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Abstract

In this paper, we develop a multi-model adaptive control strategy to be applied on
delay compensation schemes for stable/unstable LTI MIMO systems. The only
requirement is that the delay should be bounded and decoupled from the control
strategy. The delay identification problem is formulated as an optimization one, and it
is framed on the abstract definition of the Generalized Pattern Search Method
(GPSM). Taking advantage of the global convergence analysis presented by GPSM, we
make a stability analysis of the proposed approach and delay identification
capabilities. Simulation examples show the usefulness of the proposed strategy
proving that the scheme is capable of identifying the delay and stabilizing the system
even with a larger delay. The capabilities of the approach are tested on a
second-order delayed unstable process, a MIMO unstable systems and an irrigation
channel model. Additionally, simulation examples on an irrigation channel with
time-varying delay are presented.

1 Introduction

The external delay in a process causes the output signal to be delayed with respect to the
input. If a control strategy has to be designed for this system, the presence of the delay
makes it a more difficult task, especially, when the rational part of the system is unstable
[1, 2]. Various strategies have been used to counteract the delay effect. Thus, the tuning
of PID controllers is perhaps the most widely used. In [3-6], different tuning rules for
stable/unstable systems with delay can be found. The disadvantage of such techniques is
that they only work well, when the delay is small compared with the time constant of the
system [7].

For systems, where the delay is dominant (i.e., the delay is big compared with the time
constant of the system), different control strategies such as delay compensation schemes
(DCS) should be used, being the most well-known the Smith predictor and its modifica-
tions for unstable and integrative systems [8—11]. Generally, these approaches have to be
applied offline to the nominal parameters of the system known beforehand. An additional
shortcoming is the lack of robustness to small uncertainties in the delay. In practice, when
using a DCS for an unstable system, it is very difficult to ensure the closed-loop stability in
the presence of delay uncertainty. This makes the DCS design considerably more difficult
than its stable counterpart. In this way, much effort has been dedicated during the last
years to the design of controllers for systems with delay uncertainty.
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Recently, a framework focused on the identification and control of systems with delay
uncertainty, has been proposed both for stable [12-14] and integrative [15] systems. The
approach presented is based on the classical SP and a multi-model scheme. The multi-
model scheme contains a battery of time-varying models which are updated using a mod-
ification rule. Each model possesses the same rational component but a different delay
value. The algorithm compares the mismatch between the actual system and each model
and selects, at each time interval, the one that best describes the behaviour of the ac-
tual system, providing online identification of the delay while simultaneously ensuring
the closed-loop stability. The way in which the delay varies is determined by a heuristic
optimization; this allows both the delay identification and the system control. Addition-
ally, this approach leads to a robustly stable closed-loop system while achieving a great
performance for systems with unknown long delays.

In this sense, the work presented in [12] is extended in this paper to potentially un-
stable and integrative systems. In this case, the control scheme is based on the modified
Smith predictor (MoSP) introduced in [8], and the optimization is framed into a Pattern
Search Method (PSM) [16]. It is worth emphasizing that the component by component
delay identification in an unstable MIMO system is a difficult task, since it is impractical
to estimate from open-loop experiments.

Control-oriented model identification methods have been of great interest in the pro-
cess control community, and there are different approaches, such as design of optimal
controllers, based on the particle swarm optimization [17], LMI optimization [18—21] to
treat the identification problem. The drawback of all these works is that the optimization
is done offline. Recently, a systematic closed-loop parametric online identification method
based on a step response test and online weight least squares optimization was proposed in
[22] for integrative and unstable processes. However, this work is treated without dealing
the control strategy. Therefore, the modification of controller parameters must be done
offline.

In this paper, the delay identification is formulated as an optimization problem, which is
solved using the so-called Pattern Search Method (PSM). The PSM has been used in math-
ematics and optimization theory [23, 24], but its use in control is rather limited, with few
works on it, [25, 26]. Moreover, in these two works, there is neither an analysis of conver-
gence nor a frame on the PSM. This contrasts with the present work, where the proposed
PSM is framed correctly on the generalized PSM [16], and therefore, the proposed PSM
inherits the general convergence properties. Thus, analytical stability properties are for-
mulated for this approach adequately and easily, since previous results and concepts can
be used for this purpose.

The PSM is implemented for practical purposes on the modified Smith predictor
(MoSP) [8], and it is complemented through a multi-model scheme running in parallel
[27]. The multi-model scheme contains the trial points (battery of models), which are
updated through time by using a modification rule called exploratory move in the PSM
context. Each model possesses the same rational component but a different value for the
delay. After an exploratory move, the algorithm compares the mismatch between the ac-
tual system and each model, and selects at each time interval the one that best describes
the behaviour of the system, providing an online estimation of the delay. An advantage
of the multi-model approach is that the PSM is implemented under simple mathematical
operations, which make its implementation relatively simple.
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The proposed approach is tested on different systems models and under different con-
ditions as: a second-order delayed unstable process, where an uncertainty in the rational
component of the system is taken into account; also it is tested on a MIMO unstable sys-
tems and on an irrigation channel model, which is an integrative MIMO system. Addition-
ally, simulation results have been extended to time-varying ones showing the potential and
applications of the proposed approach.

The paper is organized as follows. Section 2 states the problem formulation. Section 3
presents the proposed control scheme framed on the GPSM. The stability analysis is per-
formed in Section 4. Simulation examples are presented in Section 5. Finally, Section 6

summarizes the main conclusions.

2 Problem formulation

Let us consider the following MIMO transfer function model:

G(s) = (GY (9)e) = (GY (5)) o ()

= GY(s) o H(s), 1

where G¥ (s) is a matrix containing the rational component of the system, H(s) = (Hy(s)) =
(e‘hifs), for i,j =1,2,...,n, is a matrix containing only delays, and e denotes the Schur (or

component-wise) product [28]. The following assumptions are made about system (1).

Assumption 1 The rational transfer function matrix G¥ (s) is proper, with no pole-zero

unstable cancellations and known.

Assumption 2 The delay between each input/output component lies in a known compact
interval. That is, there exist two known matrices H = (Ei/), H-= (hij) € R such that hi;‘ <
hy < hy, Vi,

Assumption 11is feasible in many control problems, where a nominal model of the system
is available beforehand, and it does not posses unstable pole-zero cancellations. However,
the delay may be unknown or even time-varying, and hence it has to be estimated [29].
Note that there is no assumption on the stability of G¥ (s) being potentially unstable. As-
sumption 2 will be used in the proposed pattern-search-based algorithm to estimate the
delay in Section 3, and it is feasible in many practical control problems, where bounds on

the delay are known.

2.1 Modified Smith predictor

The MoSP [8] is shown in Figure 1. G¥(s) @ H and G¥(s) e H are the transfer func-
tions of the plant model and the actual plant, respectively. This structure has three con-
trollers which are designed for different objectives. Compensator K' = diag(K}), where
i =1,2,...,n, in the inner loop, is designed to prestabilise G¥ in the unstable case,
C = diag(C;), i =1,2,...,n, is used to take care of reference tracking, and K2 = diag([(f),
i=1,2,...,n,is used for disturbance rejection. The controllers can be designed in different
ways, for instance, using robust control techniques. We clarify that the controller design
is not the focus of the present work.
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Figure 1 Modified Smith predictor structure.

We omit by notation simplicity the argument s, in the next equations. Thus, the Laplace
transform with zero initial conditions of the closed-loop response obtained from Figure 1

is given by
Y = (GY o H)((I+ (K' + C)GY - C(G¥ o 1)) 5 x + C(G¥ o H))'CR, 2)

where x = (I + K2(GY o H)), ¥ = (I + KX(G¥ o H)). If Assumption 1 holds (the model
perfectly matches the plant G (s) = G¥(s)) and H = H, then (2) reduces to the simplified

transfer function
Y = (G¥ e H)(I+ (K* + C)G¥)'CR. 3)

Hence, the system with internal delay that appears in Eq. (2), becomes a system with ex-
ternal delay in Eq. (3). Therefore, this is precisely a topology that decouples the delay from
the control strategy, making the system easier to control, since compensators K, K* and
C are designed regardless of the delay (i.e., based only on the rational component of the
system which is known beforehand). Otherwise, if the delay is not known beforehand, the
exact compensation cannot be performed despite that the rational component is known,
and the closed-loop Eq. (2) can be potentially unstable.

The problem faced corresponds to the case when the matrix delay H is unknown, and
our objective is to obtain an estimation of the matrix delay H to be used in the MoSP struc-
ture depicted in Figure 1 in order to guarantee the stability of the system. The method of
estimating the delay involves the formulation of the identification problem as an optimiza-
tion problem solved online by PSM, which is briefly explained below.

2.2 Generalized pattern search method (GPSM)
GPSM was proposed in [16] for derivative-free unconstrained optimization (minimization
in this case) of continuously differentiable convex functions J : R”* — R.

The GPSM consists of a sequence of iterations IA{,?"m, k € N. At each iteration, a num-
ber of trial steps Al are added to the iteration I:[,‘(wm to obtain a number of trial points
H L= I:I,?"m + Al at iteration k. The objective function J is evaluated on these trial points
through a series of exploratory moves, which defines a procedure in which the trial points
are evaluated, and the values obtained are compared with J (H 2°™M). Then the trial step Ak}
associated with minimum value of J(H, oM+ Ahy) - (ﬁ;“m) <0 is chosen to generate the
next estimate of the patterns iteration H ool = H 2™ + Ahy. The trial steps Ay are gener-
ated using a step length parameter A; € R, which is also updated through time depending
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Multimodel-based implementation
of Pattern Search Method
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Figure 2 Basic architecture (based on MoPS) of the control scheme.

on the value of A/j_;. The evolution of the trial points establishes the convergence prop-
erties of the algorithm. A full PSM explanation can be found in [16].

3 Proposed control scheme using PSM

The basic structure of the proposed scheme is depicted in Figure 2. The MoSP and the
PSM are complemented with four elements: a set of trial points, an objective function
for evaluating the potential behaviour of each model, a switching logic, which monitors
the index periodically and decides the best model to be used in the control law, and the
switching mechanism, which is intended to reduce the possible mismatch between the
nominal and the actual output of the system. The following subsections consider in detail
the different elements of the proposed architecture and how they fit into the GPSM.

3.1 The patterns

The proposed architecture is composed of patterns, which are directions in the search
space starting from the nominal delay H; = (}Azk,./.) € R"*". The patterns are modified at
each iteration to obtain a new set of trial points. These trial points are time-varying and
automatically adjusted by the algorithm as corresponds to the PSM framework. The trial

steps are defined by
AR = BlaCP, 4)

where Ah’;‘l e R forp=1,2,...,N,and [ =1,2,...,n, where N, is the number of mod-
els (N, should be odd, since the nominal model should always be evaluated), the basis vec-
tor B! € R"*! (vector having one in the position /th and zeros elsewhere), the step length
parameter, Ay = [Ahy, AL3,..., Ah;f’”]T € RPNm is adjusted by the algorithm whose val-
ues are defined initially by the designer and the constant matrix C?* € RN»*" (matrices
having one in the position (/th, pth) and zeros elsewhere). In such a way that the trial
points take the form (5)-(7).

(A HE Y = [+ AR i+ AR Hi + A (5)
[ P, Y] = [He+ AR i+ AP, i+ A (6)

(A" B, Y] = [Hio+ AR i+ AR, Hy + AR 7)
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It can be seen that the trial points are generated by the addition of the patterns, which in
turn are generated by the length parameter Ay, to the nominal model Hy. Note that the
zero state (no changes in the nominal model) and both positive and negative directions to
change I:Ik should all be included, as explained in the definition of Ay in Section 3.3. In
this way, it is ensured that all the search space is evaluated.

3.2 Objective function
The second element of the proposed scheme is an objective function aimed at evaluating
the behavior of all the trial points / ,(f’ D The suggested objective function is

t
Jeh (HPD, 1) = / ()T Qe (v) dx, (8)

t=Tres

where Q = Q7 > 0, (1) = y(r) — 3?P(r) is the output error, y(r) is the vector output of
the plant at the instant ¢ = 7, while 7/ (t) denotes the (vector) output of each different
model H®". Notice that both y(t) and 3®"(¢) depend on the reference signal (t), and so
does (8). This dependence is expressed in (8) implicitly as dependence with ¢. T, is the so-
called residence time and defines the time interval window, where the delay model &)
is evaluated. Also it can be seen that the objective function (8) differs from the proposed
in [16], because it is time-dependent. However, it is not a problem to frame the present
approach into the GPSM as explained in Section 3.4.
The Laplace transform of the output error, e?” with zero initial conditions is given by

EPD = GY(H - HPD 37 ) 'CR, 9)

where Q = (I + (K + C)GY — CGY o« HPY)3 1 x + CGY o H). 1t is readily seen from (9)
that the error is zero when H®? = H. According to this fact, the search for the minimum
of the function (8) leads to an estimation of the actual matrix delay. Thus, the identifica-
tion problem is converted into an optimization one. It is important to notice that (8) is a
continuously differentiable function, since it is defined as the square of the subtraction of
two functions that are continuously differentiable. Also, (8) satisfies the compactness con-
dition stated in [16]. On the other hand, the simple decrease condition (convexity) cannot
be guaranteed to be satisfied.

3.3 Proposed pattern search method

The PSM monitors at time instants being integer multiple of the residence time the ob-
jective function and selects the nominal delay, which is the best estimation of the actual
one. The nominal delay is used within each time interval to generate the control law. The
initial trial point is selected by the designer as I:I,ﬁ‘:{“ and Ag-; using Assumption 2. From
this moment onwards, the PSM can be formally expressed as the Algorithm 1.

The trial points (5)-(7) are compared (line 13 of Algorithm 1) with nominal model using
the performance index (8). In this way, the element associated with the lowest value of
the objective function is obtained, and this represents the best delay. Next, the new trial
points are generated based on Ay, which is given by

Npu—-1)’ Nu-1\* 1"
Ar=|- Dhovor ~4T% =T 0, T 4% (=5 ) T | 4 (10)

2
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Algorithm 1 MIMO delay identification based on PSM.

k=1

: I:I,?"m: Initial nominal matrix delays

o Ap = [ARL AR, Al ): see Eq. (7)
. [hlj’
. Tx =n*Ty, 0 < < 1: Matrix reduction factors

=

h;j): Intervals of uncertainty of delays

: Tres > 0: Residence time
: ¢ = nom: Selected model
¥ y,
: Ahi = AkBCf :see Eq. (4)
o F = Fpom + A

© o N e W N

10: for ¢ > 0 do {At multiples of the residence time.}
11:  if t = wTes, w € N then

12: k< k+1

1B ppr =) = T ()

14: ¢ < argmin{p,,}

15: IA{,‘:"m = ﬁ[,‘f_l

6 AR = B

17: H = Proyy, i (HPo™ + AR

18:  endif

19: end for

where the reduction factor matrix is given by
T =n"To (1)

for 0 < n < 1. Furthermore, limg_, o, ['x = 0. Notice that since Ay contains positive and
negative values, the trial points (5) and (7) are defined as additions and subtractions to the
nominal model. These positive and negative values along with the zero value in the central
position of (10) and an adequate value for N,, and I'y allow to make a dense search in the
delay space (i.e., the complete search space can be explored to find the minimum of the
objective function (8)).

The models are not equally spaced in the delay space since the mesh is more refined near
the nominal delay. To show this issue, the separation between consecutive patterns can be
calculated according to Eq. (10). Thus, consider only the positive values for Ay (since the

separation for the negative part is identical due to symmetry): Ay = [ZZFk]Zg\%). Then,
the separation between two consecutive patterns is: §Ag = (I + 1)y — 2Ty = (21 + DTy
with/=0,1,..., (%) — 1. Notice that § Ay increases as [ increases, which means that the
patterns are more separated as they get far from the nominal model. The largest separation
between patterns is given by 8 Ag max = (Ny — 2)I'k, while the minimum separation is given
by 8 Axmin = [k at each iteration, k.

In this approach, the values of 5, I'y and N, are fixed by the designer, in relation with
the desired convergence time, the cycle time and architecture of the processor. For practi-
cal purposes, the approach possesses the advantage of being easily implementable in real
systems, such as microcontrollers, low cost chips or similar programmable devices. The

approach operation is simple and yields a great source of possible applications.
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3.4 Convergence results of the identification scheme
This section states the convergence results for the Algorithm 1, which guarantee the iden-
tification of the actual matrix delay. The proof is divided into two steps. Firstly, the condi-
tions under which (8) has a unique global minimum when 1:1,‘:"""‘ = H are stated. Secondly,
it will be shown that the proposed Algorithm 1 is able to asymptotically find the global
minimum of function J(4, £).

From (8), it can be seen that J(H,t) = 0 when H = H, and J(H, £) > 0 since its integrand
is non-negative. Thus, the global minimum is calculated when J (H,t) = 0. The next As-

sumption 3 will be used subsequently.

Assumption 3 Fix an arbitrary Tyes > 0. The reference signals r1(£), 72(2), ..., 74 (¢) satisty

the following conditions:
ri(t) #rit = X) (12)

and

rit—y) =it =2 £ = Y (it - y) = ri(e = 1)) (13)

j=1j#i

for all &, A;,; € [, 1] N (0,00) for i =1,2,...,n, h = max hy, b = minky, j #i, ¢ € {0,1} and
t € 4 C [kTes, (k+1)Tres), k € N, for at least one connected interval 4 of positive measure.

The meaning and role played by Assumption 3 in the delay identification is pointed out
in the proof of Lemma 1. Basically, the interpretation of (13) is that the reference signals
cannot be periodic, and that the different sums between them cannot be equal to other ref-
erence signal or a delayed version of it. This interpretation allows us to generate reference

signals easily in practice despite Eq. (13) looks complicated.

Lemma 1 The function (8) has a unique global minimum at H = H for all t > 0, provided
that the reference signals r\(t), ry(t), ..., r,(t) satisfy Assumption 3 for a given Ty > 0.

Proof The proof is done in the same way as the proof of Lemma 2 in [12]. O

In conclusion, if compensation between the different components is not possible due to
Assumption 3, then the actual matrix delay is the unique global minimum for the objective
function (8).

Lemma 1 states that the minimum of J(H, £) is unique if the reference signals r;(¢) satisfy
Assumption 3. The approach presents the peculiarity that the global minimum is always
the same, but for each time window, the function J(H, £) may take a different form. How-
ever, the same ideas and concepts from the GPSM can still be applied to this problem.

Next, we establish that the proposed algorithm is able to find the global minimum of
the proposed function J(F, t). Lemma 1 guarantees that under Assumption 3, J(H, ¢) has a
global minimum, but there may be local minima, while the GPSM is designed for decreas-
ing functions (convex functions). Fortunately, the original GPSM given in [16] is extended
in [30] to functions with multiple local minima. This has been done by converting the
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search into dense, according to the ideas in [30], which can be achieved in the presented
algorithm making the parameter I'y very close to zero and N,, sufficiently large.

Now, we can formulate the following result on delay identification based on the dense
construction of patterns according to the ideas in [30] and the global convergence results
stated in [16].

Theorem 1 Counsider the delay system given by (1) satisfying Assumptions 1 and 2. Thus,
the PSM based Algorithm 1 through models (5)-(7) can identify the actual matrix delay
provided that the reference signals ri(t),r5(£), ..., r,(t) satisfy Assumption 3 for a value of
Tres, Lo is sufficiently close to zero and N, is sufficiently large.

The proof of Theorem 1 relies on two basic features. The first one is that the mesh gen-
erated by the patterns is dense in the search space. This fact allows obtaining an estimate
of the delay lying in a neighbourhood of the actual delay, where there is no local optimum
except the global one. Secondly, the algorithm is proven to converge to the actual delay by
reduction to the absurd.

Proof If the initial estimate is the actual matrix delay, then the delay is identified and
the theorem is proven. Thus, consider that Hy # H. The particular problem of pattern
search methods is that the objective function to be optimized is time-varying, since it
changes at each residence time. In this way, we may consider each of the objective func-
tions (8) evaluated at each residence time multiple, £ = kT, to define the family of func-
tions, Ji (H) = f(zklﬁfjes (y(z) - 3(t, H))? dr, which satisfy that Jy(H) = 0 if and only if A = H.
Lemma 1 ensures that all these functions possess a common unique global minimum pro-
vided that Assumption 3 holds. However, each of these functions may possess a number
of local minima.

Thus, one of the following two cases will arise:

(a) All the functions Jx(H) only have the actual matrix delay as local minimum. Then,
any new iteration H; belongs to an interval, where there is no other minimum than
the actual delay. This would be the best situation since the optimization process will
not be threatened by the presence of local minima.

(b) At least one of the functions Ji(H) has extra local minima being distinct of the
global minimum. In this case, let us denote by K C N the set indexing the functions
having local minima and Cy, with k € K, the set of all delays being local minima of
function Ji(F), excluding the global optimum at the actual matrix delay.

Hence, Ji(F) > 0 for all H € Cy and all k € K. Moreover, we can define
0= inf{]k(I:[)|I:[ € Cy, k € K} > 0 which exists and is finite and positive. The
parameter 6 defines a neighbourhood, I, around the actual delay, where all the
functions J(H) do not have any local minima except the global one. In addition,
denote by A the diameter of the set I. Thus, if the patterns define a dense subset of
the search space in such a way that the patterns cover all the space,
2(%)%’ 0 > H — H (i.e., the spread of the patterns given by the total amplitude of
Ay is larger than the uncertainty range given by Assumption 2), and the separation
between them is sufficiently small, ||§ Aomax|l = (N — 2)|To| < A, which is achieved
with a sufficiently large N, and a sufficiently small || Ig ||, then for any initial
estimate I:IO, there exists an estimate I:A such that J (1:11) < 6. This implies that the

Page 9 of 20
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iteration provides an estimate within a neighbourhood I of the actual matrix delay,
where all the functions do not have any other minimum than the actual one.
In conclusion, the iteration Hj is always guaranteed to belong to an interval, where the
actual matrix delay, H, is the only optimum. This is the first feature of the proof. Notice
that it is not necessary to compute the location of the minima of the functions ]k(1:I ) since
they are only used to ensure that there exists such an estimate H;. Once the estimate H;
belongs to I, all the following iterations will, i.e., I:Ik e forall k >1.

Notice that the estimates sequence {ﬁk},fio converges to a constant finite limit since
limyg_, oo Ty = limg_, oo 7¥T = 0 for 0 < < 1 and, therefore, limy_, o, Ax = 0 in Eq. (10),
which makes all the patterns collapse to only one asymptotically. Hence, no oscillatory
behaviour is asymptotically possible for Hy, and convergence to a constant value is guar-
anteed.

Now, the convergence of the estimates to the actual matrix delay is performed by reduc-
tion to the absurd. Thus, assume that ﬁk — H, €I with H, # H, which means that the
estimates converge to a delay value different from the actual one. In this way, there exists
€ > 0 such that ||H — H,|| > 2¢. It will be proven that this leads to a contradiction. Recall
that Lemma 1 ensures that the global minimum is unique and located at the actual matrix
delay, provided that Assumption 3 holds, which implies that Ji(H,) > 0 for all k.

The convergence Hy — H, could imply any of these two situations below:

(i) There is a finite kg € N such that I:Ik = H, for all k > ko > 1, which means that the
limit H, is reached in finite time.

(ii) For a prescribed finite € > 0, there is a finite ko = ko(€) € N such that for all

k>ko>1, |H - ﬁk|| < €, which means that the limit H, is reached asymptotically.

These two situations will be considered separately:

(i) This case requires that fiko = 1:1k0+1 = H,. However, since in particular Ji, (H,) > 0,
and there are no local minima of any function Ji in /, since they are avoided by its
definition, there is a direction in the search space, for which J, (H) decreases since
the minimum is located at H € 1, i.e., J,(H) = 0. Taking into account that the
patterns define a dense mesh in the search space, there is a direction in Ahi’l, which
defines the patterns through Eq. (4), near this decreasing direction and a value
1<i< (A%) such that the parameter step length Ay, = I*T's, given by Eq. (10),
defines a pattern I:I,((p’l) with ](I:I,(f;b) < ](fiko). Consequently, I:Ik0+1 = I:[,((Ig’l) 7!I:Ik0,
which is a contradiction with the initial assumption that Hy, = Hyy.1 = H.

(ii) The condition ||H, — 1:1k|| < € for a sufficiently small finite € > 0 defines a

neighbourhood L of H, # H, where the estimates lie, ]:[k € L, for all k > ko. However,
this fact along with |H — Hy|| > 2¢ implies that

2€ < |H - H|l = |H — Hi + Hy + H, |

< |\H—Hll + | Hi + Ho|| < ||H - Fi || + € (14)
= |H-H|>e. (15)

Therefore, there is a finite p(€) > 0 satisfying Je(H) > >0 forall H € L. Since the
functions ]k(I:[ ) are continuous with respect to H, there exists a value A ,?; ¢ L such
that Ji(H}") = p11 for some 0 < 1 < . Hence, since Hpt ¢ L, then ||[Hy — Hi? || > €.
Notice that since the estimates belong to the interval I, where there are no local
minima, and |8 Ag maxll = Ny — 2)|ITo || < A, the distance between the estimate and
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H, is strictly smaller than [|§ Az max|l = (N, — 2)7% || To || < A, which is strictly smaller
than (%)nk IToll at each step k, which is the range defined by the step length,
through Eq. (10), i.e., there are patterns outside the region L. Thus, the patterns
define a dense mesh in the search space, and there is a direction in Ahﬁ’l, which
defines the patterns through Egs. (5)-(7), and avalue 1 </ < (%) such that the
parameter step length Ay, = [>Ty, defines a pattern ]:Il(f D hear a value of the delay
1:1,:" satisfying ]k(I:I,T) = py for some 0 < pu; < 1, since the patterns go ahead the
boundary of L. Then, ](IA{,((’z’l)) <J(H) forall H e L. Consequently, I:Ikoﬂ = fi,gz’l) ¢L
which is a contradiction with the initial assumption that Hy € L for, in particular,
k=ko+1.

In conclusion, there is a contradiction with the initial assumption of Hi — H, with H, #H,

and hence, the sequence of iterations converges to the actual matrix delay H, proving the

theorem. O

Notice that the identification result has been established thanks to the fact that the iden-
tification problem is formulated within a GPSM, taking advantage of this technique in its
applications to control theory. Also, note that Theorem 1 requires I'y being sufficiently
close to zero, and that N, is sufficiently large. However, it has been observed in simulation
examples that a finite value is sufficient for practical applications as shown in Section 5.

3.5 Extension to time-varying delays

In the results presented above, the delays are supposed to be time-invariant. The original
formulation of 'k, given in (11), makes that limy_, o 'k = 0, as it is commented in Sec-
tion 3.3. Thus, for time-varying delay systems, the estimation is not possible, because the
search space is asymptotically reduced to a single point. However, simulation results show
that a small modification in Algorithm 1 allows the proposed approach to be extended to
the case, when the delay is time-varying. The modification is made over the reduction
factor matrix, and it is given by the substitution of Eq. (11) by the following Eq. (16):

ko ifTx>T,
re= e B (16)
T, otherwise,

where I > 0 is the lower bound of the reduction factor matrix. As it can be seen, Eq. (16)
is easily implementable in Algorithm 1. This condition implies that the length parameter
(10) is only reduced until a certain positive value (which is defined by I'). In this way, we
can ensure that there will always be different models (5)-(7) generated in such way that all
the possible search space can be evaluated regardless the potential time-evolution of the
delays. Thus, the proposed Algorithm 1 is flexible enough to handle the identification of
time-varying delays. Note that for time-varying delay case, the precision of the estimation
is determined by I" value.

4 Stability analysis

This section states the stability properties of the close-loop. We will use the identification
properties of the proposed algorithm, stated in Theorem 1, to show that the nominal de-
lay converges to a neighbourhood of the actual matrix delay in finite time and eventually
becomes a time-invariant system. Thus, the stability theorem is formulated as follows.


http://www.advancesindifferenceequations.com/content/2013/1/331

Herrera et al. Advances in Difference Equations 2013, 2013:331 Page 12 of 20
http://www.advancesindifferenceequations.com/content/2013/1/331

Theorem 2 The closed-loop system depicted in Figure 2 obtained from Egs. (1), (5)-(7)
through Algorithm 1 is stable provided that Assumptions 1 and 2 hold, Ty is sufficiently
close to zero, N,,, is sufficiently large and (C + K*) stabilizes G¥ (s).

Proof The proof is made by contradiction. If the output is unbounded, then the input sig-
nal behaves as a non-periodic signal satisfying Assumption 3 for any value of T\e. There-
fore, Theorem 1 guarantees that the nominal delay converges to the actual matrix delay,
and hence, lim;_, H (¢) = H implying: lim;_, ljzij(t) = hjj, Vij. Consequently, there exist fi-
nite ¢; € R such that IIAqij(t) — hy| < €, V¥t > t;; for any positive prescribed €;; > 0. Thus,
denote by € = max;€; and ¢t* = max; £; and consider the state-space realization of the

closed-loop system given by Eq. (2):
x(t) = Agw(t) + A; (x(t - h) - x(t - iz(t))) + Br(t), 17)

where the delays 4, h(t) are the representation of the matrix delays into a state-space de-
scription, while Ay and A; are appropriate matrices. Furthermore, Ay is the state-space
description of the perfectly compensated delay given by the closed-loop system Eq. (3),
and hence stable by design through compensators C and K. However, since Theorem 1
guarantees that the delay is identified, then ||x(¢ — /) — x(¢ — ]:l(t)) | = 0,Vt>t >t and
there is § = 8(¢) such that ||x(f — /) — x(¢ - }Az(t))|| <sVt>t.

The BIBO-stability of Eq. (17) can be deduced from the autonomous system (i.e., the
system with r(£) = 0). Thus, the solution to Eq. (17) is given by:

t
x(8) = e x(h) + / DA (vt - h) - x(t - h(r))) dr. (18)
5]
Thus, the upper-bounding of Eq. (18) leads to:

Jst0)] =]+ [ s (xte - (x - )| e

51

: 14,5
< e fate)| + s [ e < (19)

t1 1Y

for ¢t > 1, since the matrix Ay is a stability matrix, the system is linear, and there is no finite
escape time on the finite interval [0, £;], and the entries of the matrix A; are bounded, since
it is the realization of a finite transfer function given by Eq. (2). Thus, all the signals in the
closed-loop system are bounded. Hence, the state is bounded, which is a contradiction
with the initial assumption, where the output and, therefore, the state diverge. O

It can be seen that the proof is straightforward, since the scheme has been correctly
framed within the PSM, which is, inheriting its convergence properties, and the MoSP
has a minimum robust behaviour. Note that since the delay is identified, the output tends
to the perfectly compensated system output.

5 Simulation examples
In this section, we will examine the performance of the proposed scheme in four simu-
lation scenarios. (i) The first scenario shows that it is not necessary to know the system
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in its totality. Therefore, we suppose that the unstable system has an uncertainty of 6%
in its parameters. (ii) The second scenario shows the effectiveness of the scheme in the
delay identification, using a 2 x 2 MIMO system with unstable poles. (iii) The proposed
approach is tested on an irrigation channel model, which is modelled as an integrative

MIMO system. (iv) Finally, simulation for time-varying delay system.

5.1 Second-order delayed unstable processes

The process is given by

6—13.63

G(S) = m

(20)

We will assume an error of 6% in the parameters of the plant model, as shown below

6—13.63

G(s) =
10.65 - 1.06

(21)

and C = %, K'=12.468 and K? = 1.414. For this simulation, we used a Ties = 1.2
seconds, y; = 0.1 and Ay = [2,4,8,12,16,20,23].

A comparison with the MoSP [8] is made. First, is to note that the nominal delay used in
the MoSP is lower /13°™ = 9 seconds in comparison with the initial nominal model used in
our approach /1°™ = 23 seconds, this was necessary, because if we use a delay of /1}°™ = 23
seconds in the MoSP, this becomes unstable.

Figure 3 clearly shows that the scheme is able to tackle the uncertainty in the delay, which
leads to remarkable performance. Also, results demonstrate that the proposed scheme has
a robust behaviour for uncertainties in modelling parameters of the plant.

Figure 4 shows the value that takes the nominal delay I:[,?"m for the control law at each
time interval, this is initialized in 23 seconds, 121,?0“‘ =13.6 at 16 seconds, which is a con-
vergence time quite small, and taking into account the length of the real delay. Thus, good
delay identification and good performance are achieved with a step as reference signal.

It can be seen that good results are obtained, despite the number of models (N, = 7) is

small, and that the y;; value is quite large, that is, 0.1 in comparison with requirements of

Theorem 1.
T T
1+ o= —
0.8 -
Z o6 e
041 Proposed method b
02k —+=--8. Majhi and D. P. Atherton method. |
0 ! | | | | |
0 10 50 60 70 80 90 100
Time (Sec)
Figure 3 Output signal.
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24 T

22 - - -Real delay 7
200 Nominal delay

5 10 15 20 25 30
Time (Sec)

Figure 4 Delay evolution through time.

y(t)

Proposed method
Delay model uncertainty of 10% q

1 1 1 1
0 10 20 30 40 50 60 70 80
Time (Sec)

Figure 5 Output signal for channel 1.

5.2 MIMO case
A complete knowledge of the delay-free part of the plant is assumed. The rational com-

ponent of the considered plant is given by

s+1.5 s-2.3"

4 23
CHOR I i E (22)
the matrix associated with the real delay of the plant is
6—15.55 6—3.43
H(s) = <e7.6s o118s )’ (23)
vy = 0.01, Ay = [2,4,8,12,16,20,23], Tres = 1.2 seconds and the controllers are given

by
s+13
0 4 0 14 0
c=¢® 5] K= . K= : (24)
0o 5 0 4 0 14

The system’s outputs are shown in Figures 5 and 6 for the channels 1 and 2, respectively.

The outputs are compared with a scheme having the model delay error of 10%. It can be
seen that good results were obtained, since a fixed delay upper to 15% makes the system
become unstable, although it is not shown in Figure 5. Notice that a finite value for y;; and

Ay is again sufficient to perform the delay identification.
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y(t)

Proposed method -
----- Delay model uncertainty of 10%

05 I I I I I I I
0 10 20 30 40 50 60 70 80

Time (Sec)

Time (Sec)

Figure 7 Delay evolution through time.

The nominal delay matrix at 25 seconds is
-1555  ,-3.4
frnom _ € P (25)
ki T\ g76s  pll8s |’

which is the same as (23), the evolution of the delay through time is shown in Figure 7.
As can be noticed, the convergence time is small in comparison with the channel delays,
which permits the system’s stability.

5.3 Integrative case
In this section, the proposed approach is used over an integrative MIMO irrigation chan-
nel model. The delay-free matrix of the irrigation channel is given by

0.0138  —0.0167 0
S S
Gdf(s) — 0 0‘02154 _0‘2417 , (26)
0.0092
0 o =

A modelling error of 3% is taking into account to show the robustness of the proposed

approach
0.08142 -0.(5)172 0
Gdf(s) = 0 0.0467  -0.0429 | 27)

s

S
0 0 0‘02)94
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Figure 8 Water level for pool 1, 2 and 3. (a) Pl control. (b) Proposed scheme.
and the actual delay is given by
H(s) = diag(5.23,8.57,12.45), (28)
C is given by
0.375 0
s(s+1) s 0
_ 0.45
C= 0 o) 0 , (29)
0.6
0 s(s+1)

and K! = diag(8,8,8) and K? = diag(1.1,1.1,1.1). The way of selecting these values for K*
and K? controllers is explained in detail in [8].

The initial parameters used in the algorithm are given by: Ties = 2.5 seconds, ﬁ,‘}om =
diag(0,0,0) seconds, and Ay = [2,4,6,8,10,12,14,16,18,20,22]. Note that the number of
models is low N,,, = 11.

Figure 8 shows the simulated water-level errors flows over upstream gates for the three
pools, in response to a large step change in the flow out of pool 3. Figure 8(a) shows the
simulation concerning a PI controller based on [8] (where the used compensators are the
same that the compensators used in the proposed scheme), where the model delay is con-
stant, I:I,‘(“’m = diag(6.27,7.14,14.94) (which correspond to a model delay error of £20%).
Figure 8(b) shows the output obtained with the proposed scheme, where the delay model
is unknown.

As expected, the simulation shows that in all three pools, better performance is achieved
by the proposed scheme, when the time delay has a modelling error. Although the control
strategies used in these simulations are not in the same conditions, since the proposed
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—Pool 3

0
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Time (min)

Figure 9 Delay values for pools 1, 2 and 3.

scheme adjusts the controller through time, while in the other case, the control strategy is
always fixed, this comparison is useful to show the effectiveness of the proposed scheme.

Figure 9 shows the delay evolution for the three pools, the obtained delay matrix is
Hi_, o = diag(5.2,8.6,12.4). It is noteworthy that the identification is very precise, despite
the input signal is a step. Notice that the convergence time is fast, since in 20.4 minutes,
all the delays are identified.

5.4 Time-varying delay
In this case, the pure delay term is given by

H(t) = diag(h (¢), ho(t), h3(2)), (30)

these are time-varying delays, whose variations are shown in Figure 10(d), (e) and (f). As it
can be seen, the delay varies arbitrarily, this is, in order to verify the optimal performance
of the algorithm. The following scenario was simulated. At time 0 minutes, all water levels
were 27.50 m, 24.85 m and 22.15 m for pool 1, 2 and 3, respectively. At time 20 minutes
the setpoint for the water level in pool 3 was reduced from 22.15 m to 22.10 m, and at time
150 minutes was augmented from 22.10 m to 22.20 m.

Figure 10(a), (b) and (c) shows the water level for pool 1, 2 and 3, respectively. The pro-
posed scheme is compared with PI controller proposed in [8], where the delays are fixed in
H = diag(11.02,10.08,9.1). As expected, the simulation shows that in all three pools, better
performance is achieved by the proposed scheme for time-varying delays.

Figures 10(d), (e) and (f) shows the delay evolution for pools 1, 2 and 3, respectively. It is
noteworthy that the identification is very precise, and the presented Algorithm 1 is able to
follow the time-evolution of the delays. It can be seen that the approach can identify both
abrupt as continuous changes in the delay.

6 Conclusion

This paper has presented a delay identification strategy that can be applied to delay com-
pensation control schemes for stable/unstable MIMO systems. The main objectives are
the delay identification and ensuring the closed-loop stability, this is usually difficult for
unstable system. The approach is formulated as an optimization problem and then framed
into the generalized patterns search method, inheriting the convergence properties, which
are a novelty both in the control theory as well as in mathematics. The optimization has
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Figure 10 Water level and delay identification. Pool 1. (a), (d). Pool 2. (b), (e). Pool 3. (c), (f).

been implemented online, using a multiple-model scheme, which is also a novel imple-
mentation of pattern search methods.
Despite convergence results require technical conditions that seem difficult to meet, the

generation of such reference signals can be accomplished easily in practice. Therefore, the
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simplification of the technical requirements on the input signal for the convergence results
is an open question of research.

Finally, it is shown that the proposed approach is robustly stable, even when the ra-
tional component of the system has a 6% error, which provides versatility and could be
implemented in real systems. Moreover, simulation results showed that the identification
is given with a great precision. Additionally, simulation results were presented for a time-
varying delay case, where it is corroborated that the expected good results in practical sit-
uations require readjustment of the model time delays. In authors’ opinion, pattern search
methods constitute a powerful optimization technique for control-oriented applications
such that it can be extended in future to the case, where the delay is time varying or for
combined parametric and delay identification.
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