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Abstract
A discrete predator-prey model with Holling-Tanner functional response is formulated
and studied. The existence of the positive equilibrium and its stability are
investigated. More attention is paid to the existence of a flip bifurcation and a
Neimark-Sacker bifurcation. Sufficient conditions for those bifurcations have been
obtained. Numerical simulations are conducted to demonstrate our theoretical
results and the complexity of the model.
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1 Introduction
Differential equations and difference equations are two typical mathematical approaches
to modeling population dynamical systems. There have been an increasing interest and
research results on discrete population dynamical systems in spite of their complexity
[–].
Predator-prey models describe one of the most important relationships between two

interacting species and have receivedmuch attention of appliedmathematicians and ecol-
ogists. The stability and existence of equilibrium state, the permanence of a system, the
Hopf bifurcation and the chaos of different continuous predator-prey models have been
extensively investigated. However, there are less results on dynamical behaviors of dis-
crete predator-prey models. The flip bifurcation and the Neimark-Sacker bifurcation are
two important phenomena of discrete population model dynamics. Liu and Xiao [] used
the center manifold theorem to study the flip bifurcation and the Neimark-Sacker bifurca-
tion. Agiza et al. [] and Celik et al. [] used the numerical simulations to discuss the flip
bifurcation and theNeimark-Sacker bifurcation. Hu et al. [] also used the centermanifold
theorem to study the flip bifurcation and the Neimark-Sacker bifurcation.
The following continuous prey-predator model with Holling-Tanner functional re-

sponse is very interesting and has been studied by many authors [–]:
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where x(t) and y(t) are the numbers of the prey and the predator species at time t, respec-
tively. r and r are the intrinsic growth rates or biotic potential of the prey and predator,
respectively. K is the prey environment carrying capacity. γ is a measure of the food qual-
ity that the prey provides for conversion into predator births. q is the maximal preda-
tor per capita consumption. a is the number of prey necessary to achieve one-half of
the maximum rate q. The variables and parameters satisfy (x, y) ∈ {(x, y)|x > , y > } and
r, r,K ,γ ,q,a > .
After introducing the new variables and parameters

u =
x
K
, v =

y
γK

, τ = rt, θ =
r
r
, b =

a
K
, c =

qγ
r

,

system () becomes

du
dτ

= u( – u) –
cuv
u + b

,

dv
dτ

= θv
(
 –

v
u

)
.

()

Motivated by a similar idea, we study the following discrete-time model corresponding
to model ():

u(t + ) = u(t) exp
[
 – u(t) –

cv(t)
u(t) + b

]
,

v(t + ) = v(t) exp
[
θ

(
 –

v(t)
u(t)

)]
,

()

where u, v, c, b, and θ are defined as in model (). It is assumed that the initial value of
solutions of system () satisfies u() > , v() >  and all the parameters are positive. It
is easy to prove that if the initial values (u(), v()) are positive, then the corresponding
solution (u(t), v(t)) is positive too.
In this paper, we study the dynamical behaviors of model (). The existence and stability

of the positive equilibrium are investigated in Section . The criteria for the existence
of a flip bifurcation and a Neimark-Sacker bifurcation are given in Section . Numerical
simulations are conducted to demonstrate our theoretical results and show the complexity
of the model dynamics in Section , too. Concluding remarks and discussions are given in
Section .

2 The existence and stability of the equilibrium
We firstly discuss the existence of the equilibria of model (). From model () we know
that the coordinates u and v of the positive equilibrium satisfy

 – u –
cv

u + b
= ,  –

v
u
= , ()

which is equivalent to

v = u, u + (b + c – )u – b = . ()
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Quadratic equation () has a positive solution

u∗ =
–(b + c – ) +

√
(b + c – ) + b


.

Then E(u∗,u∗) is a positive equilibrium of model (). From the expression

u∗ =
–(b + c – ) +

√
(b + c – ) + b


=
b

b + c –  +
√
(b + c – ) + b

,

we know that u∗ is a decreasing function of c with limc→+ u∗ = , limc→∞ u∗ = , and
 < u∗ < .
The linearized matrix of model () at the equilibrium E(u∗,u∗) is

J =

(
 – u∗ + cu∗

(u∗+b) – cu∗
u∗+b

θ  – θ

)
.

The characteristic equation of matrix J is h(λ) = , with h(λ) = λ – pλ + q = , where

p =  – θ – u∗ +
cu∗

(u∗ + b)
,

q =  – θ – u∗ + θu∗ +
cu∗(u∗ + bθ )
(u∗ + b)

.

Let λ and λ be two solutions of h(λ) = , and� =max{|λ|, |λ|}. From the Jury criterion,
we know that the necessary and sufficient conditions for � <  are

 + p – q > ,  – p + q > ,  – q > .

It is easy to obtain that

 – p + q = θu∗ +
bcθu

(u∗ + b)
> 

holds true for all positive parameters. The other two conditions become

 + p + q =  – θ – u∗ + θu∗ +
cu∗

(u∗ + b)
+

bcθu∗
(u∗ + b)

> ,

 – q = u∗ + θ – uθ –
cu∗

(u∗ + b)
–

bcθu∗
(u∗ + b)

> .
()

The conditions  + p + q >  and  – q >  in () are equivalent to

(θ + u∗ –  – θu∗)(u∗ + b)

u∗ + bθu∗
< c <

(θ + u∗ – θu∗)(u∗ + b)

u∗ + bθu∗
. ()

By using the equation cu∗
u∗+b =  – u∗ and u∗ = b – (b + c – )u∗, we can have another

equivalent conditions of ()

 – b – u∗
 – u∗

< θ <  +
c

b + c + 
. ()
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Then we have the following stability theorem.

Theorem . The unique positive equilibrium point E(u∗,u∗) of model () is asymptoti-
cally stable if and only if condition () or condition () holds.

Proof From the straightforward calculation, we can have the equivalent condition given
in (). Here we verify the equivalence of condition () and condition (). The first inequal-
ity in condition () is equivalent to

cθu∗
u∗ + b

> (θ – )
(
 – u∗ +

cu∗
(u∗ + b)

)
. ()

Substituting cu∗
u∗+b =  – u∗ into inequality () yields

θ ( – u∗) > (θ – )
(
 – u∗ +

u∗( – u∗)
u∗ + b

)
. ()

Inequality in () is equivalent to


(
u∗ + b + ( – u∗)(u∗ + b)

)
> θ

(
u∗ + b + ( – u∗)u∗

)
. ()

Using the equality u∗ = b – (b + c – )u∗ in () leads to

u∗( + b + c) > θ ( + b + c)u∗. ()

It follows from () that

θ <
( + b + c)
 + b + c)

=  +
c

 + b + c
. ()

The second inequality in () is equivalent to

( – θ )
(
 – u∗ +

cu∗
(u∗ + b)

)
<  –

cθu∗
u∗ + b

. ()

Substituting cu∗
u∗+b =  – u∗ into inequality () yields

( – θ )
(
 – u∗ +

u∗( – u∗)
u∗ + b

)
<  – θ ( – u∗). ()

Inequality in () is equivalent to

u∗( – u∗) – u∗(u∗ + b) < θ ( – u∗)u∗. ()

From inequality () and  < u∗ <  it follows that

θ >
 – b – u∗

 – u∗
. ()

We can have inequality in condition () by combining inequalities () and (). �
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Figure 1 The stability domain of the equilibrium E(u∗,u∗) of model ().

Remark  Inequality () or () gives stability conditions for the equilibrium E(u∗,u∗) of
model (). Inequality () is directly obtained from (), but it is not easy to verify since u∗
is dependent on c. As stated in the proof of Theorem ., inequality () is easy to verify
though it is difficult to obtain.

Remark  When –b–u∗ < , equivalent to (–b)c < (+b), the inequality θ > –b–u∗
–u∗

holds true automatically. The stability condition becomes θ <  + c
+b+c , which is easy to

verify.

For b = 
 , b = 

 , b = 
 , and b = , the stability domain in the c – θ plane is shown in

Figure . The horizontal and vertical coordinates are the parameters c and θ , respectively.
For any given c, the positive equilibrium E(u∗,u∗) is stable when θ is between two given
curves. There exists c for the subplots with b = 

 , b = 
 , and b = 

 , respectively. When
c < c, the positive equilibrium E(u∗,u∗) of model () is stable for  < θ <  + c

+b+c . When
c > c, the positive equilibrium E(u∗,u∗) of model () is stable for –b–u∗

–u∗ < θ <  + c
b+c+ .

From conditions given in Theorem . we know that the positive equilibrium E(u∗,u∗)
of model () is locally stable if –b–u∗

–u∗ < θ <  + c
b+c+ . The numerical simulations demon-

strate that the positive equilibrium E(u∗,u∗) of model () may be globally asymptoti-
cally stable if the conditions in Theorem . hold. If we take b = . and c = , then
E(., .) is the positive equilibrium of model (). The stability condition be-
comes . < θ < .. If we take θ = ., then λ = λ̄ = . + .i are the
complex eigenvalues of the linearized matrix J of model () at the positive equilibrium
E(., .). E(., .) is a stable focus. For the initial value u() = . and
v() = ., the solution series of u(t) and the phase portrait are given in Figure  (the
left column of subplots). If we take θ = .., then λ = –. and λ = –. are
the real eigenvalues of the linearized matrix J of model () at the positive equilibrium
E(., .). E(., .) is a stable node. For the same initial value u() = .
and v() = ., the solution series of u(t) and v(t) are given in Figure  (the right column

http://www.advancesindifferenceequations.com/content/2013/1/330
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Figure 2 The stability of the equilibrium E(u∗,u∗) of model ().

of subplots). The solution series and the phase portrait in Figure  show that the positive
equilibrium E(., .) of model () may be globally asymptotically stable.

3 Bifurcation
Bifurcation may lead to different dynamical behaviors of a model when parameters pass
through a critical values. Bifurcation usually occurs when the stability of an equilibrium
changes. In this section,we discuss the flip bifurcation and theNeimark-Sacker bifurcation
of model ().

3.1 Flip bifurcation
We define θ∗ = + c

b+c+ . The stability analysis in Section  shows that the positive equilib-
rium E(u∗,u∗) has an eigenvalue – when θ = θ∗, whichmeans E(u∗,u∗) is non-hyperbolic.
The flip bifurcation may occur in the neighborhood of the endemic equilibrium E(u∗,u∗)
when θ passes through the critical point θ∗.
The linearization matrix of model () at the equilibrium point E(u∗,u∗) with θ = θ∗ is

A =

(
 – u∗ + cu∗

(u∗+b) – cu∗
u∗+b

 + c
b+c+ – – c

b+c+

)
,

and the characteristic equation of matrix A is λ + p∗λ + q∗ = , where

p∗ =
(u∗ + b – )u∗

u∗ + b
+

c
b + c + 

,

q∗ = ( – u∗)
(
 –

u∗
u∗ + b

(
 +

c
b + c + 

))
.

The eigenvalues of matrix A are λ = – and λ = (b+c)(b+c)+b
+b+c – b(+b+c)

u∗+b with |λ| �= . The
following theorem confirms the flip bifurcation of model ().
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Theorem . If β �= , then model () will undergo a flip bifurcation at E(u∗,u∗) when
θ = θ∗. That is, there exists a stable period two cycle if θ∗ < θ < θ∗ + ε, where ε is a small
positive number, and β is defined in the end of the proof.

Proof In order to use the center manifold theory, we treat θ as a state variable. The trans-
formations ũ = u – u∗, ṽ = v – u∗, and θ̃ = θ – θ∗ take model () into the form

ũ(t + ) =
(
ũ(t) + u∗

)
exp

(
 – ũ(t) – u∗ –

c(ṽ(t) + u∗)
ũ(t) + u∗ + b

)
– u∗,

θ̃ (t + ) = θ̃ (t),

ṽ(t + ) =
(
ṽ(t) + u∗

)
exp

((
θ̃ (t) + θ∗

)(
 –

ṽ(t) + u∗
ũ(t) + u∗

))
– u∗.

()

Taylor expansion of model () at (ũ, ṽ, θ̃ ) = (, , ) is

ũ(t + ) =
(b + c)u∗ – b

u∗ + b
ũ(t) – ( – u∗)ṽ(t) + F(ũ, ṽ, θ̃ ),

θ̃ (t + ) = θ̃ (t),

ṽ(t + ) = θ∗ũ(t) + ( – θ∗)ṽ(t) + F(ũ, ṽ, θ̃ ),

()

where

F(ũ, ṽ, θ̃ )

=
(c –  – (b + c)(b + u∗))u∗

(u∗ + b)
ũ +

(b + c)u∗ – (b + c)
u∗ + b

ũṽ +
c( – u∗)
(u∗ + b)

ṽ

+
( – u∗)[b + ( – b – c)u∗] + ( – b – u∗)[b + ( + b + c)u∗]

(u∗ + b)
ũ

+
[c – u∗( – u∗)] + ( – b – u∗)[( – u∗)( + b + u∗) – c]

(u∗ + b)
ũṽ

+
c[c – ( – u)( + b + u∗)]

(u∗ + b)
ũṽ –

c( – u∗)
(u∗ + b)

ṽ + o
((|ũ| + |ṽ| + |θ̃ |)), ()

F(ũ, ṽ, θ̃ )

=
θ∗(θ∗ – )

u∗
ũ +

θ∗ – θ∗
u∗

ũṽ + ũθ̃ +
θ∗ – θ∗
u∗

ṽ – ṽθ̃ +
θ∗ – θ∗ + θ∗

u∗
ũ

+
–θ∗ + θ∗ – θ∗

u∗
ũṽ +

θ∗ – 
u∗

ũθ̃ +
θ∗ – θ∗ + θ∗

u∗
ũṽ

+
 – θ∗
u∗

ũṽθ̃ +
θ∗ – 
u∗

ṽθ̃ +
θ∗ – θ∗
u∗

ṽ + o
((|ũ| + |ṽ| + |θ̃ |)).

We define the matrix

T =

⎛
⎜⎝

  
  
θ∗

θ∗–  θ∗
λ–+θ∗

⎞
⎟⎠ and T– =

⎛
⎜⎝

– θ∗–
+λ

 (λ–+θ∗)(θ∗–)
θ∗(+λ)

  
λ–+θ∗
+λ

 – (λ–+θ∗)(θ∗–)
θ∗(+λ)

⎞
⎟⎠ .

http://www.advancesindifferenceequations.com/content/2013/1/330
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The transformation
( ũ(t)

θ̃ (t)
ṽ(t)

)
= T

(
u(t)
θ(t)
v(t)

)
takes model () to

⎛
⎜⎝
u(t + )
θ(t + )
v(t + )

⎞
⎟⎠ =

⎛
⎜⎝
–  
  
  λ

⎞
⎟⎠

⎛
⎜⎝
u(t)
θ(t)
v(t)

⎞
⎟⎠ +

⎛
⎜⎝
Q(u, θ, v)


Q(u, θ, v)

⎞
⎟⎠ , ()

where

Q(u, v, θ) = –
θ∗ – 
 + λ

H(u, v, θ) +
(λ –  + θ∗)(θ∗ – )

θ∗( + λ)
H(u, v, θ),

Q(u, v, θ) =
λ –  + θ∗
 + λ

H(u, v, θ) –
(λ –  + θ∗)(θ∗ – )

θ∗( + λ)
H(u, v, θ),

()

with

H(u, v, θ) = au + auv + av + au + auv + auv + av

+ o
((|u| + |v| + |θ|

)),
H(u, v, θ) = bu + buv + buθ + bv + bvθ + bu + buv

+ buθ + buv + buvθ + bv + bvθ

+ o
((|u| + |v| + |θ|

)),
and

a =
(c –  – (b + c)(b + u∗))u∗

(u∗ + b)
+
((b + c)u∗ – (b + c))θ∗

(u∗ + b)(θ∗ – )
+

c( – u∗)θ∗
(u∗ + b)(θ∗ – )

,

a =
(c –  – (b + c)(b + u∗))u∗

(u∗ + b)
+
((b + c)u∗ – (b + c))θ∗
(u∗ + b)(λ –  + θ∗)

+
((b + c)u∗ – (b + c))θ∗

(u∗ + b)(θ∗ – )
+

c( – u∗)θ∗
(u∗ + b)(θ∗ – )(λ –  + θ∗)

,

a =
(c –  – (b + c)(b + u∗))u∗

(u∗ + b)
+
((b + c)u∗ – (b + c))θ∗
(u∗ + b)(λ –  + θ∗)

+
c( – u∗)θ∗

(u∗ + b)(λ –  + θ∗)
,

a =
( – u∗)[b + ( – b – c)u∗] + ( – b – u∗)[b + ( + b + c)u∗]

(u∗ + b)

+
c[c – ( – u)( + b + u∗)]θ∗

(u∗ + b)(θ∗ – )

+
[c – u∗( – u∗)]θ∗ + ( – b – u∗)[( – u∗)( + b + u∗) – c]θ∗

(u∗ + b)(θ∗ – )

–
c( – u∗)θ∗

(u∗ + b)(θ∗ – )
,

a =
( – u∗)[b + ( – b – c)u∗] + ( – b – u∗)[b + ( + b + c)u∗]

(u∗ + b)

+
c[c – ( – u)( + b + u∗)]θ∗

(u∗ + b)(θ∗ – )

http://www.advancesindifferenceequations.com/content/2013/1/330
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+
[c – u∗( – u∗)]θ∗ + ( – b – u∗)[( – u∗)( + b + u∗) – c]θ∗

(u∗ + b)(θ∗ – )

+
c[c – ( – u)( + b + u∗)]θ∗
(u∗ + b)(θ∗ – )(λ –  + θ∗)

+
[c – u∗( – u∗)]θ∗ + ( – b – u∗)[( – u∗)( + b + u∗) – c]θ∗

(u∗ + b)(λ –  + θ∗)

–
c( – u∗)θ∗

(u∗ + b)(θ∗ – )(λ –  + θ∗)
,

a =
( – u∗)[b + ( – b – c)u∗] + ( – b – u∗)[b + ( + b + c)u∗]

(u∗ + b)

+
c[c – ( – u)( + b + u∗)]θ∗
(u∗ + b)(θ∗ – )(λ –  + θ∗)

+
[c – u∗( – u∗)]θ∗ + ( – b – u∗)[( – u∗)( + b + u∗) – c]θ∗

(u∗ + b)(θ∗ – )

+
c[c – ( – u)( + b + u∗)]θ∗
(u∗ + b)(λ –  + θ∗)

+
[c – u∗( – u∗)]θ∗ + ( – b – u∗)[( – u∗)( + b + u∗) – c]θ∗

(u∗ + b)(λ –  + θ∗)

–
c( – u∗)θ∗

(u∗ + b)(θ∗ – )(λ –  + θ∗)
,

a =
( – u∗)[b + ( – b – c)u∗] + ( – b – u∗)[b + ( + b + c)u∗]

(u∗ + b)

+
c[c – ( – u)( + b + u∗)]θ∗
(u∗ + b)(λ –  + θ∗)

+
[c – u∗( – u∗)]θ∗ + ( – b – u∗)[( – u∗)( + b + u∗) – c]θ∗

(u∗ + b)(λ –  + θ∗)

–
c( – u∗)θ∗

(u∗ + b)(λ –  + θ∗)
,

b =
θ∗(θ∗ – )

u∗
+
( – θ∗)θ∗
u∗(θ∗ – )

+
(θ∗ – )θ∗
u∗(θ∗ – )

,

b =
θ∗(θ∗ – )

u∗
+

( – θ∗)θ∗
u∗(λ –  + θ∗)

+
(θ∗ – )θ∗

u∗(θ∗ – )(λ –  + θ∗)
+
( – θ∗)θ∗
u∗(θ∗ – )

,

b =  –
θ∗

θ∗ – 
,

b =
θ∗(θ∗ – )

u∗
+

( – θ∗)θ∗
u∗(λ –  + θ∗)

+
(θ∗ – )θ∗

u∗(λ –  + θ∗)
,

b =  –
θ∗

λ –  + θ∗
,

b =
θ∗ – θ∗ + θ∗

u∗
+
(– + θ∗ – θ∗ )θ∗

u∗(θ∗ – )
+
( – θ∗ + θ∗ )θ∗
u∗(θ∗ – )

+
( – θ∗)θ∗
u∗(θ∗ – )

,

b =
θ∗ – θ∗ + θ∗

u∗
+
(– + θ∗ – θ∗ )θ∗

u∗(θ∗ – )
+
( – θ∗ + θ∗ )θ∗
u∗(θ∗ – )

+
(– + θ∗ – θ∗ )θ∗
u∗(λ –  + θ∗)

+
( – θ∗ + θ∗ )θ∗

u∗(θ∗ – )(λ –  + θ∗)
+

( – θ∗)θ∗
u∗(θ∗ – )(λ –  + θ∗)

,

http://www.advancesindifferenceequations.com/content/2013/1/330
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b =
θ∗ – 
u∗

+
( – θ∗)θ∗
u∗(θ∗ – )

+
(θ∗ – )θ∗
u∗(θ∗ – )

,

b =
θ∗ – θ∗ + θ∗

u∗
+
(– + θ∗ – θ∗ )θ∗

u∗(θ∗ – )
+
(– + θ∗ – θ∗ )θ∗
u∗(λ –  + θ∗)

+
( – θ∗ + θ∗ )θ∗
u∗(λ –  + θ∗)

+
( – θ∗ + θ∗ )θ∗

u∗(θ∗ – )(λ –  + θ∗)
+

( – θ∗)θ∗
u∗(θ∗ – )(λ –  + θ∗)

,

b =
(θ∗ – )

u∗
+
( – θ∗)θ∗
u∗(θ∗ – )

+
( – θ∗)θ∗

u∗(λ –  + θ∗)
+

(θ∗ – )θ∗
u∗(θ∗ – )(λ –  + θ∗)

,

b =
θ∗ – θ∗ + θ∗

u∗
+
(– + θ∗ – θ∗ )θ∗
u∗(λ –  + θ∗)

+
( – θ∗ + θ∗ )θ∗
u∗(λ –  + θ∗)

+
( – θ∗)θ∗

u∗(λ –  + θ∗)
,

b =
θ∗ – 
u∗

+
( – θ∗)θ∗

u∗(λ –  + θ∗)
+

(θ∗ – )θ∗
u∗(λ –  + θ∗)

.

From the center manifold theory of discrete systemwe know that there exists a local man-
ifold of model () []. The local manifold has the following expansion:

v(t) = h
(
u(t), θ(t)

)
=mu (t) +mu(t)θ(t) +mθ


 (t) +mu (t) +mu (t)θ(t)

+mu(t)θ
 (t) +mθ


 (t) + o

((|u| + |θ|
)). ()

After substituting the expansion into model () and using the invariant property of the
local manifold, the straightforward and careful calculation gives m =m =m =m = ,
and

m =
λ –  + θ∗
 + λ

(
a –

θ∗ – 
θ∗

b
)
,

m = –
m(θ∗ – )

 + λ

(
–a +

λ –  + θ∗
θ∗

b
)
–

λ –  + θ∗
 + λ

(
a –

θ∗ – 
θ∗

b
)
,

m =
m(θ∗ – )(λ –  + θ∗)b

θ∗( + λ)
–
(λ –  + θ∗)(θ∗ – )

θ∗( + λ)
b.

From the second equation ofmodel () we know that θ (t) is always constant. Therefore,
the one dimensional model induced by the center manifold is

u(t + ) =G
(
u(t), θ

)
,

where

G = – u(t) +
(λ –  + θ∗)(θ∗ – )b

θ∗( + λ)
θu +

θ∗ – 
 + λ

(
–a +

λ –  + θ∗
θ∗

b
)
u (t)

+
(λ –  + θ∗)(θ∗ – )b

θ∗( + λ)
θu +

(λ –  + θ∗)(θ∗ – )b
θ∗( + λ)

mθu (t)

+
(λ –  + θ∗)(θ∗ – )b

θ∗( + λ)
mθ


 u


 (t) +

θ∗ – 
 + λ

(
–a +

λ –  + θ∗
θ∗

b
)
u (t)

+
θ∗ – 
 + λ

(
–a +

λ –  + θ∗
θ∗

b
)
mu (t) +

(λ –  + θ∗)(θ∗ – )b
θ∗( + λ)

mθu
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+
(λ –  + θ∗)(θ∗ – )b

θ∗( + λ)
mθu

+
θ∗ – 
 + λ

(
–a +

λ –  + θ∗
θ∗

b
)
mθu . ()

It is not difficult to verify that G(, θ) = , ∂G(,)
∂u

= –, and

∂G(, )
∂u∂θ

=
(λ –  + θ∗)(θ∗ – )

θ∗( + λ)
b = –

u∗( + b + c)

u∗( + b + (b + c)( + b + c)) – bc
< ,

β =
∂G(, )

∂u
= –

(θ∗ – )
 + λ

(
–a +

λ –  + θ∗
θ∗

b
)

�= .

Therefore, model () will undergo a flip bifurcation at E(u∗,u∗), and the bifurcation so-
lution of period two is stable (unstable) when β <  (β > ) []. �

We use numerical simulation to demonstrate the flip bifurcation of model (). When
parameter values b =  and c =  are taken, then the positive equilibrium of () is E(

√
 –

,
√
 – ), the critical value of θ∗ = . The positive equilibrium E(

√
 – ,

√
 – ) is stable

when  < θ < . E(
√
 – ,

√
 – ) is unstable if θ > . The calculation shows that

G(u, θ) = – u – .θu + .u (t) + .θu + .θu (t)

– .θ
 u


 (t) – .u (t) – .u (t) – .θu

– .θu + .θu + o
(
ρ).

Further calculation shows that

G(, θ) = ,
∂G(, )

∂u
= –,

∂G(, )
∂u∂θ

= –. < ,

β =
∂G(, )

∂u
= –× . < .

From Theorem . we know that there exists a flip bifurcation of model () when θ∗ < θ <
θ∗ + ε, and the period two cycle is stable. The numerical simulation shows that the period
two cycle ofmodel ()may be globally asymptotically stable when θ > θ∗ and θ –θ∗ is small.
Figure  shows the flip bifurcation of model () and its stability. For the subplots in

the left column, the parameters are b = , c = , and θ = .. E(.,.) and
E(., .) are two points at the period two cycle of model () for those param-
eters. The solution of model () with initial conditions u() = ., v() = . tends
to the period two cycle. For the subplots in the right column, the parameters are b = ,
c = , and θ = .. E(., .) and E(., .) are the period two cycle of
model () for those parameters. The solution of model () with the same initial conditions
u() = ., v() = . tends to the period two cycle quickly. The simulations show that
themagnitude of the period two cycle ofmodel () increases with the parameter θ , and the
period two cycle may be globally asymptotically stable when θ > θ∗ and θ – θ∗ are small.
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Figure 3 The flip bifurcation of model () from the equilibrium point E(u∗,u∗).

3.2 Neimark-Sacker bifurcation
The Neimark-Sacker bifurcation for the discrete models is similar to the Hopf bifurcation
of continuous models. In this subsection we discuss the existence of the Neimark-Sacker
bifurcation of model ().

Theorem . If α �= , then model () will undergo a Neimark-Sacker bifurcation at
E(u∗,u∗) when θ = –b–u∗

–u∗ with  – b – u∗ > , where α is defined in the proof.

Proof Let u(t) = u(t) – u∗ and v(t) = v(t) – u∗, then the equilibrium E(u∗,u∗) is trans-
formed into the origin, we have

⎧⎨
⎩u(t + ) = (u(t) + u∗) exp( – (u(t) + u∗) – c(v(t)+u∗)

u(t)+u∗+b ) – u∗,

v(t + ) = (v(t) + u∗) exp(θ ( – v(t)+u∗
u(t)+u∗ )) – u∗.

()

The Taylor expression of model () at (u(t), v(t)) = (, ) to the third order is

⎧⎨
⎩u(t + ) = (b+c)u∗–b

u∗+b u(t) – ( – u∗)v(t) + P(u, v),

v(t + ) = θu(t) + ( – θ )v(t) + P(u, v),
()

where

P(u, v) =
(c –  – (b + c)(b + u∗))u∗

(u∗ + b)
u +

(b + c)u∗ – (b + c)
u∗ + b

uv +
c( – u∗)
(u∗ + b)

v

+
( – u∗)[b + ( – b – c)u∗] + ( – b – u∗)[b + ( + b + c)u∗]

(u∗ + b)
u

+
[c – u∗( – u∗)] + ( – b – u∗)[( – u∗)( + b + u∗) – c]

(u∗ + b)
uv

+
c[c – ( – u)( + b + u∗)]

(u∗ + b)
uv –

c( – u∗)
(u∗ + b)

v + o
((|u| + |v|

)),

http://www.advancesindifferenceequations.com/content/2013/1/330
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P(u, v) =
θ (θ – )
u∗

u +
θ ( – θ )

u∗
uv +

θ (θ – )
u∗

v

+
θ (θ – θ + )

u∗
u –

θ (θ – θ + )
u∗

uv

+
θ (θ – θ + )

u∗
uv –

θ(θ – )
u∗

v + o
((|u| + |v|

)).
When θ < θ < θ, the eigenvalues of the linearized matrix of model () are λ = λ̄ =
μ + iω, and |λ,| =

√
(–θ )((b+c)u∗–b)

u∗+b + ( – u∗)θ , where

θ =  – u∗ –
(b + c)u∗ – b

u∗ + b
– 

√
( – u∗)

(
 – u∗ –

(b + c)u∗ – b
u∗ + b

)
,

θ =  – u∗ –
(b + c)u∗ – b

u∗ + b
+ 

√
( – u∗)

(
 – u∗ –

(b + c)u∗ – b
u∗ + b

)
,

μ =



(
(b + c)u∗ – b

u∗ + b
+  – θ

)
,

ω =



√
( – θ )((b + c)u∗ – b)

u∗ + b
+ θ ( – u∗) –

(
(b + c)u∗ – b

u∗ + b
+  – θ

)

.

Let θ be the bifurcation parameter and θ = –b–u∗
–u∗ . The expression of u∗ and the

straightforward calculation yield that

|λ,|θ=θ = ,
d|λ,|
dθ

∣∣∣∣
θ=θ

=



(
 – u∗ –

(b + c)u∗ – b
u∗ + b

)
=
b – (b + c)u∗
(u∗ + b)

< .

Further calculation shows that λm
, �=  for θ = θ and m = , , , . Let T =

( t t
t t

)
with

t = , t = , t = μ–(–θ )
–u∗ , and t = ω

–u∗ . By performing the transformation

(
u(t)
v(t)

)
= T

(
u(t)
v(t)

)
,

we obtain
(
u(t + )
v(t + )

)
=

(
μ –ω

ω μ

)(
u(t)
v(t)

)
+

(
Q(u, v)
Q(u, v)

)
,

where

Q(u, v)

=
(
(c –  – (b + c)(b + u∗))u∗

(u∗ + b)
+
(b + c)u∗ – (b + c)

u∗ + b
t +

c( – u∗)
(u∗ + b)

t

)
u

+
(
(b + c)u∗ – (b + c)

u∗ + b
t +

c( – u∗)
(u∗ + b)

tt
)
uv +

c( – u∗)
(u∗ + b)

tv



+
(
( – u∗)[b + ( – b – c)u∗] + ( – b – u∗)[b + ( + b + c)u∗]

(u∗ + b)
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+
[c – u∗( – u∗)] + ( – b – u∗)[( – u∗)( + b + u∗) – c]

(u∗ + b)
t

+
c[c – ( – u)( + b + u∗)]

(u∗ + b)
t –

c( – u∗)
(u∗ + b)

t

)
u

+
(
c[c – ( – u)( + b + u∗)]

(u∗ + b)
tt –

c( – u∗)
(u∗ + b)

tt
)
uv

+
(
c[c – ( – u)( + b + u∗)]

(u∗ + b)
t –

c( – u∗)
(u∗ + b)

tt

)
uv –

c( – u∗)
(u∗ + b)

tv

,

P(u, v)

=
(

θ (θ – )
u∗

+
θ ( – θ )

u∗
t +

θ (θ – )
u∗

t

)
u +

(
θ ( – θ )

u∗
t +

θ (θ – )
u∗

tt
)
uv

+
θ (θ – )
u∗

tv

 +

(
θ (θ – θ + )

u∗
–

θ (θ – θ + )
u∗

t

+
θ (θ – θ + )

u∗
t –

θ(θ – )
u∗

t

)
u

+
(
–

θ (θ – θ + )
u∗

t +
θ (θ – θ + )

u∗
tt –

θ(θ – )
u∗

tt
)
uv

+
(

θ (θ – θ + )
u∗

t –
θ(θ – )

u∗
tt

)
uv –

θ(θ – )
u∗

tv

,

Q(u, v) = –
t
t

Q +
P(u, v)

t
.

From Theorem .. of [] we know that the existence of a Neimark-Sacker bifurcation
can be determined by the quantity α, where

α = –Re
[
( – λ)λ̄

 – λ
ll

]
–


|l| – |l| +Re(λ̄l),

and

l =


[
(Quu –Qvv + Quv ) + i(Quu –Qvv – Quv )

]
,

l =



[
Quu +Qvv + i(Quu +Qvv )

]
,

l =


[
(Quu –Qvv – Quv ) + i(Quu –Qvv + Quv )

]
,

l =



[
(Quuu +Quvv +Quuv +Qvvv )

+ i(Quuu +Quvv –Quuv –Qvvv )
]
.

Using the Neimark-Sacker bifurcation theorem in [], we obtain that there exists a
Neimark-Sacker bifurcation when α �=  and θ passes through θ. �

We use numerical simulation to demonstrate the Neimark-Sacker bifurcation of model
(). When parameter values are taken to be b = . and c = ., then the positive equi-
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Figure 4 The Neimark-Sacker bifurcation of model () at the equilibrium point E2.

librium of () is E(., .), the critical value θ = .. When θ = θ, model ()
will undergo a Neimark-Sacker bifurcation at E(u∗,u∗) (see Figure ).

4 Conclusion and discussion
The predator-preymodel with Holling-Tanner functional response can give better predic-
tion for some interacting species. The model also exhibits more complicated dynamics.
We have studied the dynamical behaviors of a discrete prey-predator model with Holling-
Tanner functional response. We have obtained sufficient conditions for the stability of the
positive equilibrium, the existence of a flip bifurcation and a Neimark-Sacker bifurcation.
The numerical simulations show that the model possesses more complicated dynamics.
For example, if we take c = , b = , then the positive equilibrium is E(

√
 – ,

√
 – ). The

stability condition of E(
√
 – ,

√
 – ) is  < θ < . The numerical simulation shows that

model () undergoes a process from periodic doubling to chaos (see Figure ).
The horizontal axis in Figure  is the parameter θ , and the vertical axis is the limiting

points of u(t). When  < θ < , there is only one limiting point of u(t), which is the value
of the positive equilibrium.When  < θ < ., the positive equilibrium loses its stability
and a stable period two cycle appears. When . < θ < ., the period two cycle loses
its stability and a stable period four cycle appears. The period doubling process continues
to chaos as θ increases. The top-left subplot shows a complete bifurcation. Three different
domains, [., .] × [., .], [., .] × [., .], and [., .] × [., .], in the
bifurcation figure are enlarged and displayed in the other three subplots. Especially, from
the bottom-left subplot we can see that there is a stable period three cycle of model ().
The dynamics of the discrete predator-prey model with Holling-Tanner functional re-

sponse is much more complicated. We have investigated the local stability of the positive
equilibrium and the bifurcation of the model analytically or numerically. There are still
many challenging problems on the dynamics of the model. Does the local stability of the
positive equilibrium imply its global stability? Are there two invariant closed curves in the
neighborhood of the positive equilibrium? The numerical simulations demonstrate that
the positive equilibrium may be globally stable if it is locally stable. The numerical simu-
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Figure 5 Model ()may exhibit a process from period doubling to chaos.

lations do not give any information on the existence of two invariant closed curves. We
expect that some analytical results can be obtained on those problems in the future.
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