <
η < η < · · · < ηm– <  and ξj,ηj �= tk , j = , , . . . ,m – , k = , , . . . ,n. φp(s) is a p-Laplacian
operator, i.e., φp(s) = |s|p–s for p > , (φp)–(s) = φq(s), where 

p +

q =  and �u(tk) = u(t+k ) –

u(t–k ),�φp(u�(tk)) = φp(u�(t+k ))–φp(u�(t–k )), u(t
+
k ) and u(t

–
k ) represent the right-hand limit

and left-hand limit of the function u(t) at t = tk , k = , , . . . ,n.
In this paper we assume that
(A) f ∈ C([, ]T ×R

+ ×R,R+),
(A) αj ∈ [,∞), βj ∈ [,∞), j = , , . . . ,m – , with  <

∑m–
j= αj <  and

 <
∑m–

j= βj < ,
(A) q ∈ C([, ]T) is nonnegative and there exists an integer l ≥ , 

l ,  –

l ∈ T such that∫ – 

l

l

q(t)∇t > ,

(A) Ik ∈ C(R+,R+) is a bounded function, Īk ∈ C(R+ ×R,R+), k = , , . . . ,n,
(A) max{G,G, . . . ,Gn} ≤ lb

n , where Gk = supu∈[,∞) Ik(u) and b >  is a constant
which is given by Theorem ..

In this study, by employing Bai-Ge’s fixed point theorem [], we get the existence of at
least three positive solutions for boundary value problem (.). In fact, our result is also
new when T =R (the differential case) and Z (the discrete case). Therefore, the result can
be considered as a contribution to this field.
This paper is organized as follows. In Section ,we give somedefinitions andpreliminary

lemmas which are key tools for our proof. The main results are given in Section . Finally,
in Section , we give an example to demonstrate our results.

2 Preliminaries
In this section, we give some lemmas which are useful for our main results.
Throughout the rest of this paper, we always assume that the points of impulse tk

are right dense for each k = , , . . . ,n. Let J = [, ]T, J = [, t]T, J = (t, t]T , . . . , Jn– =
(tn–, tn]T , Jn = (tn, ]T , J ′ = J \ {t, t, . . . , tn}.
Set

PC(J) =
{
u : [, ]T −→R;u ∈ C

(
J ′
)
,u

(
t+k

)
and u

(
t–k

)
exist;

and u
(
t–k

)
= u(tk), ≤ k ≤ n

}
,

PC(J) =
{
u ∈ PC(J) : u� ∈ C

(
J ′
)
,u�

(
t+k

)
and u�

(
t–k

)
exist;

and u�
(
t–k

)
= u�(tk), ≤ k ≤ n

}
.
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Obviously, PC(J) and PC(J) are Banach spaces with the norms

‖u‖PC = max
t∈[,]T

∣∣u(t)∣∣, ‖u‖PC =max
{‖u‖PC ,

∥∥u�
∥∥
PC

}
,

respectively. A function u ∈ PC(J)∩C(J ′) is called a solution to (.) if it satisfies all the
equations of (.).
Define the cone P ⊂ PC(J) by

P =
{
u ∈ PC(J) : u(t) ≥ ,u is concave on Jk ( ≤ k ≤ n)

and u(t),u�(t) are non-increasing on [, ]T
}
.

Lemma . If u is continuous, nonnegative and concave on [, ]T, then

u
(
 –


l

)
≥ 

l
max

t∈[,]T

∣∣u(t)∣∣,
where l ≥ .

Proof Suppose thatmaxt∈[,]T |u(t)| = u(σ ), where σ ∈ [, ]T. Since u is concave and non-
negative,

u
(
 –


l

)
= u

(
 + σ

l( + σ )
(l – )( – σ ) +

l – 
l

σ

)

≥  + σ

l( + σ )
u
(
(l – )( – σ )

)
+

(
l – 
l

)
u(σ )

≥
(
l – 
l

)
u(σ )

≥ 
l
u(σ )

≥ 
l
max

t∈[,]T

∣∣u(t)∣∣. �

Lemma . If u ∈ P, l ≥ , then

min
t∈[ l ,– 

l ]T

∣∣u(t)∣∣ ≥ 
l
max

t∈[,]T

∣∣u(t)∣∣ – 
l

n∑
i=

∣∣�u(ti)
∣∣.

Proof Let

v(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

u(t) –
∑n

k= |�u(tk)|, t ∈ J,
u(t) –

∑n
k= |�u(tk)|, t ∈ J,

...
u(t) – |�u(tn)|, t ∈ Jn–,
u(t), t ∈ Jn.
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Note that u�(t) is non-increasing on [, ]T, hence v ∈ C[, ]T and v is concave on [, ]T.
By Lemma ., we have

min
t∈[ l ,– 

l ]T

∣∣v(t)∣∣ = v
(
 –


l

)
≥ 

l
max

t∈[,]T

∣∣v(t)∣∣.
Moreover, u(t) is non-increasing on [, ]T, and we have

max
t∈[,]T

∣∣v(t)∣∣ = v()

= u() –
n∑
k=

∣∣�u(tk)
∣∣

= max
t∈[,]T

∣∣u(t)∣∣ – n∑
k=

∣∣�u(tk)
∣∣,

min
t∈[ l ,– 

l ]T

∣∣v(t)∣∣ = v
(
 –


l

)

= u
(
 –


l

)
–

∑
– 

l <tk<

∣∣�u(tk)
∣∣

= min
t∈[ l ,– 

l ]T

∣∣u(t)∣∣ – ∑
– 

l <tk<

∣∣�u(tk)
∣∣.

Hence,

min
t∈[ l ,– 

l ]T

∣∣u(t)∣∣ = min
t∈[ l ,– 

l ]T

∣∣v(t)∣∣ + ∑
<tk< 

l

∣∣�u(tk)
∣∣

≥ 
l
max

t∈[,]T

∣∣v(t)∣∣
=


l
max

t∈[,]T

∣∣u(t)∣∣ – 
l

n∑
k=

∣∣�u(tk)
∣∣. �

Lemma . Assume that (A)-(A) hold.Then u ∈ PC(J)∩C(J ′) is a solution to problem
(.) if and only if u ∈ PC(J) is a solution to the integral equation:

u(t) =
∫ 

t
φq

(∫ s


q(τ )f

(
τ ,u(τ ),u�(τ )

)∇τ +
∑
<tk<s

Īk
(
u(tk),u�(tk)

)
+A

)
�s

+
∑m–

j= βj

 –
∑m–

i= βi

∫ 

ηj

φq

(∫ s


q(τ )f

(
τ ,u(τ ),u�(τ )

)∇τ

+
∑
<tk<s

Īk
(
u(tk),u�(tk)

)
+A

)
�s

+


 –
∑m–

i= βi

m–∑
j=

βj
∑

ηj<tk<

Ik
(
u(tk)

)
+

∑
t<tk<

Ik
(
u(tk)

)
, (.)

http://www.advancesindifferenceequations.com/content/2013/1/334
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where

A =


 –
∑m–

i= αi

m–∑
j=

αj

[∫ ξj


q(s)f

(
s,u(s),u�(s)

)∇s +
∑

<tk<ξj

Īk
(
u(tk),u�(tk)

)]
.

Proof First, suppose that u ∈ PC(J)∩C(J ′) is a solution to problem (.). Then

(
φp

(
u�(t)

))∇ + q(t)f
(
t,u(t),u�(t)

)
= , t �= tk ,k = , , . . . ,n.

So,

φp
(
u�

(
t–

))
– φp

(
u�()

)
= –

∫ t


q(s)f

(
s,u(s),u�(s)

)∇s,

φp
(
u�(t)

)
– φp

(
u�

(
t+

))
= –

∫ t

t
q(s)f

(
s,u(s),u�(s)

)∇s, t ∈ J.

Thus,

φp
(
u�(t)

)
= φp

(
u�()

)
–

∫ t


q(s)f

(
s,u(s),u�(s)

)∇s – Ī
(
u(t),u�(t)

)
, t ∈ J.

Repeating the above process, for t ∈ [, ]T, we have

φp
(
u�(t)

)
= φp

(
u�()

)
–

∫ t


q(s)f

(
s,u(s),u�(s)

)∇s –
∑
<tk<t

Īk
(
u(tk),u�(tk)

)
, (.)

and taking t = ξj in (.), we have

φp
(
u�(ξj)

)
= φp

(
u�()

)
–

∫ ξj


q(s)f

(
s,u(s),u�(s)

)∇s –
∑

<tk<ξj

Īk
(
u(tk),u�(tk)

)
.

So, we get

m–∑
j=

αjφp
(
u�(ξj)

)
=

m–∑
j=

αjφp
(
u�()

)
–

m–∑
j=

αj

∫ ξj


q(s)f

(
s,u(s),u�(s)

)∇s

–
m–∑
j=

αj
∑

<tk<ξj

Īk
(
u(tk),u�(tk)

)
.

Since φp(u�()) =
∑m–

j= αjφp(u�(ξj)), we have

φp
(
u�()

)
= –

∑m–
j= αj

 –
∑m–

i= αi

[∫ ξj


q(s)f

(
s,u(s),u�(s)

)∇s +
∑

<tk<ξj

Īk
(
u(tk),u�(tk)

)]

= –A. (.)

http://www.advancesindifferenceequations.com/content/2013/1/334
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Substituting (.) into (.), we get

φp
(
u�(t)

)
= –

[∫ t


q(s)f

(
s,u(s),u�(s)

)∇s +
∑
<tk<t

Īk
(
u(tk),u�(tk)

)
+A

]
,

which implies that

u�(t) = –φq

(∫ t


q(s)f

(
s,u(s),u�(s)

)∇s +
∑
<tk<t

Īk
(
u(tk),u�(tk)

)
+A

)
. (.)

On the other hand, note that

u
(
t–n

)
– u(t) =

∫ tn

t
u�(s)�s,

u() – u
(
t+n

)
=

∫ 

tn
u�(s)�s, t ∈ Jn–.

So that we have

u(t) = u() –
∫ 

t
u�(s)�s + In

(
u(tn)

)
, t ∈ Jn–.

Repeating the above process again for t ∈ [, ]T, we obtain

u(t) = u() –
∫ 

t
u�(s)�s +

∑
t<tk<

Ik
(
u(tk)

)
. (.)

Substituting (.) into (.), we get

u(t) = u() +
∑
t<tk<

Ik
(
u(tk)

)

+
∫ 

t
φq

(∫ s


q(τ )f

(
τ ,u(τ ),u�(τ )

)∇τ +
∑
<tk<s

Īk
(
u(tk),u�(tk)

)
+A

)
�s, (.)

and taking t = ηj in (.), we get

u(ηj) = u() +
∑

ηj<tk<

Ik
(
u(tk)

)

+
∫ 

ηj

φq

(∫ s


q(τ )f

(
τ ,u(τ ),u�(τ )

)∇τ +
∑
<tk<s

Īk
(
u(tk),u�(tk)

)
+A

)
�s.

http://www.advancesindifferenceequations.com/content/2013/1/334
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So,

m–∑
j=

βju(ηj)

= u()
m–∑
j=

βj +
m–∑
j=

βj
∑

ηj<tk<

Ik
(
u(tk)

)

+
m–∑
j=

βj

∫ 

ηj

φq

(∫ s


q(τ )f

(
τ ,u(τ ),u�(τ )

)∇τ +
∑
<tk<s

Īk
(
u(tk),u�(tk)

)
+A

)
�s.

Since

u() =
m–∑
j=

βju(ηj),

=
∑m–

j= βj

 –
∑m–

i= βi

∫ 

ηj

φq

(∫ s


q(τ )f

(
τ ,u(τ ),u�(τ )

)∇τ

+
∑
<tk<s

Īk
(
u(tk),u�(tk)

)
+A

)
�s +


 –

∑m–
i= βi

m–∑
j=

βj
∑

ηj<tk<

Ik
(
u(tk)

)
. (.)

Substituting (.) into (.), we get (.), which completes the proof of sufficiency.
Conversely, if u(t) ∈ PC(J) is a solution to (.), apparently

�u(tk) = –Ik
(
u(tk)

)
, k = , , . . . ,n.

The �-derivative of (.) implies that for t �= tk ,

u�(t) = –φq

(∫ t


q(s)f

(
s,u(s),u�(s)

)∇s +
∑
<tk<t

Īk
(
u(tk),u�(tk)

)
+A

)
,

(
φp

(
u�(t)

))∇ = –q(t)f
(
t,u(t),u�(t)

)
.

Hence u ∈ C(J ′), and

�φp
(
u�(tk)

)
= –Īk

(
u(tk),u�(tk)

)
, k = , , . . . ,n,

φp
(
u�()

)
=

m–∑
j=

αjφp
(
u�(ξj)

)
, u() =

m–∑
j=

βju(ηj).

The proof is complete. �

Now define an operator T : P −→ PC(J) by

Tu(t) =
∫ 

t
φq

(∫ s


q(τ )f

(
τ ,u(τ ),u�(τ )

)∇τ +
∑
<tk<s

Īk
(
u(tk),u�(tk)

)
+A

)
�s

+
∑m–

j= βj

 –
∑m–

i= βi

∫ 

ηj

φq

(∫ s


q(τ )f

(
τ ,u(τ ),u�(τ )

)∇τ

http://www.advancesindifferenceequations.com/content/2013/1/334
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+
∑
<tk<s

Īk
(
u(tk),u�(tk)

)
+A

)
�s

+


 –
∑m–

i= βi

m–∑
j=

βj
∑

ηj<tk<

Ik
(
u(tk)

)
+

∑
t<tk<

Ik
(
u(tk)

)
. (.)

Lemma . Assume that (A)-(A) hold. Then T : P → P is a completely continuous op-
erator.

Proof From the definition of T , it is clear that T(P) ⊂ P. On the other hand, by conditions
(A)-(A) and the definition of Tu(t), it is clear that T : P → P is continuous.
Let 
 ⊂ P be bounded, i.e., there exists a positive constant R such that


 ⊂ {
u ∈ P : ‖u‖PC ≤ R

}
.

Let

B = max
(t,u,v)∈[,]T×[,R]×[,R]

f (t,u, v),

B = max
≤k≤n

{
max
u∈[,R]

Ik(u)
}
,

B = max
≤k≤n

{
max

(u,v)∈[,R]×[,R]
Īk(u, v)

}
,

R = max
t∈[,]T

q(t).

For all u ∈ 
, we have

A≤ 
 –

∑m–
j= αj

m–∑
j=

αj[BR + nB].

Hence,

∣∣Tu(t)∣∣ ≤ 
 –

∑m–
j= βj

[
φq

(
BR + nB

 –
∑m–

j= αj

)
+ nB

]
,

∣∣(Tu)�(t)∣∣ ≤ φq

[
BR + nB

 –
∑m–

j= αj

]
,

∣∣(φp(Tu)�(t)
)∇ ∣∣ ≤ RB, t �= tk ,k = , , . . . ,n.

So, Tu and (Tu)� are bounded on J and equicontinuous on each Jk (k = , , . . . ,n). This
implies that T
 is relatively compact. Therefore, the operator T : P → P is completely
continuous. �

3 Main results
In this section we state and prove our main result. Define the following convex sets:

P(ϕ, r;ω,L) =
{
u ∈ P : ϕ(u) < r,ω(u) < L

}
,

P̄(ϕ, r;ω,L) =
{
u ∈ P : ϕ(u) ≤ r,ω(u) ≤ L

}
,

http://www.advancesindifferenceequations.com/content/2013/1/334
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P(ϕ, r;ω,L;ψ ,a) =
{
u ∈ P : ϕ(u) < r,ω(u) < L,ψ(u) > a

}
,

P̄(ϕ, r;ω,L;ψ ,a) =
{
u ∈ P : ϕ(u) ≤ r,ω(u) ≤ L,ψ(u) ≥ a

}
.

The following assumptions as regards the nonnegative continuous convex functions ϕ,
ω are used:
(B) there existsM >  such that ‖x‖ ≤Mmax{ϕ(x),ω(x)} for all x ∈ P;
(B) P(ϕ, r;ω,L) �= ∅ for any r >  and L > .
To prove our main result, we need the following fixed point theorem due to Bai and Ge

in [].

Lemma . [] Let P be a cone in a real Banach space E, and let r ≥ d > b > r > ,
L ≥ L > . Assume that ϕ and ω are nonnegative continuous convex functions satisfying
(B) and (B), ψ is a nonnegative continuous concave function on P such that ψ(u) ≤ ϕ(u)
for all u ∈ P̄(ϕ, r;ω,L) and T : P̄(ϕ, r;ω,L) → P̄(ϕ, r;ω,L) is a completely continuous
operator. Suppose that
(B) {u ∈ P̄(ϕ,d;ω,L;ψ ,b) :ψ(u) > b} �= ∅, ψ(Tu) > b for u ∈ P̄(ϕ,d;ω,L;ψ ,b),
(B) ϕ(Tu) < r, ω(Tu) < L for all u ∈ P̄(ϕ, r;ω,L),
(B) ψ(Tu) > b for all u ∈ P̄(ϕ, r;ω,L;ψ ,b) with ϕ(Tu) > d.

Then T has at least three fixed points u, u and u ∈ P̄(ϕ, r;ω,L) with

u ∈ P(ϕ, r;ω,L), u ∈ {
P̄(ϕ, r;ω,L;ψ ,b) :ψ(u) > b

}
,

u ∈ P̄(ϕ, r;ω,L) \
(
P̄(ϕ, r;ω,L;ψ ,b)∪ P̄(ϕ, r;ω,L)

)
.

Define nonnegative continuous functionals ϕ, ω and ψ by

ϕ(u) = max
t∈[,]T

∣∣u(t)∣∣, ω(u) = max
t∈[,]T

∣∣u�(t)
∣∣, ψ(u) = min

t∈[ l ,– 
l ]T

∣∣u(t)∣∣ for u ∈ P.

Then, on the cone P, ψ is a concave functional, ϕ and ω are convex functionals satisfying
(B) and (B).
Let

H =


 –
∑m–

j= βj

[
φq

(
R + n

 –
∑m–

j= αj

)
+ n

]
,

L = φq

(
R + n

 –
∑m–

j= αj

)
,

N = φq

(∫ –/l

/l
q(r)∇r

)
.

Theorem . Assume that (A)-(A) hold. There exist constants r ≥ lb > b > r > ,
L ≥ L >  and the following assumptions are satisfied:
(A) max{f (t,u, v), Īk(u, v)} <min{φp( rH ),φp( LL )}, Ik(u) ≤ r

H for
(t,u, v) ∈ [, ]T × [, r]× [,L], ≤ k ≤ n;

(A) f (t,u, v) > φp( lbN ) for (t,u, v) ∈ [ l ,  –

l ]T × [b, lb]× [,L];

(A) max{f (t,u, v), Īk(u, v)} <min{φp( rH ),φp( LL )}, Ik(u) ≤ r
H for

(t,u, v) ∈ [, ]T × [, r]× [,L], ≤ k ≤ n.
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Then problem (.) possesses at least three positive solutions u, u and u such that

max
t∈[,]T

u(t) < r, max
t∈[,]T

∣∣u�
 (t)

∣∣ < L;

b < min
t∈[ l ,– 

l ]T
u(t)≤ max

t∈[,]T
u(t) ≤ r, max

t∈[,]T

∣∣u�
 (t)

∣∣ ≤ L;

r < max
t∈[,]T

u(t) < r, min
t∈[ l ,– 

l ]T
u(t) < b, max

t∈[,]T

∣∣u�
 (t)

∣∣ ≤ L.

Proof Problem (.) has a solution u = u(t) if and only if u solves the operator equation
u = Tu. We have shown T : P → P is completely continuous by Lemma ..We now verify
that all the conditions of Lemma . are satisfied. The proof is divided into four steps.
Step . First we show that

T : P̄(ϕ, r;ω,L)→ P̄(ϕ, r;ω,L). (.)

If u ∈ P̄(ϕ, r;ω,L), then ϕ(u)≤ r, ω(u) ≤ L, and by assumption (A), we have

A≤
∑m–

j= αj

 –
∑m–

i= αi

[∫ 


q(s)f

(
s,u(s),u�(s)

)∇s +
n∑
k=

Īk
(
u(tk),u�(tk)

)]

≤
∑m–

j= αj

 –
∑m–

i= αi
min

{
φp

(
r
H

)
,φp

(
L
L

)}
(R + n).

Hence,

ϕ(Tu) = max
t∈[,]T

∣∣u(t)∣∣ = (Tu)()

=
∫ 


φq

(∫ s


q(τ )f

(
τ ,u(τ ),u�(τ )

)∇τ +
∑
<tk<s

Īk
(
u(tk),u�(tk)

)
+A

)
�s

+
n∑
k=

Ik
(
u(tk)

)

+
∑m–

j= βj

 –
∑m–

i= βi

∫ 

ηj

φq

(∫ s


q(τ )f

(
τ ,u(τ ),u�(τ )

)∇τ

+
∑
<tk<s

Īk
(
u(tk),u�(tk)

)
+A

)
�s

+


 –
∑m–

i= βi

m–∑
j=

βj
∑

ηj<tk<

Ik
(
u(tk)

)

≤ 
 –

∑m–
j= βj

∫ 


φq

(∫ 


q(τ )f

(
τ ,u(τ ),u�(τ )

)∇τ

+
n∑
k=

Īk
(
u(tk),u�(tk)

)
+A

)
�s

+


 –
∑m–

j= βj

n∑
k=

Ik
(
u(tk)

)
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≤ r
H


 –

∑m–
j= βj

[
φq

(
R + n

 –
∑m–

j= αj

)
+ n

]

= r,

ω(Tu) = max
t∈[,]T

∣∣(Tu)�(t)∣∣ = ∣∣(Tu)�()∣∣
≤ L

L
φq

(
R + n

 –
∑m–

j= αj

)

= L.

So, (.) holds.
Step . We show that condition (B) in Lemma . holds. We choose u(t) = l+

 b for
t ∈ [, ]T. It is easy to see that u(t) ∈ P̄(ϕ, lb;ω,L;ψ ,b), ψ(u) = u( – 

l ) > b and con-
sequently {u ∈ P̄(ϕ, lb;ω,L;ψ ,b) : ψ(u) > b} �= ∅. Thus, for u ∈ P̄(ϕ, lb;ω,L;ψ ,b),
there is b ≤ u(t) ≤ lb for t ∈ [ l ,  –


l ]T. By condition (A), we have

ψ(Tu) = min
t∈[ l ,– 

l ]T

∣∣Tu(t)∣∣ = (Tu)
(
 –


l

)

≥
∫ 

–/l
φq

(∫ s


q(τ )f

(
τ ,u(τ ),u�(τ )

)∇τ

)
�s

≥
∫ 

–/l
φq

(∫ –/l


q(τ )f

(
τ ,u(τ ),u�(τ )

)∇τ

)
�s

≥ 
l
φq

(∫ –/l

/l
q(τ )f

(
τ ,u(τ ),u�(τ )

)∇τ

)

≥ b
N

φq

(∫ –/l

/l
q(r)∇r

)

= b.

Therefore,

ψ(Tu) > b, ∀u ∈ P̄(ϕ, lb;ω,L;ψ ,b).

Step .We now show that (B) in Lemma . is satisfied. If u ∈ P̄(ϕ, r;ω,L), by condition
(A), in the same way as in Step , we can obtain that T : P̄(ϕ, r;ω,L) → P(ϕ, r;ω,L).
Hence, condition (B) in Lemma . is satisfied.
Step . Finally, we verify condition (B) in Lemma . for u ∈ P̄(ϕ, r;ω,L;ψ ,b) with

ϕ(Tu) > lb. Then, by Lemma . and condition (A), we have

ψ(Tu) = min
t∈[ l ,– 

l ]T

∣∣Tu(t)∣∣

≥ 
l
max

t∈[,]T

∣∣Tu(t)∣∣ – 
l

n∑
k=

∣∣�(Tu)(tk)
∣∣

≥ 
l
max

t∈[,]T

∣∣Tu(t)∣∣ – 
l

n∑
k=

∣∣Ik(u(tk))∣∣
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>

l
lb –


l
lb
n
n

= b.

Thus, condition (B) in Lemma . is satisfied.
Consequently, from Lemma ., boundary value problem (.) has at least three positive

solutions u,u,u ∈ P̄(ϕ, r;ω,L) with

u ∈ P(ϕ, r;ω,L), u ∈ {
P̄(ϕ, r;ω,L;ψ ,b) : ψ(u) > b

}
,

u ∈ P̄(ϕ, r;ω,L) \
(
P̄(ϕ, r;ω,L;ψ ,b)∪ P̄(ϕ, r;ω,L)

)
.

The proof is complete. �

From the proof of Theorem ., it is easy to see that if conditions like (A)-(A) are ap-
propriately combined, we can obtain an arbitrary number of positive solutions of problem
(.).

Corollary . Assume that (A)-(A) hold. There exist constants  < r < b < lb ≤ r <
b < lb ≤ · · · ≤ ri,  < L ≤ L ≤ · · · ≤ Li, i ∈ N, and the following conditions are satisfied:
(A) max{f (t,u, v), Īk(u, v)} <min{φp( rhH ),φp( LhL )}, Ik(u)≤ rh

H for
(t,u, v) ∈ [, ]T × [, rh]× [,Lh], ≤ h≤ i, ≤ k ≤ n;

(A) f (t,u, v) > φp( lbhN ) for (t,u, v) ∈ [ l ,  –

l ]T × [bh, lbh]× [,Lh+], ≤ h≤ i – .

Then problem (.) possesses at least i –  positive solutions.

4 An example
Example . Let T = {–n}n∈N* ∪ {}. We consider the boundary value problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(φ/(u�(t)))∇ + f (t,u(t),u�(t)) = , t �= 

 , t ∈ [, ]T,
�u(  ) = –I(u(  )),
�φ/(u�(  )) = –Ī(u(  ),u

�(  )),
φ/(u�()) = 

φ/(u�(  )), u() = 
u(


 ),

(.)

where

f (t,u, v) =

{

 t

 + ( u )
 + 

 (
v

 )
, u < ,


 t

 +  + 
 (

v
 )

, u≥ ,

I(u) =

{

u, ≤ u≤ ,

 , u > ,

Ī(u, v) =



u +




v, u≥ , v≤ .

Here q(t) ≡ , p = 
 , n = ,m = , t = 

 , α = 
 , β = 

 , ξ =

 , η =


 .

Choose l = , r = , b = , r = , L = , L = .
Then we have

H = ., L = ., N =
(



)/

.
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It is easy to verify that (A)-(A) hold and f (t,u, v) satisfies

max
{
f (t,u, v), Ī(u, v)

} ≤ . <min

{
φ/

(
r
H

)
,φ/

(
L
L

)}
≈ .;

I(u) ≤ . <
r
H

= . for (t,u, v) ∈ [, ]T × [, ]× [, ];

f (t,u, v) >  > φ/

(
lb
N

)
= . for (t,u, v) ∈

[


,



]
T

× [, ]× [, ];

max
{
f (t,u, v), Ī(u, v)

}
< . <min

{
φ/

(
r
H

)
,φ/

(
L
L

)}
≈ .;

I(u) ≤ 


<
r
H

= . for (t,u, v) ∈ [, ]T × [, ]× [, ].

Thus, all the conditions of Theorem . hold. By Theorem ., problem (.) has at least
three positive solutions u, u, and u such that

max
t∈[,]T

u(t) < , max
t∈[,]T

∣∣u�
 (t)

∣∣ < ;

 < min
t∈[  ,  ]T

u(t) ≤ max
t∈[,]T

u(t) ≤ , max
t∈[,]T

∣∣u�
 (t)

∣∣ ≤ ;

 < max
t∈[,]T

u(t)≤ , min
t∈[  ,  ]T

u(t) < , max
t∈[,]T

∣∣u�

∣∣ ≤ .
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