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Abstract
In this article we establish relative oscillation theorems for two discrete matrix
Sturm-Liouville eigenvalue problems with Dirichlet boundary conditions and
nonlinear dependence on the spectral parameter λ. This nonlinear dependence on λ
is allowed both in the leading coefficients and in the potentials. Relative oscillation
theory rather than measuring the spectrum of one single problem measures the
difference between the spectra of two different problems. This is done by replacing
focal points of conjoined bases of one problem by matrix analogs of weighted zeros
of Wronskians of conjoined bases of two different problems.
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1 Introduction
We consider the discrete matrix Sturm-Liouville spectral problems

�
(
Ri(λ)�xi(λ)

)
–Qi(λ)xi+(λ) = , i ∈ [,N – ],

x(λ) = xN+(λ) = , detRi(λ) �= , i ∈ [,N]
(.)

and

�
(
R̂i(λ)�x̂i(λ)

)
– Q̂i(λ)x̂i+(λ) = , i ∈ [,N – ],

x̂(λ) = x̂N+(λ) = , det R̂i(λ) �= , i ∈ [,N],
(.)

where �xi = xi+ – xi, xi(λ) ∈ R
n, n ≥ , λ ∈ R is the spectral parameter, and the real sym-

metric n×nmatrix-valued functions Ri(λ), R̂i(λ),Qi(λ), Q̂i(λ), i ∈ [,N] are differentiable
in the variable λ and obey the conditions

d
dλ

Ri(λ)≤ ,
d
dλ

Qi(λ) ≤ , i ∈ [,N], (.)

d
dλ

R̂i(λ)≤ ,
d
dλ

Q̂i(λ) ≤ , i ∈ [,N]. (.)
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Conditions (.) imply [, ] that problem (.) is a special case of the discrete symplectic
eigenvalue problem

yi+(λ) =Wi(λ)yi(λ), yi(λ) =
[
xTi ,u

T
i
]T ∈R

n, i = , . . . ,N ,

x(λ) = xN+(λ) = ,
(.)

�i(λ) = J
d
dλ

(
Wi(λ)

)
JWT

i (λ)J ≥ , J =

[
 I
–I 

]
(.)

which depends in general nonlinearly on the spectral parameter (see []). Here Wi(λ) ∈
R

n×n is a differentiable (hence continuous) symplectic matrix-valued function of the
variable λ, such that Wi(λ)TJWi(λ) = J for i = , . . . ,N , λ ∈ R. By [], the matrix-function
�i(λ) is symmetric for all λ ∈ R and (.) describes the monotonic behavior of Wi(λ)
with respect to λ. In the case of spectral problem (.) for yi(λ) = [xTi (λ),uTi (λ)]T , ui(λ) =
(Ri(λ)�xi(λ)), i = , . . . ,N , uN+(λ) = uN (λ) +QN (λ)xN+(λ), the symplectic matrix in (.)
has the form

Wi(λ) =

[
I R–

i (λ)
Qi(λ) I +Qi(λ)R–

i (λ)

]
, (.)

and the monotonicity assumption in (.)

�i(λ) =

[
I –Qi(λ)R–

i (λ)
 R–

i (λ)

][
– d

dλ
Qi(λ) 
 – d

dλ
Ri(λ)

][
I 

–R–
i (λ)Qi(λ) R–

i (λ)

]

≥ , i ∈ [,N]

is obviously equivalent to (.).
The oscillation and spectral theory for symplectic difference systems with linear depen-

dence on the spectral parameter was successfully developed in [–]. For the special case
of the matrix Sturm-Liouville difference equations the assumption in [–] on the linear
dependence on λ ∈R leads to the following restrictions:

d
dλ

Ri(λ) ≡ ,
d
dλ

R̂i(λ) ≡ , Qi(λ) = Pi – λWi, Q̂i(λ) = P̂i – λŴi,

Pi = PT
i , P̂i = P̂i, Wi =WT

i , Ŵi = ŴT
i , Wi ≥ , Ŵi ≥ 

(.)

on the coefficient matrices Ri(λ), R̂i(λ), Qi(λ), Q̂i(λ) in (.), (.). The so-called global
oscillation theorem (see [, ]) applied to problem (.) with assumptions (.) relates the
number of finite eigenvalues of (.) less than or equal to a given number λ = b to the
number of focal points (counting multiplicity) of the principal solution of (.) with λ = b
(see []). Relative oscillation theory adds new aspects to the classical oscillation results
by showing that matrix analogs of weighted zeros [–] of the Wronskian for suitable
solutions of (.), (.) can be used to count the difference between the numbers of finite
eigenvalues of problems (.), (.). Recall now some results of relative oscillation theory
developed in [, , ] for the scalar case of (.), (.), (.). Consider the Sturm-Liouville
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eigenvalue problems

�
(
ri�xi(λ)

)
– (qi – λ)xi+(λ) = , ri > , x(λ) = xN+(λ) = , (.)

�
(
r̂i�x̂i(λ)

)
– (q̂i – λ)x̂i+(λ) = , r̂i > , x̂(λ) = x̂N+(λ) = , (.)

i = , . . . ,N – .

Introduce theWronskian for two solutions xi, x̂i of the difference equations in (.), (.):
wi(x, x̂) = rixi+x̂i – r̂ixix̂i+. According to [], the Wronskian wi(x, x̂) has a node at i (or a
generalized zero [, p.] in [i, i + )) if either wiwi+ <  or wi = , wi+ �= . Then, by [,
Theorem .], for problems (.), (.) with ri = r̂i, qi = q̂i and a < b, a,b ∈ R, we have

#
(
x()(a), x̂(N+)(b)

)
= #{λ ∈ σ|a < λ < b}, (.)

where #(x, x̂) denotes the total number of nodes of wi(x, x̂) in (,N + ), #{λ ∈ σ|a < λ < b}
denotes the number of eigenvalues of (.) (or (.)) between λ = a and λ = b and the
solutions x(M)

i , x̂(M)
i , M ∈ {,N + } of (.), (.) obey the conditions x(M)

M = , x̂(M)
M =  at

i =M ∈ {,N + }.
The main result in [] extends (.) for the case qi �= q̂i. According to [, Theorem .],

the number of weighted nodes of the Wronskian in (,N + ) equals the number of eigen-
values of (.) below λ = b minus the number of eigenvalues of (.) below or equal to
λ = a:

#
(
x()(a), x̂(N+)(b)

)
= #

(
x(N+)(a), x̂()(b)

)
= #{λ ∈ σ|λ < b} – #{λ ∈ σ|λ ≤ a}. (.)

In the recent paper [], the previous result is generalized for the case ri �= r̂i, qi �= q̂i. Note
that relative oscillation theory for scalar spectral problems (.), (.) with nonlinear de-
pendence on λ (see []) has never been developed before.
In [–] we derive relative oscillation theory for symplectic difference eigenvalue

problems with linear dependence on λ. Note that results in [, ] cover the special case
of the matrix Sturm-Liouville eigenvalue problem (.), (.) with the linear dependence
on λ only under the additional assumption Ri = R̂i, i = , . . . ,N . The relative oscillation the-
ory which deals with the case Ri(λ) �= R̂i(λ) is called extended (see [, ]). Results of this
paper rely on the concept of finite eigenvalue of (.) and the global oscillation theorem
which was recently proved in [, ] for symplectic eigenvalue problems (.) with nonlin-
ear dependence on the spectral parameter λ. We combine these results with Theorem .
in [] presenting the relation between the numbers of focal points of conjoined bases of
two discrete symplectic systems with different coefficient matrices. This opens the door
for generalizing relative oscillation theory for the case of spectral problems (.), (.) and
(.), (.).
The paper is organized as follows. In Section  we recall main concepts of oscillation

theory of symplectic difference systems and the comparative index theory developed in
[, –]. We introduce the relative oscillation numbers which generalize the concept
of a weighted zero of theWronskian for the matrix case. At the end of Section , we prove
some properties of the relative oscillation numbers.
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Section  is devoted to relative oscillation theory for problems (.), (.). In Section .
we derive the relative oscillation numbers for the pair of symplectic difference systems as-
sociatedwith (.), (.) (seeTheorem.).We also investigate other representations of the
relative oscillation numbers connected with different choices of symplectic difference sys-
tems associated with (.), (.) (see Section .). The main theorems (see Theorems .,
.) proved in Section . generalize (.), (.) for the case of matrix eigenvalue prob-
lems (.), (.).
In Section  we provide several examples illustrating the relative oscillation theory for

scalar problems (.), (.) with nonlinear dependence on the spectral parameter.

2 Notation and auxiliary results
We will use the following notation. For a matrix A, we denote by AT , A–, A–T , A†, rankA,
indA, A ≥ , A ≤ , respectively, its transpose, inverse, transpose and inverse, Moore-
Penrose pseudoinverse, rank (i.e., the dimension of its image), index (i.e., the number of
its negative eigenvalues), positive semidefiniteness, negative semidefiniteness. By I and
 we denote the identity and zero matrices of appropriate dimensions. We also use the
notation

∏N
k=M Ak = ANAN– · · ·AM for the product of matrices AN ,AN–, . . . ,AM , where

we put
∏M–

k=M Ak = I .
Introduce the symplectic difference systems

yi+ =Wiyi, WT
i JWi = J , (.)

ŷi+ = Ŵiŷi, ŴT
i JŴi = J , (.)

where yiŷi ∈R
n.

Recall (see []) that n×nmatrix solutions Yi, Ŷi of (.), (.) are said to be conjoined
bases if

rankYi = n, YT
i JYi = , rank Ŷi = n, Ŷ T

i JŶi = , (.)

and the conjoined bases Y (M)
i , Ŷ (M)

i of (.), (.) with the initial conditions Y (M)
M = [ I]T ,

Ŷ (M)
M = [ I]T at i =M are said to be the principal solutions atM.
Note that for conjoined bases Yi, Ŷi of (.), (.) there exist symplectic fundamental

matrices Zi, Ẑi such that

Yi = Zi[ I]T , Ŷi = Ẑi[ I]T (.)

(see [, Remark (ii)]). Define the Wronskian

wi(Y , Ŷ ) = wi = YT
i JŶi (.)

for conjoined bases of (.), (.).
Recall the definition of focal points and their multiplicities for conjoined bases of (.).

We define the numbers of focal points of conjoined basis Yi = [XT
i UT

i ]T in (i, i+ ], [i, i+ ),
respectively (see [, Definition ], [, Definition .]): mi(Y ) = rankMi + indPi, m∗

i (Y ) =

http://www.advancesindifferenceequations.com/content/2013/1/328
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rank M̃i + ind P̃i, where

⎧⎪⎪⎨
⎪⎪⎩
Mi = (I –Xi+X†

i+)Bi,

Ti = I –M†
i Mi,

Pi = TiXiX†
i+BiTi,

⎧⎪⎪⎨
⎪⎪⎩
M̃i = (I –XiX†

i )BT
i ,

T̃i = I – M̃†
i M̃i,

P̃i = T̃iXi+X†
i BT

i T̃i.

In particular, according to [, Section ], the number of focal points of a conjoined basis
Yi = [XT

i (Ri(λ)�Xi)T ]T of matrix Sturm-Liouville equation (.) in the interval (i, i + ] is
defined to be the number

mi(Y ) = n – rankXi+ + ind
(
XT
i Ri(λ)Xi+

)
. (.)

The main results of this paper are based on the comparative index theory established in
[, –]. According to [, ], we define the comparative index for n×nmatrices Y ,
Ŷ with conditions (.) using the notation

⎧⎪⎪⎨
⎪⎪⎩
M = (I –XX†)X̂, X = [I ]Y , X̂ = [I ]Ŷ ,

T = I –M†M,

D =DT = T wT (Y , Ŷ )X†X̂T .

(.)

The comparative index is defined by μ(Y , Ŷ ) = μ(Y , Ŷ ) + μ(Y , Ŷ ), where μ(Y , Ŷ ) =
rankM and μ(Y , Ŷ ) = indD. Introduce the dual index μ∗(Y , Ŷ ) = μ(Y , Ŷ ) + μ∗

(Y , Ŷ ),
where μ∗

(Y , Ŷ ) = ind(–D).
For the comparative index μ(Y , Ŷ ), we have the estimate (see Property  in [, p.])

μ(Y , Ŷ ) ≤ rankw(Y , Ŷ ) ≤ n, (.)

where w(Y , Ŷ ) is the Wronskian given by (.).
If Zi is a symplectic fundamental matrix for (.) connected with a conjoined basis Yi

(see (.)), then, according to [, Lemmas . and .], we have

mi(Y ) = μ
(
Yi+,Wi[ I]T

)
= μ∗(Z–

i+[ I]T ,Z–
i [ I]T

)
, (.)

m∗
i (Y ) = μ∗(Yi,W–

i [ I]T
)
= μ

(
Z–
i [ I]T ,Z–

i+[ I]T
)
, (.)

wheremi(Y ),m∗
i (Y ) are the numbers of focal points in (i, i + ], [i, i + ), respectively.

In this paperwewill use the comparative indexμ(Ẑ–
i Yi, Ẑ–

i+Yi+) which, according to the
second formula in (.), presents the number of focal points m∗

i (Z–Ŷ ) in [i, i + ) of the
transformed conjoined basis Z–

i Ŷi (see []) with the upper block [I ]Z–
i Ŷi = –wi(Y , Ŷ )

associated with the Wronskian (.). To emphasize the role of the Wronskian (.) in
the relative oscillation results, we introduce the notation m∗(wi,wi+) := m∗

i (Z–Ŷ ) =
μ(Ẑ–

i Yi, Ẑ–
i+Yi+), where by (.), (.) we have

m∗(wi,wi+) := rankMi + ind(Pi),

Mi :=
(
I –w†

i wi
)
wT
i+, Ti := I –M†

iMi, Pi := Tiwi+w†
i CiTi,

Ci =
(
Ẑ–
i Yi

)T J(Ẑ–
i+Yi+

)
= YT

i JŴ
–
i WiYi = YT

i+JWiŴ–
i Yi+.

(.)
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Note that according to (.), we have the inequality

m∗(wi,wi+) ≤ rank(Ci) ≤ n (.)

because of the definition Ci = (Ẑ–
i Yi)T J(Ẑ–

i+Yi+) in (.).
Introduce the notation

l(Y ,M,N) =
N∑

i=M

mi(Y ), l∗(Y ,M,N) =
N∑

i=M

m∗
i (Y )

for the numbers of focal points of Yi in (M,N + ] and [M,N + ).
For arbitrary n×nmatrices Y , Ŷ with conditions (.) and symplectic matricesW , Ŵ ,

we define the operator

L(Y , Ŷ ,W ,Ŵ )

= μ
(
Ŵ Ŷ ,Ŵ [ I]T

)
–μ

(
WY ,W [ I]T

)
+μ(WY ,Ŵ Ŷ ) –μ(Y , Ŷ ). (.)

The main result in [] (see Theorem .) establishes the equality μ(WY ,WŶ ) =
μ(Y , Ŷ ) +μ(WY ,W [ I]T ) –μ(WŶ ,W [ I]T ) and then

L(Y , Ŷ ,W ,W ) =  (.)

for the caseW = Ŵ .
When Y := Yi, Ŷ := Ŷi are conjoined bases and W := Wi, Ŵ := Ŵi are the coefficient

matrices of (.), (.), operator (.) takes the form

L(Yi, Ŷi,Wi,Ŵi) =mi(Ŷ ) –mi(Y ) +�μ(Yi, Ŷi), (.)

where, according to (.),mi(Ŷ ) = μ(Ŷi+,Ŵi[ I]T ),mi(Y ) = μ(Yi+,Wi[ I]T ) are the num-
bers of focal points in (i, i + ]. In [] we derive the general representations of (.) in
terms of the comparative index for the coefficient matrices of (.), (.). For arbitrary
symplectic matrixW separated into n× n blocks A, B, C, D introduce the notation

〈W 〉 =

⎡
⎢⎢⎢⎣
I 
A B
 –I
C D

⎤
⎥⎥⎥⎦ , W =

[
A B
C D

]
.

In [, Lemma .]) we prove that n× nmatrices 〈W 〉, 〈Ŵ 〉 associated with symplectic
W , Ŵ obey (.) (with n replaced by n) and then the comparative index for the pair
〈W 〉, 〈Ŵ 〉 is well defined. The results of this paper are based on the following comparison
theorem proved in [, Theorem .].

Theorem . Let Yi, Ŷi be conjoined bases of (.), (.) associated with symplectic fun-
damental matrices Zi, Ẑi such that (.) hold. Then

L(Yi, Ŷi,Wi,Ŵi) = #(Yi, Ŷi), (.)

http://www.advancesindifferenceequations.com/content/2013/1/328
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where

#(Yi, Ŷi) = μ
(〈
Ẑ–
i Zi

〉
,
〈
Ẑ–
i+Zi+

〉)
–μ

(〈Ŵi〉, 〈Wi〉
)
, (.)

and then

N∑
i=M

L(Yi, Ŷi,Wi,Ŵi) = l(Ŷ ,M,N) – l(Y ,M,N) +μ(YN+, ŶN+) –μ(YM, ŶM)

=
N∑

i=M

#(Yi, Ŷi), (.)

where l(Ŷ ,M,N), l(Y ,M,N) are the numbers of focal points in (M,N + ].

The numbers #(Yi, Ŷi) in the right-hand side of (.) are called the relative oscillation
numbers for the symplectic difference systems (.), (.). Note that the inequality

∣∣#(Yi, Ŷi)
∣∣ ≤ rank(Wi – Ŵi) (.)

holds for the relative oscillation numbers in (.) (see the proof of Theorem . in []),
and then #(Yi, Ŷi) ≡  for the caseWi ≡ Ŵi.
For the particular case when Yi, Ŷi are the principal solutions of (.), (.), we have the

following corollary from Theorem . (see [, Corollary .]).

Corollary . Let Y ()
i and Ŷ (N+)

i be the principal solutions of (.) and (.) associated
with symplectic fundamental matrices Z()

i , Ẑ(N+)
i such that conditions (.) hold. Then

l∗
(
Ŷ (N+), ,N

)
– l

(
Y (), ,N

)
= l

(
Ŷ (), ,N

)
– l

(
Y (), ,N

)

=
N∑
i=

#
(
Y ()
i , Ŷ (N+)

i
)
, (.)

where the relative oscillation numbers #(Y ()
i , Ŷ (N+)

i ) are defined by (.) for Ẑi := Ẑ(N+)
i ,

Zi := Z()
i .

Relative oscillation theory for symplectic eigenvalue problems with linear dependence
on λ developed in [, ] is based on [, Lemma .], [, Lemma ] where we evaluate
relative oscillation numbers (.) assuming that the following condition

WiŴ–
i =

[
I 
Ci I

]
, i = , . . . ,N , (.)

holds for the matricesWi, Ŵi in (.), (.) (here Ci = CT
i due to symplecticity ofWi, Ŵi).

Then, by [, Lemma ], we have the following representation

#(Yi, Ŷi) =m∗(wi,wi+) – ind(Ci), Ci = XT
i+CiXi+ (.)
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provided (.) holds. In particular, for the scalar case of Sturm-Liouville equations (.),
(.) with ri ≡ r̂i, relative oscillation numbers (.) take the values ± if and only if the
Wronskianwi(x, x̂) = rixi+x̂i–rixix̂i+ for solutions xi, x̂i of (.), (.) has a weighted node
at i according to the definition in [] (see [, Remark ]).
Note that the symplectic matrices (.) associated with matrix Sturm-Liouville equa-

tion (.) for two arbitrary values λ = a and λ = b, a �= b obey condition (.) only for the
case when Ri does not depend on λ. For two spectral problems (.), (.) condition (.)
is satisfied under the additional assumption Ri ≡ R̂i. In the next section, using the spe-
cial structure of symplectic matrices (.), we evaluate the relative oscillation numbers for
problems (.), (.) for the general case Ri(λ) �= R̂i(λ), Qi(λ) �= Q̂i(λ). In the proofs we will
use the following ‘multiplicative’ property of operator (.).

Lemma . For arbitrary symplectic matrices S,S, . . . ,Sp and Ŝ, Ŝ, . . . , Ŝp, where p ≥ ,
define Z(r) :=

∏r
k= Sk , Ẑ(r) :=

∏r
k= Ŝk , r = , , . . . ,p. Then, for any n × n matrices Y , Ŷ

with conditions (.), we have

L
(
Y , Ŷ ,Z(p), Ẑ(p)

)
=

p∑
r=

L
(
Z(r – )Y , Ẑ(r – )Ŷ ,Sr , Ŝr

)

+
p∑
r=

(
μ

(
Z(r)[ I]T ,Sr[ I]T

)

–μ
(
Ẑ(r)[ I]T , Ŝr[ I]T

))
. (.)

Proof By definition (.), in the left-hand side of (.) we have

L
(
Y , Ŷ ,Z(p), Ẑ(p)

)
= μ

(
Ẑ(p)Ŷ , Ẑ(p)[ I]T

)
–μ

(
Z(p)Y ,Z(p)[ I]T

)
+μ

(
Z(p)Y , Ẑ(p)Ŷ

)
–μ(Y , Ŷ ). (.)

Similarly, for the operatorL(Z(r–)Y , Ẑ(r–)Ŷ ,Sr , Ŝr) in the right-hand side of (.), we
derive

L
(
Z(r – )Y , Ẑ(r – )Ŷ ,Sr , Ŝr

)
= μ

(
Ẑ(r)Ŷ , Ŝr[ I]T

)
–μ

(
Z(r)Y ,Sr[ I]T

)
+�μ

(
Z(r – )Y , Ẑ(r – )Ŷ

)
,

and then

L
(
Z(r – )Y , Ẑ(r – )Ŷ ,Sr , Ŝr

)
–μ

(
Ẑ(r)[ I]T , Ŝr[ I]T

)
+μ

(
Z(r)[ I]T ,Sr[ I]T

)
= –L

(
Ẑ(r – )Ŷ , Ẑ(r – )[ I]T , Ŝr , Ŝr

)
+�μ

(
Ẑ(r – )Ŷ , Ẑ(r – )[ I]T

)
+L

(
Z(r – )Y ,Z(r – )[ I]T ,Sr ,Sr

)
–�μ

(
Z(r – )Y ,Z(r – )[ I]T

)
+�μ

(
Z(r – )Y , Ẑ(r – )Ŷ

)
. (.)
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By (.), L(Ẑ(r – )Ŷ , Ẑ(r – )[ I]T , Ŝr , Ŝr) = L(Z(r – )Y ,Z(r – )[ I]T ,Sr ,Sr) = , then
summing (.) from r =  to r = p, we derive (.). The proof is completed. �

Remark .
(i) Assume that Yi, Ŷi are conjoined bases and Y (M)

i , Ŷ (M)
i are the principal solutions of

(.), (.) atM ∈ Z. If we apply Lemma . for the case p =N –M + , N ≥M,

Y := YM, Ŷ := ŶM, Sk :=Wk–+M, Ŝk := Ŵk–+M, k = , . . . ,p,

then Z(r)Y := YM+r , Ẑ(r)Ŷ := YM+r , and Z(r)[ I]T := Y (M)
M+r , Ẑ(r)[ I]T := Ŷ (M)

M+r ,
r = , . . . ,N –M + . For the given case, equality (.) takes the form

L
(
YM, ŶM,

N∏
i=M

Wi,
N∏

i=M

Ŵi

)

=
N∑

i=M

L(Yi, Ŷi,Wi,Ŵi) + l
(
Y (M),M,N

)
– l

(
Ŷ (M),M,N

)
. (.)

In particular, if systems (.), (.) are disconjugate in [M,N], i.e.
l(Y (M),M,N) = l(Ŷ (M),M,N) = , then

L
(
YM, ŶM,

N∏
i=M

Wi,
N∏

i=M

Ŵi

)
=

N∑
i=M

L(Yi, Ŷi,Wi,Ŵi).

(ii) Note that (.) gives us possibility to replace pointwise evaluation of N –M + 
operators (.) associated with the pairs Wi, Ŵi by computation of only one
operator (.) associated with the products

∏N
i=MWi,

∏N
i=M Ŵi. In this paper we

apply Lemma . in the opposite direction. Assume that for any i the following
factorizations Wi =

∏p
k= Sk , Ŵi =

∏p
k= Ŝk hold for the coefficient matrices of (.),

(.) (here p and Sk , Ŝk can depend on i). Then for Y := Yi, Ŷ := Ŷi we have
Z(p)Y := Yi+, Ẑ(p)Ŷ := Yi+ and Lemma . presents the action of operator (.) at
the point i as a result of actions of p operators associated with the factors Sk , Ŝk ,
k = , . . . ,p (see the proofs of Lemma . and Theorem . in the next section).

We will also need the following result which is based on (.). It is well known (see
[, , ]) that symplectic transformations with lower block triangular matrices do not
change the number of focal points. In particular, if we introduce the symplectic matrices

Ki =

[
I 
Pi I

]
, K̂i =

[
I 
P̂i I

]
, Pi =PT

i , P̂i = P̂T
i , (.)

thenm(Yi) =m(KiYi),m(Ŷi) =m(K̂iŶi), and for operator (.) we have

L
(
KiYi, K̂iŶi,Ki+WiK–

i , K̂i+ŴiK̂–
i

)
= m̂(Yi) –m(Yi) +�μ(KiYi, K̂iŶi)

=L(Yi, Ŷi,Wi,Ŵi) +�fi, fi = μ(KiYi, K̂iŶi) –μ(Yi, Ŷi). (.)
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Note that we can rewrite fi in the form fi = L(Yi, Ŷi,Ki, K̂i), where Ki, K̂i obey assumption
(.). Then for fi we have the representation

fi =m∗(wi, w̃i) – ind(Ci), Ci = XT
i (Pi – P̂i)Xi, w̃i = YT

i K
T
i JK̂iŶi, (.)

where theWronskian wi is given by (.) andm∗(wi, w̃i) is defined by (.) with wi+ := w̃i.
So we have proved the following lemma.

Lemma . The relative oscillation numbers #(Yi, Ŷi) and #(KiYi, K̂iŶi) with Ki, K̂i given
by (.) are connected by the equation

#(Yi, Ŷi) = #(KiYi, K̂iŶi) –�fi,

where fi is presented by (.). In particular, for the case Yi := Y ()
i and Ŷi := Ŷ (N+)

i ,we have
fN+ = f = , and then, by Corollary .,

l
(
Ŷ (), ,N

)
– l

(
Y (), ,N

)
=

N∑
i=

#
(
Y ()
i , Ŷ (N+)

i
)
=

N∑
i=

#
(
KiY ()

i , K̂iŶ (N+)
i

)
.

3 Relative oscillation theory for matrix Sturm-Liouville difference equations
3.1 Relative oscillation numbers for matrix Sturm-Liouville difference equations
Consider the evaluation of relative oscillation numbers (.) for the special case of the
matrix Sturm-Liouville equations. Introduce the conjoined bases of systems (.), (.)
associated with (.), (.):

Yi(λ) =
[
XT
i (λ) UT

i (λ)
]T , Ŷi(λ) =

[
X̂T
i (λ) ÛT

i (λ)
]T ,

Ui(λ) = Ri(λ)�Xi(λ), Ûi(λ) = R̂i(λ)�X̂i(λ), i = , . . . ,N ,

UN+(λ) =UN (λ) +QN (λ)XN+(λ), ÛN+(λ) = ÛN (λ) + Q̂N (λ)X̂N+(λ).

(.)

Note that the coefficients QN (λ), Q̂N (λ) are not needed in equations (.), (.), but for
convenience we define them at i =N such that (.), (.) hold. In Remark . we will show
that the results of this section do not depend on the definition of QN (λ), Q̂N (λ).
The Wronskian (.) of Yi(a), Ŷi(b) for two fixed values λ = a and λ = b

wi
(
X(a), X̂(b)

)
= wi(a,b)

= XT
i (a)Ûi(b) –UT

i (a)X̂i(b), a,b ∈R, i = , . . . ,N +  (.)

obeys the equation

�wi(a,b) = –
(
�

(
XT
i (a)

)(
Ri(a) – Ri(b)

)
�X̂i(b)

+XT
i+(a)

(
Qi(a) – Q̂i(b)

)
X̂i+(b)

)
, i = , . . . ,N . (.)
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The symplectic coefficient matrices (.) associated with (.), (.) can be presented in
the special factorized form

Wi(λ) =

[
I 

Qi(λ) I

][
I R–

i (λ)
 I

]
= Li(λ)Hi(λ),

Ŵi(λ) =

[
I 

Q̂i(λ) I

][
I R̂–

i (λ)
 I

]
= L̂i(λ)Ĥi(λ).

(.)

The main result of this section is based on the consideration of the following particular
cases.

Lemma . (Case I) Assume that for spectral problems (.), (.) and (.), (.), the ma-
trices Ri(λ), R̂i(λ) obey the conditions

d
dλ

Ri(λ) =
d
dλ

R̂i(λ) = , Ri ≡ R̂i, i = , , . . . ,N , (.)

then relative oscillation numbers (.) have the form

#I
(
Yi(a), Ŷi(b)

)
=m∗(wi(a,b),wi+(a,b)

)
– ind

(
Ci(a,b)

)
,

Ci(a,b) = XT
i+(a)

(
Qi(a) – Q̂i(b)

)
Xi+(a),

(.)

where m∗(wi(a,b),wi+(a,b)) is given by (.) with Ci := Ci(a,b) and wi := wi(a,b) defined
by (.).

Proof For case (.) we have that condition (.) is obviously satisfied for matrices (.):

Wi(a)Ŵ–
i (b) = Li(a)L̂i(b) =

[
I 

Qi(a) – Q̂i(b) I

]
(.)

and then applying (.) we derive (.). �

Remark . Note that in the definition of symplectic systems (.), (.) we can put
QN (λ) = Q̂N (λ) =  and then #I(YN (a), ŶN (b)) = . However, for the case when Ŷi :=
Ŷ (N+)
i , we have #I(YN (a), ŶN (b)) =  for any choice of QN (λ), Q̂N (λ). Indeed, for this

case wN (a,b) = wN+(a,b) = XT
N+(a) by (.), (.) and according to (.), we have

m∗(wN (a,b),wN+(a,b)) = ind(CN (a,b)).

Lemma . (Case II) Assume that for spectral problems (.), (.) and (.), (.) the ma-
trices Qi(λ), Q̂i(λ) obey the conditions

d
dλ

Qi(λ) =
d
dλ

Q̂i(λ) = , Qi ≡ Q̂i, i = , , . . . ,N , (.)

then relative oscillation numbers (.) have the form

#II
(
Yi(a), Ŷi(b)

)
=m∗(wi(a,b),wi+(a,b)

)
– ind

(
Bi(a,b)

)
+ Pi,

Bi(a,b) =UT
i (a)

(
R̂–
i (b) – R–

i (a)
)
Ui(a), Ui(λ) = Ri(λ)�Xi(λ).

(.)
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Here m∗(wi(a,b),wi+(a,b)) is defined by (.)where Ci :=Bi(a,b), and the number Pi does
not depend on a, b:

Pi = ind
(
R̂i(λ)

)
– ind

(
Ri(λ)

)
, λ ∈R. (.)

Proof Note that for case (.) matrices (.) obey the condition

Ŵ–
i (b)Wi(a) = Ĥ–

i (b)Hi(a) =

[
I R–

i (a) – R̂–
i (b)

 I

]
. (.)

The symplectic upper block triangular factors Hi(a), Ĥi(b) in (.) can be represented in
the form

Hi(a) = JTKi(a)J , Ĥi(b) = JT K̂i(b)J ,

where Ki(a), K̂i(b) are the symplectic lower block triangular matrices. Assumption (.)
implies that Li(a) ≡ L̂i(b) = Li in (.). Consider operator (.) for case (.). Applying
Lemma . for p = , S = Ŝ := J , S := Ki(a), Ŝ := K̂i(b), S = Ŝ := JT , S = Ŝ = Li, Y := Yi,
Ŷ := Ŷi, we have

L
(
Yi, Ŷi,Wi(a),Ŵi(b)

)
=L

(
Yi, Ŷi,LiJTKi(a)J ,LiJT K̂i(b)J

)
=L(Yi, Ŷi, J , J) +L

(
JYi, JŶi,Ki(a), K̂i(b)

)
+L

(
Ki(a)JYi, K̂i(b)JŶi, JT , JT

)
+L

(
Hi(a)Yi(a), Ĥi(b)Ŷi(b),Li,Li

)
+

{
μ

(
Hi(a)[ I]T , JT [ I]T

)
–μ

(
Ĥi(b)[ I]T , JT [ I]T

)}
,

where the addends in the braces correspond to the last sum in (.). Taking into account
that the right-hand side of operator (.) equals zero for W = Ŵ (see (.)) and evalu-
ating the difference {μ(Hi(a)[ I]T , JT [ I]T ) – μ(Ĥi(b)[ I]T , JT [ I]T )} according to the
definition of the comparative index, we have

L
(
Yi(a), Ŷi(b),Wi(a),Ŵi(b)

)
=L

(
JYi(a), JŶi(b),Ki(a), K̂i(b)

)
+ ind

(
R̂i(b)

)
– ind

(
Ri(a)

)
.

Recall that the symmetric nonsingular matrices Ri(λ), R̂i(λ) are continuous functions in
λ and then their eigenvalues have the constant sign for λ ∈ R. So we have ind(R̂i(a)) =
ind(R̂i(λ)), ind(Ri(a)) = ind(Ri(λ)) for any λ ∈R.
Note that the symplectic matrices Ki(a), K̂i(b) in the operator L(JYi, JŶi,Ki(a), K̂i(b)) are

unit lower block triangular and then they obey condition (.):

Ki(a)K̂–
i (b) = JHi(a)Ĥ–

i (b)JT =

[
I 

R̂–
i (b) – R–

i (a) I

]
.
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EvaluatingL(JYi(a), JŶi(b),Ki(a), K̂i(b)) according to (.), whereCi should be replaced by
Bi(a,b) = UT

i (a)(R̂–
i (b) – R–

i (a))Ui(a), we derive (.) with Pi given by (.). The proof
is completed. �

Consider the evaluation of the relative oscillation numbers for the general case. Intro-
duce the following Wronskian:

wi∗ (a,b) = XT
i+(a)Ûi(b) –UT

i (a)X̂i+(b), i∗ ∈ (i, i + ) (.)

for Ui(λ), Ûi(λ) defined as in (.). Here we use the intermediate point i∗ ∈ (i, i + ) for the
convenient interpretation of subsequent results. Note that

wi∗ (a,b) = wi(a,b) –UT
i (a)

(
R̂–
i (b) – R–

i (a)
)
Ûi(b), (.)

wi+(a,b) = wi∗ (a,b) –XT
i+(a)

(
Qi(a) – Q̂i(b)

)
X̂i+(b), (.)

and then summing (.), (.) we derive (.). In particular, if case I takes place (i.e., con-
ditions (.) hold), we have wi∗ (a,b) = wi(a,b) by (.) and similarly, by (.), wi+(a,b) =
wi∗ (a,b) in case II.

Theorem . (General case) For spectral problems (.), (.) and (.), (.) associated
with symplectic matrices (.), relative oscillation numbers (.) have the form

#
(
Yi(a), Ŷi(b),Wi(a),Ŵi(b)

)
= #II

(
i, i∗

)
+ #I

(
i∗, i + 

)
, (.)

where the numbers

#II
(
i, i∗

)
=m∗(wi(a,b),wi∗ (a,b)

)
– ind

(
Bi(a,b)

)
+ Pi, (.)

#I
(
i∗, i + 

)
=m∗(wi∗ (a,b),wi+(a,b)

)
– ind

(
Ci(a,b)

)
(.)

are evaluated according to (.), (.) and (.), respectively,with wi+(a,b) := wi∗ (a,b) for
case II and wi(a,b) := wi∗ (a,b) for case I.

Proof For the proof we use factorizations (.) and Lemma .. Putting in Lemma .
p = , S :=Hi(a), Ŝ := Ĥi(b), S := Li(a), Ŝ := L̂i(b), Y := Yi, Ŷ := Ŷi, we derive

L
(
Yi(a), Ŷi(b),Wi(a),Ŵi(b)

)
=L

(
Yi(a), Ŷi(b),Li(a)Hi(a), L̂i(b)Ĥi(b)

)
=L

(
Yi(a), Ŷi(b),Hi(a), Ĥi(b)

)
+L

(
Hi(a)Yi(a), Ĥi(b)Ŷi(b),Li(a), L̂i(b)

)
.

By (.), (.) operators L(Yi(a), Ŷi(b),Hi(a), Ĥi(b)) and L(Hi(a)Yi(a), Ĥi(b)Ŷi(b),Li(a),
L̂i(b)) can be evaluated according to cases II and I, respectively. For case II, we have that
the conjoined bases Yi(a), Ŷi(b) obey the symplectic systems Yi∗ (a) = Hi(a)Yi(a), Ŷi∗ (b) =
Ĥi(b)Ŷi(b), i∗ ∈ (i, i + ), and then we have to use the Wronskian Yi∗ (a)TJŶi∗ (b) = wi∗ (a,b)
given by (.) instead of wi+(a,b). Similarly, in case I we use that Yi∗ (a), Ŷi∗ (b) obey the
symplectic systems Yi+(a) = Li(a)Yi∗ (a), Ŷi+(b) = L̂i(b)Ŷi∗ (b) and then we apply (.) re-
placing wi(a,b) by wi∗ (a,b). Finally, we point out that such modifications of (.) and (.)
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do not touch the matricesBi(a,b), Ci(a,b) according to their definitions in (.) and (.).
The proof is completed. �

Now we formulate some properties of the relative oscillation numbers given by (.),
(.), (.).

Proposition .
(i) If case I takes place (i.e., conditions (.) hold), then in (.) we have

#(Yi(a), Ŷi(b)) = #I(Yi(a), Ŷi(b)) for #I(Yi(a), Ŷi(b)) given by (.). Similarly, for case
II, #(Yi(a), Ŷi(b)) = #II(Yi(a), Ŷi(b)) with #II(Yi(a), Ŷi(b)) given by (.).

(ii) If the conditions

Qi(a)≥ Q̂i(b), Ri(a)≥ R̂i(b) (.)

hold, then the relative oscillation numbers given by (.), (.), (.) are
nonnegative. In particular, for the case Qi(λ)≡ Q̂i(λ), Ri(λ) ≡ R̂i(λ), a < b, the
relative oscillation numbers are presented in the form

#
(
Yi(a),Yi(b)

)
=m∗(wi,wi∗ ) +m∗(wi∗ ,wi+) ≥ , a < b, (.)

where m∗(wi,wi∗ ) and m∗(wi∗ ,wi+) are defined by (.) with Ci :=Bi(a,b)≥  and
Ci := Ci(a,b)≥  given by (.) and (.), respectively.

(iii) For the relative oscillation numbers in (.), we have the estimate

∣∣#(Yi(a), Ŷi(b)
)∣∣ ≤ rank

(
Ri(a) – R̂i(b)

)
+ rank

(
Qi(a) – Q̂i(b)

) ≤ n. (.)

Proof For the proof of (i), we use (.), (.). Case I implies (see (.)) that wi(a,b) =
wi∗ (a,b) and the matrices Bi(a,b), Pi in (.), (.) equal zero. Then #II(i, i∗) =  and
#(Yi(a), Ŷi(b)) = #I(Yi(a), Ŷi(b)). In a similar way, for case II, Ci(a,b) = , and we get from
(.) that wi+(a,b) = wi∗ (a,b). Finally, it follows that #I(i∗, i + ) = , #(Yi(a), Ŷi(b)) =
#II(Yi(a), Ŷi(b)).
For the proof of (ii) we note that under assumptions (.) numbers (.) are nonneg-

ative because of ind(Ci(a,b)) = . For the proof #II(i, i∗) ≥ , we use the following index
result:

ind R̂i(b) – indRi(a) = ind
(
R̂–
i (b) – R–

i (a)
)
– ind

(
Ri(a) – R̂i(b)

)
(.)

which follows from (.) for the case Y := [Ri(a) I]T , Ŷ := [R̂i(b) I]T , W := J . Recall that
in the proof of Lemma . we used indRi(λ) = indRi(λ), ind R̂i(λ) = ind R̂i(λ) accord-
ing to monotonicity assumptions (.), (.). Then, by (.), ind R̂i(b) – indRi(a) = Pi =
ind(R̂–

i (b) – R–
i (a)), where we use that ind(Ri(a) – R̂i(b)) = . Finally, we have #II(i, i∗) =

(Pi – ind(Bi(a,b))) +m∗(wi,wi∗ )≥  because of

Pi – ind
(
Bi(a,b)

)
= ind

(
R̂–
i (b) – R–

i (a)
)
– ind

(
UT

i (a)
(
R̂–
i (b) – R–

i (a)
)
Ui(a)

) ≥ .

For the case Qi(λ) ≡ Q̂i(λ), Ri(λ) ≡ R̂i(λ), a ≤ b, we additionally have Pi = ind(R–
i (b) –

R–
i (a)) =  and in (.) ind(Bi(a,b)) = . Then the proof of (ii) is completed.
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By (.), relative oscillation numbers (.), (.) obey the inequalities

∣∣#II(i, i∗)∣∣ ≤ rank
(
Hi(a) – Ĥi(b)

)
= rank

(
Ri(a) – R̂i(b)

)
,∣∣#I(i∗, i + 

)∣∣ ≤ rank
(
Li(a) – L̂i(b)

)
= rank

(
Qi(a) – Q̂i(b)

)
,

and then for the relative oscillation numbers in (.) we have estimate (.). The proof
is completed. �

3.2 Other representations of the relative oscillation numbers for matrix
Sturm-Liouville difference equations

By expanding of the operators �, the matrix Sturm-Liouville equation in (.) (or (.))
can be rewritten as the three-term recurrence [, ]

Ri+(λ)xi+ – Ti(λ)xi+ + Ri(λ)xi = , i ∈ [,N – ],

Ti(λ) = Ri+(λ) + Ri(λ) +Qi(λ).
(.)

In [, Theorem .] the following result for equation (.) is proved. If we put

ỹi =
[
xTi uTi

]T , ui := Ri(λ)xi+ – Pi(λ)xi, i ∈ [,N],

uN+ =
(
TN (λ) – PN+(λ)

)
xN+ – RN (λ)xN

(.)

with an arbitrary symmetric matrix Pi(λ), then, according to [, Theorem .], ỹi solves the
symplectic difference system with coefficients depending on Pi(λ). Here we assume (see
[]) that RN+(λ), QN (λ) are defined so that conditions (.) hold.
The choice Pi(λ) := Ri(λ), i ∈ [,N + ] leads to the symplectic system with matrix (.).

The solution yi(λ) of this system is connected with ỹi in (.) by the following symplectic
transformation:

ỹi(λ) = Ki(λ)yi(λ), Ki(λ) =

[
I 

Ri(λ) – Pi(λ) I

]
. (.)

The Wronskian w̃i(X(a), X̂(b)) for conjoined bases of the transformed systems also de-
pends on the choice of Pi(λ), P̂i(λ). So we have

wi
(
X(a), X̂(b)

)
= w̃i

(
X(a), X̂(b)

)
+XT

i (a)
(
Ri(a) – R̂i(b) – Pi(a) + P̂i(b)

)
X̂i(b), (.)

where wi(X(a), X̂(b)) is given by (.).
In particular, the Wronskian in [] (for the scalar problems (.), (.))

w̃i
(
X(a), X̂(b)

)
= w̃i(a,b) = XT

i (a)R̂i(b)X̂i+(b) –XT
i+(a)Ri(a)X̂i(b) (.)

corresponds to the choice Pi(λ) := , P̂i :=  in (.). Transformation (.) in this case
leads to the following coefficients matrices:

W̃i(λ) =

[
 R–

i (λ)
–Ri(λ) Ti(λ)R–

i (λ)

]
, W̆i(λ) =

[
 R̂–

i (λ)
–R̂i(λ) T̂i(λ)R̂–

i (λ)

]
, (.)
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where Ti(λ) is defined in (.) and T̂i(λ) is defined similarly for (.). Formula (.) for
Pi(λ) := , P̂i :=  takes the form

wi
(
X(a), X̂(b)

)
= w̃i

(
X(a), X̂(b)

)
+XT

i (a)
(
Ri(a) – R̂i(b)

)
X̂i(b). (.)

It is easy to see that

W̃i(a)W̆–
i (b) = L̃i(a,b),

L̃i(a,b) =

[
Mi(a,b) 

Ti(a)Mi(a,b) –M–T
i (a,b)T̂i(b) M–T

i (a,b)

]
,

Mi(a,b) = R–
i (a)R̂i(b),

(.)

where Mi(a,b) = I for the case Ri(a) = R̂i(b). Slightly modifying the proof of Lemma  in
[, p.] (see also [, Lemma .]), we have the following representation of the relative
oscillation numbers for the transformed systems with matrices (.):

#
(
Ỹi(a), Y̆i(b)

)
=m∗(w̃i(a,b), w̃i+(a,b)

)
–μ

(
Ỹi+(a), L̃i(a,b)Ỹi+(a)

)
. (.)

Here Ỹi(a) = Ki(a)Yi(a), Y̆i(b) = K̂i(b)Ŷi(b) and w̃i(a,b) is given by (.). The number
m∗(w̃i(a,b), w̃i+(a,b)) is defined by (.) with Ci :=Di(a,b), where

Di(a,b) = XT
i+(a)Ri(a)R̂–

i (b)
(
Ti(a) – T̂i(b)

)
Xi+(a) +XT

i (a)R̂i(b)Xi+(a)

–XT
i+(a)Ri(a)R̂–

i (b)Ri(a)Xi(a). (.)

In particular, for case I (see Lemma .), relative oscillation numbers (.) coincide with
#I(Yi(a),Yi(b)) given by (.). In the general case, by Lemma ., relative oscillation num-
bers (.) are connected with (.) by the formula

#
(
Yi(a),Yi(b)

)
= #

(
Ỹi(a), Y̆i(b)

)
–�fi, (.)

where fi is given by (.) with Ci := XT
i (a)(Ri(a)– R̂i(b))Xi(a). For relative oscillation num-

bers (.), we have the following estimate (compare with (.)):

∣∣#(Ỹi(a), Y̆i(b)
)∣∣ ≤ rankDi(a,b)≤ n, (.)

with Di(a,b) given by (.). For the proof, we apply inequalities (.), (.) to the ad-
dends in the right-hand side of (.) such that m∗(w̃i(a,b), w̃i+(a,b)) ≤ rankDi(a,b),
μ(Ỹi+(a), L̃i(a,b)Ỹi+(a)) ≤ rankDi(a,b). By analogy with Remark ., we can also show
that #(ỸN (a), Y̆ (N+)

N (b)) =  for any choice of QN (λ), RN+(λ), Q̂N (λ), R̂N+(λ).
However, we cannot guarantee that Proposition .(ii) holds for relative oscillation num-

bers (.). In particular, for the scalar case of problems (.), (.), we show that (.)
takes the value – for the case Qi(λ) ≡ Q̂i(λ), Ri(λ) ≡ R̂i(λ), a < b under the monotonic-
ity assumptions in (.), (.) (see Example . in Section ). Moreover, one can verify by

http://www.advancesindifferenceequations.com/content/2013/1/328


Elyseeva Advances in Difference Equations 2013, 2013:328 Page 17 of 25
http://www.advancesindifferenceequations.com/content/2013/1/328

direct computations that the monotonicity assumption (.) holds for (.) only if Ri(λ)
does not depend on λ. So we have

�i(λ) = J

[
R–
i (λ) 

Ti(λ)R–
i (λ) I

][
 d

dλ
Ri(λ)

d
dλ
Ri(λ) – d

dλ
Ti(λ)

][
R–
i (λ) R–

i (λ)Ti(λ)
 I

]
JT ≥ ,

and the last condition is equivalent to

d
dλ

Ri(λ) = ,
d
dλ

Qi(λ)≤ ,

where we use Lemma . in [] to evaluate the index of a symmetric matrix with zero
diagonal block (see also index results in []).

3.3 Relative oscillation theorems
In this section we prove analogs of (.), (.) for the case of matrix eigenvalue problems
(.), (.). Recall the notion of the finite eigenvalue introduced for (.) in [].

Definition . Let Y (M)
i (λ) = [Xi(λ)T Ui(λ)T ]T be the principal solution of (.) atM = .

The number λk ∈R is a finite eigenvalue of (.) if

θ (λk) := rankXN+
(
λk

–) – rankXN+(λk) ≥ ,

where rankXN+(λk
–) = limλ→λk– rankXN+(λ) and θ (λk) is the multiplicity of λk .

The global oscillation theorem in [] connects the number of the finite eigenvalues
(including their multiplicities) of (.) with the number of focal points of the principal
solution under the additional assumption ImBi(λ) = const, λ ∈R, where Bi(λ) is the block
of Wi(λ) in the upper right corner (see [, Theorem .]). The symplectic matrix (.)
satisfies this condition, and then we can formulate the global oscillation theorem for the
special case of problem (.).

Theorem . Assume (.), (.). Then the finite eigenvalues of (.) are isolated, bounded
from below, and there exists p ∈ {, , . . . ,nN} such that for any b ∈R

l
(
Y ()(b), ,N

)
= #{λ ∈ σ|λ ≤ b} + p, (.)

where #{λ ∈ σ|λ ≤ b} is the number of finite eigenvalues of (.) in (–∞,b], l(Y ()(b), ,N) =∑N
i=mi(Y ()(b)) is the number of focal points (.) of the principal solution Y ()

i (λ) in
(,N + ] for λ = b, and

p = l
(
Y ()(λ), ,N

)
, λ <min{λ ∈ σ}. (.)

Using Corollary . and the connection (.) between the number of focal points of
the principal solution l(Y ()(b), ,N) and the number of finite eigenvalues we can easily
prove the following main theorems.

Theorem . (Relative oscillation theorem for matrix Sturm-Liouville equations) Let σ,
σ be the finite spectra and Y ()

i (λ), Ŷ (N+)
i (λ) be the principal solutions of (.), (.) and
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(.), (.). Then there exists the constant P ∈ {,±, . . . ,±nN} such that for all a,b ∈ R,
the following identity holds:

#{λ ∈ σ|λ ≤ b} – #{λ ∈ σ|λ ≤ a} =
N∑
i=

#
(
Y ()
i (a), Ŷ (N+)

i (b)
)
–P. (.)

Here the relative oscillation numbers are defined by (.), (.), (.),

P =
N∑
i=

#
(
Y ()
i (λ), Ŷ (N+)

i (λ)
)
= p – p,

and p = l(Ŷ ()(λ), ,N + ), p = l(Y ()(λ), ,N + ), λ <min{λ ∈ σ ∪ σ}.

Proof According to Theorem .,

#{λ ∈ σ|λ ≤ a} = l
(
Y ()(a), ,N

)
– p, #{λ ∈ σ|λ ≤ b} = l

(
Ŷ ()(b), ,N

)
– p,

where, by (.) p – p = l(Ŷ ()(λ), ,N) – l(Y ()(λ), ,N), λ <min{λ ∈ σ ∪ σ}. Then

#{λ ∈ σ|λ ≤ b} – #{λ ∈ σ|λ ≤ a} = l
(
Ŷ ()(b), ,N

)
– l

(
Y ()(a), ,N

)
–P. (.)

By Corollary ., we derive

l
(
Ŷ ()(b), ,N

)
– l

(
Y ()(a), ,N

)
=

N∑
i=

#
(
Y ()
i (a), Ŷ (N+)

i (b)
)
,

p – p =P =
N∑
i=

#
(
Y ()
i (λ), Ŷ (N+)

i (λ)
)
, λ <min{λ ∈ σ ∪ σ}

for #(Y ()
i (a), Ŷ (N+)

i (b)), a,b ∈ R given by (.), (.), (.). Substituting the last repre-
sentations into (.), we complete the proof of (.). �

For the case Ri(λ) ≡ R̂i(λ), Qi(λ) ≡ Q̂i(λ), b > a, Theorem . presents the number of
finite eigenvalues of (.) in (a,b].

Theorem . (Renormalized oscillation theorem) For problem (.), (.) for a < b, the
following identity holds:

#{λ ∈ σ |a < λ ≤ b} =
N∑
i=

#
(
Y ()
i (a),Y (N+)

i (b)
)
,

#
(
Y ()
i (a),Y (N+)

i (b)
)
=m∗(wi,wi∗ ) +m∗(wi∗ ,wi+) ≥ ,

(.)

and m∗(wi,wi∗ ), m∗(wi∗ ,wi+) are defined by (.) with Ci := Bi(a,b) ≥ , and Ci :=
Ci(a,b)≥  given by (.) and (.), respectively.

Proof For the case Ri(λ) ≡ R̂i(λ), Qi(λ) ≡ Q̂i(λ), b > a, we have in (.) that #{λ ∈ σ |λ ≤
b}– #{λ ∈ σ |λ ≤ a} = #{λ ∈ σ |a < λ ≤ b} andP = p – p = . Applying Proposition .(ii),
we complete the proof of Theorem .. �
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Remark .
(i) In the definition of (.), we use the number Pi given by (.) which does not

depend on a, b. Then it makes sense to introduce the new constant

P̃ =P –
N∑
i=

Pi =
N∑
i=

#
(
Y ()
i (λ), Ŷ (N+)

i (λ)
)
–

N∑
i=

(
ind

(
R̂i(λ)

)
– ind

(
Ri(λ)

))
,

λ <min{λ ∈ σ ∪ σ} (.)

and use identity (.) in the form

#{λ ∈ σ|λ ≤ b} – #{λ ∈ σ|λ ≤ a} =
N∑
i=

{
#
(
Y ()
i (a), Ŷ (N+)

i (b)
)
– Pi

}
– P̃. (.)

For the numbers #(Y ()
i (a), Ŷ (N+)

i (b)) –Pi, we can also improve the estimate (.)

∣∣#(Y ()
i (a), Ŷ (N+)

i (b)
)
– Pi

∣∣ ≤ rankBi(a,b) + rankCi(a,b)

forBi(a,b), Ci(a,b) given by (.) and (.). Indeed, by analogy with the proof of
(.), we have

∣∣#II(Y ()
i (a), Ŷ (N+)

i (b)
)
– Pi

∣∣ = ∣∣m∗(wi(a,b),wi∗ (a,b)
)
– ind

(
Bi(a,b)

)∣∣
≤ rankBi(a,b),

where we use thatm∗(wi(a,b),wi∗ (a,b))≤ rankBi(a,b) by (.) and
ind(Bi(a,b))≤ rankBi(a,b). Similarly, we can prove that
|#I(Y ()

i (a), Ŷ (N+)
i (b))| ≤ rankCi(a,b). Note that (.) and (.) coincide for the

case Pi = ind(Ri(λ)) – ind(R̂i(λ)) = , for example, under the traditional assumption
Ri(λ) > , R̂i(λ) > .

(ii) According to Lemma ., in the right-hand sides of (.), (.), we can use other
representations of the relative oscillation numbers investigated in Section .. In
particular, we can use the relative oscillation numbers given by (.).

(iii) Note that Theorem . presents the connection between the numbers of focal
points of conjoined bases of two arbitrary symplectic systems. In particular, we can
apply Theorem . to the general case of two symplectic eigenvalue problems (.)
with nonlinear dependence on the spectral parameter (see [, ]). The main
properties of relative oscillation numbers (.) for this general case are subject of
the present investigation of the author.

4 Examples
This section is devoted to examples which illustrate the applications of Theorems .,
. to the scalar spectral problems (.), (.). Note that the classical oscillation theory
for scalar spectral problems (.) with nonlinear dependence on the spectral parameter is
developed in [].

http://www.advancesindifferenceequations.com/content/2013/1/328


Elyseeva Advances in Difference Equations 2013, 2013:328 Page 20 of 25
http://www.advancesindifferenceequations.com/content/2013/1/328

Example . Consider problem (.) for the scalar Sturm-Liouville difference equation

�
(
ri(λ)�xi(λ)

)
– qi(λ)xi+(λ) = , i = , , , ,

x(λ) = x(λ) = ,

ri(λ) = (–)i+ exp
(
(–)iλ

)
, qi(λ) = –λ,

(.)

then for the principal solution of (.) at , defined by the initial conditions x(λ) = ,
x(λ) = /r(λ), we have

x(λ) = –λ – λ sinh(λ) – λ sinh(λ) + λ +  sinh(λ),

and the finite eigenvalues of (.) are the zeros of x(λ): λ ≈ –., λ = , λ ≈
..
According to Theorem ., we have #(Y ()

i (a),Y (N+)
i (b)) = m∗(wi,wi∗ ) + m∗(wi∗ ,wi+),

where for the scalar case

m∗(wi,wi∗ ) =

⎧⎨
⎩, wi∗ �= ,wiwi∗ ≤ ;

, otherwise;

m∗(wi∗ ,wi+) =

⎧⎨
⎩, wi+ �= ,wi+wi∗ ≤ ;

, otherwise.

(.)

Then, according to (.) and Theorem ., the number of finite eigenvalues of problem
(.) in the interval (a,b] equals the total number of generalized zeros of theWronskian in
all intervals [i, i∗), [i∗, i + ), i = , . . . ,N , i∗ ∈ (i, i + ). For example, if a = –., b = .,
we have the three sign changes of the Wronskian wi(a,b) (see Figure ), then accord-
ing to Theorem ., the three eigenvalues of problem (.): λ ≈ –., λ = ,
λ ≈ . are located in (–., .]. Note that the relative oscillation number  ≤
#(Y ()

i (a),Y (N+)
i (b))≤  achieves its maximal value  at the point i = .

Example . In this example we evaluate the number of eigenvalues of problem (.) in
Example . using the representation of the relative oscillation numbers in the form of
(.). Recall that (.) are associated with the Wronskian w̃i(a,b) given by (.). For
the scalar case representation, (.) can be simplified as follows:

#
(
Ỹi(a), Ỹi(b)

)
=m∗(w̃i(a,b), w̃i+(a,b)

)
– ind

(
Di(a,b)

)
,

Di(a,b) = ri(a)/ri(b)
(
Ti(a) – Ti(b)

)
xi+(a) + /ri(b)

(
ri(b) – ri(a)

)
xi(a)xi+(a),

Ti(λ) = ri(λ) + ri+(λ) + qi(λ).

Then we have

#
(
Ỹi(a), Ỹi(b)

)
=

⎧⎪⎪⎨
⎪⎪⎩
, Di(a,b) > , w̃i+ �= , w̃iw̃i∗ ≤ ;

–, Di(a,b) < , w̃i �= , w̃iw̃i+ ≤ ;

, otherwise.

(.)
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Figure 1 Graphs of the sign of the Wronskian and the relative oscillation numbers in Example 4.1 for
a = –0.8, b = 1.8.

Figure 2 Graphs of the signs of the Wronskian,Di(a,b), and the relative oscillation numbers in
Example 4.2 for a = –0.1, b = 0.15.

It is possible to show that definition (.) is equivalent to the definition of a weighted
node of the Wronskian in []. According to Remark .(ii), the number of finite eigen-
values of problem (.) in the interval (a,b] equals the total number of weighted nodes
of the Wronskian in [,N]. For example (see Figure ), for a = –., b = ., the to-
tal number of weighted nodes of the Wronskian in the interval [, ] equals , and we
have only one eigenvalue λ ∈ (–., .]. Note that the relative oscillation number – ≤
#(Ỹ ()

i (a), Ỹ (N+)
i (b))≤  achieves its minimal value – at the point i = .
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Figure 3 Graphs of the functions y1,2(λ) of the number of eigenvalues below or equal to λ, λ ∈ R for
problems 1, 2 in Example 4.3.

Example . Consider spectral problem (.) (problem1) and the following spectral
problem (problem2):

�
(
r̂i(λ)�x̂i(λ)

)
– q̂i(λ)x̂i+(λ) = , i = , , , ,

x̂(λ) = x̂(λ) = ,

r̂i(λ) = (–)i, q̂i(λ) = –(λ + ).

(.)

The finite eigenvalues of (.) are the zeros of the equation

x̂(λ) = (λ + ) – λ –  = , λ̂ = –/ –  ≈ –.,

λ̂ = –, λ̂ = / – ≈ –..

The localization of the eigenvalues of (.) and (.) is shown in Figure  where we present
the functions y,(λ) of the number of eigenvalues below or equal to λ, λ ∈R.
According to Theorem ., we can calculate the difference between the numbers of

eigenvalues of (.) and (.) using the relative oscillation numbers #(Y ()
i (a), Ŷ (N+)

i (b)) =
#II(i, i∗) + #I(i∗, i + ). For the scalar case, we have

#II
(
i, i∗

)
– Pi =

⎧⎪⎪⎨
⎪⎪⎩
, r̂–i (b) – r–i (a) >  and wi∗ �= ,wiwi∗ ≤ ;

–, r̂–i (b) – r–i (a) <  and wi �= ,wiwi∗ ≤ ;

, otherwise,

(.)

where the number Pi given by (.) is defined as Pi = ind(r̂i(λ)) – ind(ri(λ)) = (–)i+.
Then we can say that theWronskian has a weighted node at i if #II(i, i∗) –Pi =±. Accord-
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Figure 4 Graphs of the signs of the Wronskian, Ci(a,b) = qi(a) – q̂i(b), Bi(a,b) = r̂–1i (b) – r–1i (a) and the
relative oscillation numbers in Example 4.3 for a = b = –4.

ing to Remark .(i), we can consider the sum
∑

i= Pi =  as the parameter of problem
(.).
Similarly, for the scalar case, we derive

#I
(
i∗, i + 

)
=

⎧⎪⎪⎨
⎪⎪⎩
, qi(a) – q̂i(b) >  and wi+ �= ,wi+wi∗ ≤ ;

–, qi(a) – q̂i(b) <  and wi∗ �= ,wi+wi∗ ≤ ;

, otherwise,

(.)

and say that the Wronskian has a weighted node at i∗ if #I(i∗, i + ) = ±.
Denote Ci(a,b) = qi(a) – q̂i(b), Bi(a,b) = r̂–i (b) – r–i (a) and observe that we can calculate

the constant P̃ given by (.) evaluating the sumof (.), (.) for a = b = λ <min(λ, λ̂).
By Figure  we conclude that P̃ = , where we take a = b = λ = –. Then, according to
Theorem ., we can evaluate the difference #{λ ∈ σ|λ ≤ b}–#{λ ∈ σ|λ ≤ a} between the
numbers of eigenvalues of (.) and (.) calculating the total number of weighted nodes
of the Wronskian for all i and i∗, i = , . . . ,N , i∗ ∈ (i, i + ).
Figure  presents the graphs of the signs of the Wronskian, Ci(a,b) = qi(a) – q̂i(b),

Bi(a,b) = r̂–i (b) – r–i (a) and the relative oscillation numbers #(Y ()
i (a), Ŷ (N+)

i (b)) – Pi,
i = , , , . For example, we have

#
(
Y ()
 (a), Ŷ (N+)

 (b)
)
– P = #II

(
, i∗

)
– P + #I

(
i∗, 

)
= , i∗ = /

because of B(a,b) > ,wwi∗ < , andC(a,b) > ,wwi∗ < , i∗ = /. Similarly, in the next
point i = , we have B(a,b) < , wwi∗ < , and C(a,b) > , wwi∗ < , i∗ = /, and then
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Figure 5 Graphs of the signs of the Wronskian, Ci(a,b) = qi(a) – q̂i(b), Bi(a,b) = r̂–1i (b) – r–1i (a) and the
relative oscillation numbers in Example 4.3 for a = –10, b = 10.

#(Y ()
 (a), Ŷ (N+)

 (b)) – P = – +  = . Finally, according to Figure , we have

#{λ ∈ σ|λ ≤ } – #{λ ∈ σ|λ ≤ –} =  –  = ,

and the sum of the relative oscillation numbers by Figure  equals .
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